Computing with Finite Matrix Groups

Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523, USA http://www.hulpke.com

State of the Art There are practical methods (GAP and Magma) for computing

Task		Permutation	Matrix		
Order, Membership		Ctabilizor	Matrix Group Recognition		
Composition Structure		Chain			
Homorphisms		Спапт			
Centralizers, Nor	malizers	Racktrack	Want !		
Conjugating Elen	nents	Dacklack			
Classes of Eleme	PcGroups	Solvable	Extend		
Subgroups		Radical /	Radical		
Isomorphism Tes	st	Frivial Fitting	Method		

generators for the kernel.

Monday, September 16, 13

Leafs

Each leaf of the tree is a simple group. We know its type and have an isomorphism to a natural representation. (Sssume we know *everything* about the simple groups.)

The tree thus represents a composition series of *G*.

We know the subgroups in this series and for each subgroup the homomorphism on its simple quotient.

Step 2: Radical and its Quotient

To use the solvable radical method, we need to find $R = \text{Rad}(G) \triangleleft G$, the largest solvable normal subgroup, and an effective homomorphism $\varrho: G \rightarrow G/R$.

Soc(G/R) is direct product of simple nonabelian groups and (up to isomorphism) $G/R \leq Aut(Soc(G/R))$.

So g should be the action of G on this socle. But the socle factors are spread over the composition series.

Reconstructing the Socle Action

Let C be a subgroup in the composition series, $C \rightarrow T$ simple nonabelian quotient in series. If C is deepest in series, elements of C represent a single factor of this socle. Conjugation by $g \in G$ will map C T ----to Cg. In chain, Cg maps to quotient A/B of same isomorphism type. $\langle 1 \rangle \prec$ A/B represents another socle factor. $\langle 1 \rangle$ We thus can act on Soc(G/R).

Combining Actions

The G on non-abelian composition factors of one type T yields a homomorphism $\alpha: G \rightarrow (Aut T) \land S_n$. Image is permutation group (or matrix group). Combine to $\rho = \alpha_1 \times ... \times \alpha_m$ into direct product. This is the action of G on Soc(G/R). Thus ker $\rho = R$.

If the image is a permutation group, use existing methods for computation.

Layering the Radical

Conjecture: Solvable matrix group R usually has a short orbit on vectors or submodules. If no large primes: max(12,n)·($q^{(n/2)}$ +1) Submodules for R', R",... give candidates. Algorithm by SIMS (solvable BSGS) finds series $G \triangleright R = R_0 \triangleright R_1 \triangleright \cdots \triangleright \langle 1 \rangle$ with R_i/R_{i+1} elementary abelian, coefficients in these vector spaces (PCGS).

Step 3: Working with Subgroups

To avoid evaluating ϱ represent $U \leq G$ by:

- An induced PCGS (think: REF for matrix) for $U \cap R$.
- Generators $u_i \in U$ s.t. $U = \langle U \cap R, u_1, u_2, ... \rangle$
- Images u_i^{ϱ} as elements of $G/R \le D$. Element test in U then first tests in U^{ϱ} . Then divide off and test in $U \cap R$. Analogously, for any $x \in G$ in the algorithm also maintain its image $x^{\varrho} \in G/R$.

Step 4: Lifting

We can now proceed essentially in the same way as for permutation groups:

Assume we know the result in $G/R=G/R_0$. (E.g. by permutation group methods, if this is a permutation group.)

Now go repeatedly from G/R_i to G/R_{i+1} until we reach $R_k = \langle 1 \rangle$.

Each step reduces to orbit calculations for an (affine) action on R_i/R_{i+1} .

Orbit/Stabilizer Algorithm

U

 $(\operatorname{Stab}_{U}(\Delta))$

 $(\operatorname{Stab}_{N}(\delta))$

 $Stab_{U}(\delta)$

When calculating orbit/stabilizer of δ under *U* (this will be a basic operation)

- Calculate the orbit Δ of δ under $N = U \cap R \triangleleft U$ and the stabilizer $V \leq U \cap R$ of δ . Δ is a *U*-block.
- Calculate the orbit and stabilizer of
 Δ under U by computing in U^e.
 (Represent Δ^u by single element.)
- Correct generators of $\text{Stab}_U(\Delta)$ to get $\text{Stab}_U(\delta)$ as complement.

Step 5: Implementations

New interface for solvable radical code in GAP 4.7. Used by new ConjugacyClasses/Centralizer/ Canonical Conjugate routine. (MECKY/ NEUBUESER, SOUVIGNIER/HOLT/CANNON, H.)

(Backtrack centralizer is often faster, but canonical element is nice.)

Experimental implementation of this interface for matrix groups, using recog package (NEUNHOEFFER, SERESS).

Applicable to matrix groups of considerable size.

Conjugacy Classes Runtimes Times in Seconds on a 2.6GHz MacPro.

Group	Order	deg	q	#Classes	t _{Setup}	t _{Calc}
(GL ₂ (5)≀S ₃)⊥ ₆ (L ₂ (11)≀S ₃)	190768545792000000	21	5	1235200	17	22886
(GL ₂ (5) ≀ S ₃)⊥ ₂ (L ₂ (11) ≀ S ₃)	572305637376000000	21	5	503808	22	9078
2 ⁹⁺¹⁶ .S ₈ (2)	1589728887019929600	394	2	703	455	998
3 ¹⁺¹² .2Suz.2	2859230155080499200	78	3	253	427	76
5 ⁹ :(GL ₃ (5)×GL ₃ (5))	432450000000000000000	6	5	18464	3	361
(6.A₅)≀S_5	5642219814912000000	30	25	526473	27	2863
3 ¹⁵ :(M ₁₁ ≀ S ₃)	42770626907728896000	16	3	3200	14	129
2 ¹⁺²² .Co ₂	354883595661213696000	1045	2	448	654	4790
((2 ² ×3).U ₆ (2)) ≀ S ₂	24359528244192686899200	54	4	77814	41	1281
11 ⁹ :(SL₃(11)×SL₃(11))	536407470703125000000000	6	11	20759	5	2819
(5³•L ₃ (5))≀S ₃ .	6032677500000000000000000	75	5	12200	97	1270
2 ⁴⁴ :(M ₁₁ ×(2 ⁴ :(S ₃ ×S ₃)))	2480816141360352083312640	15	2	10759	5	4167
(3 ¹⁰ :(M ₁₁ ≀ 2))⊥₂ (J₂ ≀ 2)	2709670423891673088000000	83	3	127764	44	13729
7 ¹² :(SL ₃ (7)×SP ₄ (7))	21556715139427451384217600	7	7	7701	12	2670

Subgroup Normalizers

Experimental implementation of Subgroup Normalizer (following GLASBY/SLATTERY method for PcGroups.) G To normalize *H* in *G*, when Α $M, N \triangleleft G$, normalize closures/ С M intersections in order A,B,C,... В **Up step:** Stabilize complement Ε N (act on cohomology). D **Down Step:** Stabilize Subspace (Scarily long orbits, centralizer and induced automorphisms.)

H

Constructive Existence Proof of Implementation

```
gap> g:=AtlasSubgroup("J4",IsMatrixGroup,1); #2^11.M24
<matrix group of size 501397585920 with 2 generators>
gap> ff:=FittingFreeLiftSetup(g);; # very fast
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;
gap> Size(u);
22
gap> NormalizerViaRadical(g,u);
<matrix group of size 220 with 4 generators>
```

```
gap> u:=HallViaRadical(g,[3]); # Joint work with EICK
[ <matrix group of size 27 with 3 generators> ]
gap> n:=NormalizerViaRadical(g,u[1]);time;
<matrix group of size 432 with 7 generators>
6583
```

Somewhat larger example

gap>g; # Max in BM, dimension 813 over GF(2), 4ms/prod. $2^{2+10+20}$.(M22:2 x S3)

gap> Size(g);

22858846741463040

gap> ff:=FittingFreeLiftSetup(g);; # ~10 minutes

#I Used Base Points[...] Lengths [3, 2, 32768, 32, 4096] gap> ff.radical;

<matrix group of size 25769803776 with 34 generators> gap> ff.pcisom;

...continued

- gap> n:=NormalizerViaRadical(g,u[1]);
- #I Radsize= 9 index 1
- #I abelian factor 2: 25769803776->12884901888 central:true
- #I down
- #I module of dimension 1 subspace 0
- #I up 0: on 2 cobounds:1
- #I abelian factor 3: 12884901888->4294967296 central:false
- #I down
- #I module of dimension 1 subspace 1
- #I abelian factor 4: 4294967296->4096 central:false
- #I down
- #I module of dimension 2 subspace 0
- #I module of dimension 18 subspace 0
- #I module of dimension 20 subspace 0
- #I up 2:3 on 1048576 cobounds:1048576
- #I up 0: on 1048576 cobounds:1

...continued more

- #I abelian factor 5: 4096->4 central:false
- #I down
- #I module of dimension 1 subspace 0
- #I module of dimension 2 subspace 0
- #I module of dimension 10 subspace 0
- #I up 2:3 on 1024 cobounds:1
- #I up 0: on 1024 cobounds:1
- #I abelian factor 6: 4->1 central:false
- #I down
- #I module of dimension 2 subspace 0
- #I up 2:3 on 4 cobounds:4
- #I up 0: on 4 cobounds:1
- <matrix group of size 3456 with 9 generators>
- gap> time; # about 50 minutes

2828467

gap> Size(g)/Size(last); 6614249635840