
Mathematics 676 The 2 × 2 × 2 Rubik’s Cube in GAP A. Hulpke

As an example of a more involved puzzle consider the 2× 2× 2 Rubik’s cube. We label the facelets of
the cube in the following way:

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

We now assume that we will fix the bottom right corner (i.e. the corner labelled with 16/19/24) in
space – this is to make up for rotations of the whole cube in space. We therefore need to consider
only three rotations, front, top and left. The coresponding permutations are (for clockwise rotation
when looking at the face):

gap> top:=(1,2,4,3)(5,17,13,9)(6,18,14,10);;

gap> left:=(1,9,21,20)(5,6,8,7)(3,11,23,18);;

gap> front:=(3,13,22,8)(4,15,21,6)(9,10,12,11);;

gap> cube:=Group(top,left,front);

Group([(1,2,4,3)(5,17,13,9)(6,18,14,10),(1,9,21,20)(3,11,23,18)(5,6,8,7),

(3,13,22,8)(4,15,21,6)(9,10,12,11)])

gap> Order(cube);

3674160

By defining a suitable homomorphism first (for the time being consider this command as a black
box – a free group is a group generated by formal symbols) we can choose nicer names – T, L and F
– for the generators:

gap> map:=EpimorphismFromFreeGroup(cube:names:=["T","L","F"]);

[T, L, F] -> [(1,2,4,3)(5,17,13,9)(6,18,14,10),

(1,9,21,20)(3,11,23,18)(5,6,8,7), (3,13,22,8)(4,15,21,6)(9,10,12,11)]

We now can use the command Factorization to express permutations in the group as word in
generators. This is done using an orbit algorithm on elements, the group is just small enough that
this is feasible.

The reverse sequence of the inverse operations therefore will turn the cube back to its original shape.
For example, suppose the cube has been mixed up in the following way:

621

2013

2310

1814

52

2412

48

1722

97

161

113

1519

This corresponds to the permutation

gap> move:=(1,15,20,4,6,2,21)(3,17,8,5,22,7,13)(9,14,11,18,12,23,10)

(1 has gone in the position where 15 was, 2 has gone in the position of 21, and so on.) We express
this permutation as word in the generators:

gap> Factorization(cube,move);

T*F*L*T*F*T

Wecan thus bring the cube back to its original position by turning each counterclockwise top,front,top,left,front,top.

Larger puzzles If we want to do something similar for larger puzzles, for example the 3 × 3 × 3
cube, the algorithm used by Factorization runs out of memory. Instead we would need to use
a stabilizer chain. The algorithm used then does not guarantee any longer a shortest word, in our
example:

gap> PreImagesRepresentative(map,move);

T*L^-2*T^-1*L*T*L^-2*T^-2*F*T*F^-1*L^-1*F*T^-1*F^-1*L*T*L*

T^-2*F*T*F^-1*T*F*T^-1*F^-2*L^-1*F^2*L

(Note that the code uses some randomization, your mileage may vary.)

