
Computing
with Finite Matrix Groups

Alexander Hulpke
Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://www.hulpke.com

Monday, September 16, 13

http://www.hulpke.com
http://www.hulpke.com


State of the Art
There are practical methods (GAP and 
Magma) for computing

Task Permutation Matrix

Order, Membership
Composition Structure
Homorphisms
Centralizers, Normalizers
Conjugating Elements
Classes of Elements
Subgroups
Isomorphism Test

Stabilizer
Chain

Backtrack

Solvable 
Radical / 

Trivial Fitting

Matrix 
Group 

Recognition

Want !

Extend 
Solvable 
Radical 
Method

PcGroups

Monday, September 16, 13



Step1: Matrix Group Recognition
Matrix Group Recognition finds actions 
and thus obtains a composition tree

At each node, we can evaluate the 
homomorphism (by acting on the objects 
of the underlying decomposition) and have 
generators for the kernel.

G with ⇤
. &

N = ker⇤  G F = Image(⇤)
with ⇥ with �

. & . &
ker⇥  N Image(⇥) ker �  F Image(�)

Monday, September 16, 13



Leafs
Each leaf of the tree is a simple group.
We know its type and have an 
isomorphism to a natural representation. 
(Sssume we know everything about the 
simple groups.)
The tree thus represents a composition 
series of G.
We know the subgroups in this series and 
for each subgroup the homomorphism on 
its simple quotient.

Monday, September 16, 13



Step 2: Radical and its Quotient
To use the solvable radical method, we 
need to find R= Rad(G )⊲G, the largest 
solvable normal subgroup, and an effective 
homomorphism ϱ: G→G/R.
Soc(G/R ) is direct product of simple 
nonabelian groups and (up to 
isomorphism) G/R ≦ Aut(Soc(G/R )).

So ϱ should be the action of G on this 
socle. But the socle factors are spread over 
the composition series.

Monday, September 16, 13



Reconstructing the Socle Action

Conjugation by g∈G will map C 
to Cg. B

A

C

G

*

T

〈1〉

〈1〉

T

〈1〉

Cg

Let C be a subgroup in the composition 
series, C→T simple nonabelian quotient in 
series. If C is deepest in series, elements of 
C represent a single factor of this socle.

In chain, Cg maps to quotient A/B 
of same isomorphism type.
A/B represents another socle factor. 
We thus can act on Soc(G/R).

Monday, September 16, 13



Combining Actions

The G on non-abelian composition factors 
of one type T yields a homomorphism 
α:G→(Aut T)≀Sn. Image is permutation 
group (or matrix group). Combine to
ϱ = α1 × ... × αm  into direct product.
This is the action of G on Soc(G/R). Thus 
ker ϱ=R.
If the image is a permutation group, use 
existing methods for computation.

Monday, September 16, 13



Layering the Radical

Conjecture: Solvable matrix group R usually 
has a short orbit on vectors or submodules.

If no large primes: max(12,n)·(q(n/2)+1)

Submodules for R’, R’’,... give candidates.

Algorithm by SIMS (solvable BSGS) finds 
series G ⊳R=R0⊳R1 ⊳⋅⋅⋅ ⊳ ⟨1⟩ with Ri/Ri+1 
elementary abelian, coefficients in these 
vector spaces (PCGS). 

Monday, September 16, 13



Step 3: Working with Subgroups
To avoid evaluating ϱ represent U≦G by:

- An induced PCGS (think: REF for matrix) 
for U∩R.

- Generators ui ∈U s.t. U=〈U∩R,u1,u2,...〉

- Images ui ϱ as elements of G/R≦D.
Element test in U then first tests in U ϱ . 
Then divide off and test in U∩R.
Analogously, for any x∈G in the algorithm 
also maintain its image xϱ∈G/R.

Monday, September 16, 13



Step 4: Lifting

We can now proceed essentially in the 
same way as for permutation groups:
Assume we know the result in G/R=G/R0. 
(E.g. by permutation group methods, if this 
is a permutation group.)
Now go repeatedly from G/Ri to G/Ri+1 
until we reach Rk = ⟨1⟩.

Each step reduces to orbit calculations for 
an (affine) action on Ri/Ri+1.

Monday, September 16, 13



Orbit/Stabilizer Algorithm
When calculating orbit/stabilizer of δ 
under U (this will be a basic operation)

StabN(δ)

StabU(Δ)

N StabU(δ)

U

〈1〉

- Calculate the orbit Δ of δ under 
N=U∩R⊲U and the stabilizer 
V≦U∩R of δ. Δ is a U-block.

- Calculate the orbit and stabilizer of 
Δ under U by computing in Uϱ. 
(Represent Δu by single element.)

- Correct generators of StabU(Δ) to 
get StabU(δ) as complement.

Monday, September 16, 13



Step 5: Implementations

New interface for solvable radical code in GAP 
4.7. Used by new ConjugacyClasses/Centralizer/
Canonical Conjugate routine. (MECKY/
NEUBUESER, SOUVIGNIER/HOLT/CANNON, H.)

(Backtrack centralizer is often faster, but 
canonical element is nice.)

Experimental implementation of this interface 
for matrix groups, using recog package 
(NEUNHOEFFER, SERESS).

Applicable to matrix groups of considerable size.

Monday, September 16, 13



Conjugacy Classes Runtimes
Times in Seconds on a 2.6GHz MacPro.

Group Order deg q #Classes tSetup tCalc

(GL2(5)≀S3)⟂6(L2(11)≀S3) 190768545792000000 21 5 1235200 17 22886

(GL2(5)≀S3)⟂2(L2(11)≀S3) 572305637376000000 21 5 503808 22 9078

29+16.S8(2) 1589728887019929600 394 2 703 455 998
31+12.2Suz.2 2859230155080499200 78 3 253 427 76
59:(GL3(5)⨉GL3(5)) 4324500000000000000 6 5 18464 3 361

(6.A5)≀S_5 5642219814912000000 30 25 526473 27 2863

315:(M11≀S3) 42770626907728896000 16 3 3200 14 129

21+22.Co2 354883595661213696000 1045 2 448 654 4790

((22⨉3).U6(2))≀S2
24359528244192686899200 54 4 77814 41 1281

119:(SL3(11)⨉SL3(11)) 536407470703125000000000 6 11 20759 5 2819

(53·L3(5))≀S3·
603267750000000000000000 75 5 12200 97 1270

244:(M11⨉(24:(S3⨉S3))) 2480816141360352083312640 15 2 10759 5 4167

(310:(M11≀2))⟂2 (J2≀2) 2709670423891673088000000 83 3 127764 44 13729

712:(SL3(7)⨉SP4(7)) 21556715139427451384217600 7 7 7701 12 2670

Monday, September 16, 13



Subgroup Normalizers
Experimental implementation of Subgroup 
Normalizer (following GLASBY/SLATTERY 
method for PcGroups.) G

M

N

1

H

A

C

B

D

E

To normalize H in G, when 
M,N⊲G, normalize closures/
intersections in order A,B,C,...
Up step: Stabilize complement 
(act on cohomology).
Down Step: Stabilize Subspace 
(Scarily long orbits, centralizer 
and induced automorphisms.)

Monday, September 16, 13



Constructive Existence Proof 
of Implementation

gap> g:=AtlasSubgroup("J4",IsMatrixGroup,1);  #2^11.M24
<matrix group of size 501397585920 with 2 generators>
gap> ff:=FittingFreeLiftSetup(g);;         # very fast
gap> u:=Subgroup(g,[g.1,g.1^g.2]);;
gap> Size(u);
22
gap> NormalizerViaRadical(g,u);
<matrix group of size 220 with 4 generators>

gap> u:=HallViaRadical(g,[3]);       # Joint work with EICK
[ <matrix group of size 27 with 3 generators> ]
gap> n:=NormalizerViaRadical(g,u[1]);time;
<matrix group of size 432 with 7 generators>
6583

Monday, September 16, 13



Somewhat larger example
gap> g;  # Max in BM,  dimension 813 over GF(2), 4ms/prod.
2^(2+10+20).(M22:2 x S3)
gap> Size(g);
22858846741463040
gap> ff:=FittingFreeLiftSetup(g);; # ~10 minutes
#I  Used Base Points[ ...] Lengths [ 3, 2, 32768, 32, 4096 ]
gap> ff.radical;
<matrix group of size 25769803776 with 34 generators>
gap> ff.pcisom;
Pcgs([ <an immutable 813x813 matrix over GF2>, [...]
  <an immutable 813x813 matrix over GF2> ]) -> Pcgs(
[ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15,
  f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28,
  f29, f30, f31, f32, f33, f34 ])
gap> u:=HallViaRadical(g,[3]);time;
[ <matrix group of size 27 with 3 generators> ]
36697

Monday, September 16, 13



...continued
gap> n:=NormalizerViaRadical(g,u[1]);
#I  Radsize= 9 index 1
#I  abelian factor 2: 25769803776->12884901888 central:true
#I  down
#I  module of dimension 1 subspace 0
#I  up 0: on 2 cobounds:1
#I  abelian factor 3: 12884901888->4294967296 central:false
#I  down
#I  module of dimension 1 subspace 1
#I  abelian factor 4: 4294967296->4096 central:false
#I  down
#I  module of dimension 2 subspace 0
#I  module of dimension 18 subspace 0
#I  module of dimension 20 subspace 0
#I  up 2:3 on 1048576 cobounds:1048576
#I  up 0: on 1048576 cobounds:1

Monday, September 16, 13



...continued more
#I  abelian factor 5: 4096->4 central:false
#I  down
#I  module of dimension 1 subspace 0
#I  module of dimension 2 subspace 0
#I  module of dimension 10 subspace 0
#I  up 2:3 on 1024 cobounds:1
#I  up 0: on 1024 cobounds:1
#I  abelian factor 6: 4->1 central:false
#I  down
#I  module of dimension 2 subspace 0
#I  up 2:3 on 4 cobounds:4
#I  up 0: on 4 cobounds:1
<matrix group of size 3456 with 9 generators>
gap> time;   # about 50 minutes
2828467
gap> Size(g)/Size(last);
6614249635840

Monday, September 16, 13




