58) Let $G = \langle (1, 3)(2,8)(4,6)(5,7), (1, 6)(2,7,3,5,8,4) \rangle$ and $N = \langle \rangle \triangleleft G$. Then $|G| = 24$ and $N \cong C_2^2$. Using the method described in the lecture, determine a linear system of equations that describes the complements of N in G. (You may use GAP for calculations, such as obtaining a presentation for G/N.)

59) Let G be a group and $M \triangleleft G$ an elementary abelian normal subgroup. We choose a set of representatives for $F := G/M$, let $\tau: F \to G$ be this representative map. We call

$$Z^1(F, M) := \{ \gamma: F \to M \mid (f g)\gamma = (f \gamma)g \forall f, g \in F \}$$

the group of 1-cocycles and

$$B^1(F, M) := \{ \gamma_m = (f \mapsto m^{-f} m): F \to M \mid m \in M \}$$

the group of 1-coboundaries. Show:

a) Z^1 is a group (under pointwise multiplication of functions) and $B^1 \leq Z^1$. We call $H^1 = Z^1/B^1$ the 1-cohomology group.

b) Suppose that $A \mathbf{x} = \mathbf{b}$ is the system of linear equations used to determine complements to M in G. Show that Z^1 corresponds to the solutions of the associated homogeneous system $A \mathbf{x} = \mathbf{0}$.

c) Assuming that there is a complement C to M in G and that the representative map $\tau: F \to C$ is in fact an isomorphism (in this situation the system of equations to determine complements is homogeneous), show that there is a bijection between Z^1 and the set of complements to M in G. d) Show that two complements are conjugate under G if and only if they are conjugate under M if and only if the corresponding cocycles (using the bijection found in c) γ, δ fulfill that γ and δ are in the same coset of B^1.

60) In this problem, we want to construct all groups H of order 16, such that $|H/\Phi(H)| = 2^2$. Consider groups of the form $\langle a, b \mid a^k = b^l = 1 \rangle$ with $k, l \in \{2, 4, 8\}$, and use the p-Quotient algorithm in GAP (EpimorphismPGroup) to determine quotients (of class up to 3). The desired groups must be quotients of the images obtained. (There are up to isomorphism 2 abelian, and 6 nonabelian groups of this kind.)

61) a) Let G be a group and $S_1, \ldots, S_k \leq G$. Show: The (simultaneous, intransitive) action of G on the cosets of the S_i is faithful if and only if $\cap_i \text{core}_G(S_i) = \{1\}$.

b) Using the characterization in a), write a program in GAP which determines for a group G the smallest degree of a faithful permutation representation. (You may use GAP, in particular the function ConjugacyClassesSubgroups to determine the subgroups of G.)

c) Using the library of small groups in GAP, find an example of a group G and $N \triangleleft G$ such that the smallest degree of a faithful permutation representation of G is smaller than that of G/N.
Let p be a prime. Describe an algorithm – using the theory of normal forms – to write down representatives of the conjugacy classes of $\text{GL}_n(p)$. You may assume that (by factoring $x^{(p^n)} - x$) you have a method that can produce all irreducible polynomials of a given degree over $GF(p)$.