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Preface

This are lecture notes I prepared for a course on Computational Group Theory

which I taught in the Springs of 2006, 2010, and 2024 at Colorado State University.

The audience consisted mostly of graduate students in their second year and later,

thus the course could assume a first year algebra course as prerequisite. Part of the

notes also was used in an REU at the University of Arizona in Summer 2008.

My aim in this coursewas to give an overviewovermost of computational group

theory from the point of view of understanding the principle behind calculations

and understand what kinds of calculations are easy, hard or infeasible.

In many cases the presentation, the prominence given to particular algorithms

or classes of groups, or depth of description is hopelessly biased by my personal

preferences and the desire to use this course to prepare students for dissertation

work with me.

In particular, as only few of the students had a background in computer sci-

ence, I decided to essentially eliminate all references to complexity and in a few

cases (which I hope all carry an explicit warning about this) even replace polyno-

mial time algorithms with potentially exponential ones as long as the run time in

practice is not too bad.

Another main divergence from “classical” descriptions is the lack of a chap-

ter on polycyclic presentations. Instead these are treated with their arithmetic as a

special case of rewriting systems, in their algorithms in the more general area of

“lifting” algorithms using homomorphic images.

These notes are deeply indebted toDerekHolt’smarvellous “HandbookofCom-

putational GroupTheory” [HEO05], which is often quite detailled – a terrific fact if

one wants to implement the algorithms— necessitating more time for explanation

than a one-semester course can allocate.

Besides Holt’s book I have freely borrowed from and am indebted to Ákos Ser-

res’ work on permutation groups [Ser03], Charles Sims’ tome on finitely presented

vii
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groups [Sim94], lecture notes by Peter Neumann [Neu87] and notes I took in lec-

tures of my advisor, Joachim Neubüser.

I apologize in advance if these references are not always explicitly listed, but

after all these are lecture notes. Similarly I have not aimed tomake the bibliography

exhaustive. There are a few references to the research literature but I apologize for

any ommissions.

I would like to acknowledge feedback and corrections from many colleagues

and students, in particularThomas Breuer, Klaus Lux, KennethMonks, Soley Jons-

dottir, and Ellen Ziliak.

Somework on these lecture notes has been done with support from theNation-

al Science Foundation under Grant No. 0633333, which is gratefully acknowledged.

Any opinions, findings and conclusions or recomendations expressed in this mate-

rial are those of the author(s) and donot necessarily reflect the views of theNational

Science Foundation (NSF).

You are welcome to use these notes freely for your own courses or students –

I’d be indebted to hear if you found them useful.

Fort Collins, Spring 2024

Alexander Hulpke

hulpke@math.colostate.edu



Chapter

I

Basics

I.1 What is Computational GroupTheory

Computational GroupTheory (CGT) is the study of algorithms for groups. It aims

to produce algorithms to answer questions about concrete groups, given for exam-

ple by generators or as symmetries of a certain algebraic or combinatorial struc-

tures.

Interest in this comes from (at least) three areas:

• Interest in developing algorithms: Can we actually calculate the objects we

define theoretically in our algebra courses?

• Concrete questions about concrete groups: We are interested in a particular

group and we want to find out more about it. Early examples of this hap-

pened in the classification of the finite simple groups, when group theorists

predicted the existence of certain groups and then a lot of effort was needed

to construct these groups and determine their properties.

Of course users here are not restricted to group theorists. For example a

chemist might want to find out some properties of the symmetry group of

a differential equation, in the same way as she would use Maple to solve an

integral.

• Complexity theory (which is a somewhat surprising area to come up). The
famous problem in theoretical computer science (and one of the millenni-

um problems) is the question whether P=NP, i.e. whether for any problem

for which we can verify a solution quickly (quickly here means: “polynomial

runtime”) we also can find a solution quickly. (This is one of the Millenni-

um problems for whose solution $106 have been on offer.) Typical cases of

this are “puzzle” type problems, such as the “Traveling Salesman” problem.

1



2 CHAPTER I. BASICS

One particular intriguing problem of this kind is “Graph Isomorphism”, i.e.

the question whether two graphs, given by their adjacencymatrix, are in fact

isomorphic. This problem seems to lie “between P and NP” and thus might

be a good bellwether for determining the relation between these problem

classes.

A graph isomorphism however is simply a permutation of the vertices, pre-

serving the edge incidences. Thus there has been the hope that permutation

group methods can help in studying this problem.

Indeed in 1982, E. Luks[Luk82] solved the problem in polynomial time for

a particular class of graphs. His solution uses substantial (computational)

group theory. Since then there has been much interest in CGT from theoret-

ical computer science.

This course is intended as an introduction to computational group theorywhich

will lead you to a level where you could starting to read the research literature.The

textbook by Holt [HEO05] is a good starting point, covering the material of these

notes and much more.

I.2 Memory

As often in computation we could buy runtime at the expense of memory. In fact

formany larger calculationsmemory use ismore of an obstacle than run time. (You

can wait a day longer but this still won’t increase your systems memory.)

To understand some of the choices or trade-offs we will be making, it is useful

to understand a bit about memory use for different objects. The numbers given

are for GAP on a 64-bit system; other implementations will face essentially similar

issues.

Numbers: A computer stores numbers in base 2, so we need 2 ⋅ log
2
(n) bits to rep-

resent a signednumber ofmagnitude n. (In factwe typically allocatememory

in chunks of 8 bytes on a 64 bit system.)

Small Numbers: All processors have built in arithmetic for small numbers (up

to 64 bits). We will use this arithmetic for such small numbers. (In fact for

technical reasons the limit in GAP is ±260. There is a notable slowdown if

numbers get above 260.)

Finite field elements Unless the field is very large, we can easily squeeze them in

4 bytes per number.

Permutations A permutation on n points is simply stored as a list of images for

each point. If n ≤ 216 we can do with 2 bytes per point (and thus 2n bytes

storage), in general we use 4 bytes per point and thus require 4n bytes of

memory. (To simplify arithmetic we usually do not throw away trailing fix
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points. I.e. the identity element of S10 is stored in the computer as images of

10 points. Internal magic makes this invisible to the user.)

Matrices are simply lists of vectors, every vector again being a list. (GAP also uses

compact types for matrices over finite fields.)

To put these numbers into context, suppose we have a permutation group acting

on 1000 points. Then each permutation takes 2kB of memory. 500 permutations

take 1MB. In 2GB we thus could store about 1 million permutations. On the other

hand if we have permutation degree 100000, we could only store 500 permutations

in the same amount of memory.

As we want to be able to work with groups that are even larger (in order and

storage size), we clearly are only able to store a small proportion of group elements.

I.3 Orbits and Stabilizers

Left and Right

lichtung
manche meinen

lechts und rinks

kann man nicht velwechsern.

werch ein illtum!

Ernst Jandl

dilection
some think

terring reft flom light

is a piece of cake

boy are they evel

long!

Translation: Anselm Hollo

In these notes wewill always have groups acting on the right, and consider right

cosets and row vectors. Consequenctially the product of permutations is (1, 2) ⋅
(2, 3) = (1, 3, 2). We will also write homomorphisms like exponentiation on the

right, alluding to the fact that the action of an automorphism group is a group

action.

Group Actions

One of the most prominent uses of groups is to describe symmetries of objects.

Thus it should not surprise that some fundamental algorithms deal with group ac-

tions. (Indeed, the algorithms in this section are the only basic algorithms which

specifically use that one is working with groups.)



4 CHAPTER I. BASICS

A group G acts on a set Ω if

• ω1 = ω for all ω ∈ Ω

• (ωg)h = ωgh for all ω ∈ Ω, g , h ∈ G.

In this case we define for ω ∈ Ω the Orbit ωG = {ωg ∣ g ∈ G} ⊂ Ω and the

Stabilizer StabG(ω) = {g ∈ G ∣ ωg = ω} ≤ G.

Lemma I.1: There is a bijection betweenωG and the set StabG(ω)∖G (i.e. right cosets

of StabG(ω) in G), given by

ωg ↔ StabG(ω) ⋅ g

In particular ∣ωG ∣ = [G∶ StabG(ω)].

If G acts on Ω, we get an homomorphism φ∶G → S∣Ω∣, we call this the action
homomorphism.

By the properties of group actions we have that δ g ∈ ωG for every δ ∈ ωG and

every g ∈ G.

Computing an orbit

In general we only have generators of G, not all group elements. To calculate all

images of a point ω ∈ Ω, we use the fact that every element of G can be expressed

as product of generators and their inverses.

Note I.2: If G is finite, we can express for each g ∈ G its inverse g−1 as positive
exponent power of g. We therefore make the following assumption:

If G is not know to be finite, we assume that the generating set of G
contains for each generator also its inverse.

With this convention we can assume that every element ofG is the product of gen-

erators of G.

The following lemma then gives the basic idea behind the orbit algorithm

Lemma I.3: Let G = ⟨g⟩ with g = {g1 , . . . , gm} and let ω ∈ Ω and ∆ ⊂ Ω such that

a) ω ∈ ∆

b) For all δ ∈ ∆ and every generator g i we have that δ g i ∈ ∆

c) For every δ ∈ ∆ there exists a sequence of indices i1 , . . . , ik such that δ =
(⋯(ωg i1 )g i2⋯))g ik

Then ωG = ∆
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Proof: By property a) and c) we have that every δ ∈ ∆ is in ωG . On the other hand

property b) shows that ∆ must be a union of orbits. ◻

This gives the following algorithm:

Algorithm I.4: The “plain vanilla” orbit algorithm.

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a
domain Ω. Also a point ω ∈ Ω.

Output: return the orbit ωG .
begin
1: ∆ ∶= [ω];
2: for δ ∈ ∆ do
3: for i ∈ {1, . . . ,m} do
4: γ ∶= δ g i ;
5: if γ /∈ ∆ then
6: Append γ to ∆;
7: fi;
8: od;
9: od;

10: return ∆;
end

Note that the for-loop in line 2 runs also through elements added to teh partial

orbit ∆ in the course of the algorithm.

Note I.5: Instead of starting with ω we could start with multiple points and then

calculate the union of orbits containing these points.

Note I.6: In the algorithm, we compute the image of every orbit element under

every group generator. If we donot only testwhether γ ∈ ∆, but identify the position
of γ ∈ δ we obtain the permutation image of G. In the same way we can evaluate

action homomorphisms.

Performance I.7: If we have m generators and an orbit of length n there will be

mn images to compute. The cost of each image will depend on the actual action,

but is proportional to the number of images.

On the other hand the test γ ∈ ∆ in line 6 is essentially a search problem. As

soon as the time for such a test is not constant (even a binary search in a sorted

list of length n isO(log(n))) this test will eventually dominate the run time of the

algorithm. It therefore is worth devoting extra data structures (e.g. a sorted list of

the elements, or a hash table for a suitably defined hash key) towards reducing the

cost of this test.

An easy consequence of the orbit algorithm is that we can obtain all elements of

a groupG by computing the orbit of 1 under the action ofG by right multiplication.

In particular, we could test in an extremely crude way whether an element is in a

group. (In general we want to domuch better.)
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1 2

34

b

b

b
a

a

a

a

a = (1,2)(3,4)
b = (1,2,3,4)

R [1]=1
R [2]=a
R [3]=ab
R [4]=aba

b

Figure I.1: The orbit of 1 under D8 = ⟨a = (1, 2)(3, 4), b = (1, 2, 3, 4)⟩

Representatives

In many applications we do not only want to find the orbit of ω but also find for

δ ∈ ωG a representative element g ∈ G such that ωg = δ.
Such a list of representatives is called a transversal. By lemma I.1 it simultane-

ously is a set of representatives for the cosets of StabG(ω). We shall calculate it in

parallel to the orbit computation.

As for notation, it makes sense to consider the orbit ωG as a list (with fixed

ordering) to maintain a correspondence between orbit points and their represen-

tatives.

To simplify notation, we will simply index the transversal with orbit elements:

R[δ]. By this we mean R[i] where ∆[i] = δ. (Again, as in performance remark I.7

this lookup might come at a nontrivial cost and merits special consideration in an

implementation.)

Note I.8: What about mapping δ to γ for arbitrary δ, γ ∈ ωG? We simply find g , h
such that ωg = δ and ωh = γ, then δ g

−1h = γ

For building the list of representatives we now just observe that if x is a repre-

sentative for δ, then xg is a representative for δ g .This gives the following extension

of the orbit algorithm:

Algorithm I.9: Orbit algorithm with transversal computation

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a
domain Ω. Also a point ω ∈ Ω.

Output: return the orbit ωG and a transversal R.
begin
1: ∆ ∶= [ω];
2: R ∶= [1];
3: for δ ∈ ∆ do
4: for i ∈ {1, . . . , n} do
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5: γ ∶= δ g i ;
6: if γ /∈ ∆ then
7: Append γ to ∆;
8: Append R[δ] ⋅ g i to R;
9: fi;

10: od;
11: od;
12: return ∆, R;
end

This is illustrated in Figure I.1, in which we calculate the orbit of the point 1

under the group D8, generated by the two permutations a = (1, 2)(3, 4) and b =
(1, 2, 3, 4). The bold lines indicate the first time an image is obtained, defining the

transversal elements.

Note I.10: It is worth observing that the representative R[δ] obtained in this al-

gorithm is a shortest product of group generators that has the desired mapping. If

we use the orbit algorithm to obtain all group elements, we can therefore obtain a

minimal factorization for all group elements, however at high memory cost.

In fact any known algorithm that guarantees aminimal factorization eventually

reduces to a brute-force enumeration similar to this algorithm. Improvements are

possible towards reducing the storage required for each group element, but this

only gains a constant factor. Heroic parallelizations have been used for example to

show the maximum number of moves for Rubik’s cube is 20, see [KC07, Rok10]

and cube20.org.

Schreier Vectors

If you think a bit about the previous algorithm, you will notice a big problem: We

store one group element for every element in the orbit. In general group elements

take much more storage than orbit elements, so memory requirements quickly get

problematic for longer orbits.

To avoid memory overflow, we will be using the following idea:

Definition I.11: Let ∆ = ωG (again considered as a list). A Schreier vector (or fac-
tored transversal) is a list S of length ∣∆∣ with the following properties:

• The entries of S are generators of G (or the identity element). (In fact the

entries are pointers to generators, thus requiring only one pointer per entry

instead of one group element.)

• S[ω] = 1

• If S[δ] = g and δ g
−1
= γ then γ precedes δ in the orbit.

We can compute a Schreier vector easily by initializing S[ω] = 1. In the orbit

algorithm, we then set S[δ] ∶= g whenever a new point δ is obtained as image

δ = γg of a known point γ.
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Schreier vectors can take the place of a transversal:

Algorithm I.12: If S is a Schreier vector for a point ω ∈ Ω, the following
algorithm computes for δ ∈ ωG a representative r such that ωr = δ.
begin
1: γ ∶= δ;
2: r ∶= 1;
3: while γ /= ω do
4: g ∶= S[γ];
5: r ∶= g ⋅ r;
6: γ = γg

−1
;

7: od;
8: return r;

end

Proof: The algorithm terminates by condition 3 for a Schreier vector. Also notice

that we always have that γr = δ. Thus when the algorithm terminates (which is for

γ = ω) the result r has the desired property. ◻

Note I.13: In practice it makes sense to store not generators, but their inverses in

the Schreier vector. This way we do not need to repeatedly invert elements in step

6.Then r is computed by forming the product of these inverse generators in reverse
order (i.e. in step 5 forming the product r ⋅ (g−1)) and inverting the final result: If

r = f gh then r = (h−1g−1 f −1)−1.

Performance I.14: For efficiency, it is desirable that the number of products to be

formed for each representative r is small. (This is called a shallow Schreier tree.) An
example of a bad case is the group generated by the n-cycle (1, 2, . . . , n). Here n− 1
multiplications are needed to obtain the representative for n in the orbit of 1.

To avoid such bad situations, one canmodify the definition order of new points

in the orbit algorithm. It also helps to adjoin extra (random) generators. More de-

tails can be found in [Ser03, Sec.4.4].

Note I.15: Unless ∣ωG ∣ is very small, wewill use Schreier vectors instead of a transver-

sal and will use algorithm I.12 to obtain (deterministic!) corresponding representa-

tives. To simplify algorithm descriptions, however we will just talk about transver-

sal elements with the understanding that a transversal element T[δ] is actually ob-
tained by algorithm I.12.

Stabilizer

The second extension to the orbit algorithm will let us determine a generating set

for the stabilizer StabG(ω). The basis for this is the following lemma that relates

group generators and a set of fixed coset representatives to subgroup generators.
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Lemma I.16: (Schreier) Let G = ⟨g⟩ a finitely generated group and S ≤ G with

[G∶S] < ∞. Suppose that r = {r1 , . . . , rn} is a set of representatives for the cosets
of S in G, such that r1 = 1. For h ∈ G we write h̄ to denote the representative h̄ ∶= r i
with Sr i = Sh. Let

U ∶= {r i g j(r i g j)−1 ∣ r i ∈ r, g j ∈ g}

Then S = ⟨U⟩. The set U is called a set of Schreier generators for S.

Proof: As S ⋅ (r i g j) = Sr i g j by definition of ⋅̄, we have that U ⊂ S.
We thus only need to show that every x ∈ S can be written as a product of

elements inU . As x ∈ G = ⟨g⟩we can write x = g i1 g i2⋯g im with g i j ∈ g. (Again, for
simplicity we assume that every element is a product of generators with no need

for inverses.)

We now rewrite x iteratively.This termmeans that we take the given expression

for x as a symbol string in the generators, and change it iteratively according to a

certain scheme. In this process we will define a set of elements t i ∈ r which are

chosen from the fixed coset representatives:

x = g i1 g i2⋯g im
= t1g i1 g i2⋯g im [setting t1 ∶= r1 = 1]
= t1g i1((t1g i1)

−1 ⋅ t1g i1)g i2⋯g im [insert 1]

= (t1g i1(t1g i1)
−1)t2g i2⋯g im [set t2 ∶= t1g i1 ]

= t1g i1(t1g i1)
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶u1∈U

t2g i2 ((t2g i2)
−1 ⋅ t2g i2)⋯g im

= u1 ⋅ t2g i2 t2g i2
−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶u2∈U

⋅t3g i3⋯g im [set t3 = t2g i2 ]

⋮

= u1u2⋯ ⋅ um−1 ⋅ tm g im

In this process t j is the coset representative for g i1⋯g i j−1 (easy induction proof).

Thus tm g im = 1, as x ∈ S. Thus tm g im = tm gm(tm g im)−1 ∈ U which gives an expres-

sion of x as product of elements in U . ◻

In our application we have S = StabG(ω) and we can use the elements of a

transversal for ω as coset representatives. (The representative for the coset Sg is

T[ωg].)
We thus get the following algorithm:

Algorithm I.17: Orbit/Stabilizer algorithm

Input: A group G, given by a generating set g = {g1 , . . . , gm}, acting on a
domain Ω. Also a point ω ∈ Ω.
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Output: return the orbit ωG , a transversal T, and the stabilizer S = StabG(ω).
begin
1: ∆ ∶= [ω];
2: T ∶= [1];
3: S ∶= ⟨1⟩;
4: for δ ∈ ∆ do
5: for i ∈ {1, . . . , n} do
6: γ ∶= δ g i ;
7: if γ /∈ ∆ then
8: Append γ to ∆;
9: Append T[δ] ⋅ g i to T;

10: else
11: S ∶= ⟨S , T[δ] ⋅ g i ⋅ T[γ]−1⟩;
12: fi;
13: od;
14: od;
15: return ∆, T, S;
end

Note I.18: We have not described how to compute the closure in step 11. The most

naive version would be to simply accumulate generators, typically redundant gen-

erators (i.e. elements already in the span of the previous elements) are discarded if

an efficient element test for subgroups exists (e.g. section II.1 in chapter II).

Note I.19: if the orbit contains ∣ωG ∣ = [G∶S]many points, the algorithm is forming

∣ωG ∣ ⋅ ∣g∣ many images (the image of every point under every generator), of those

∣ωG ∣ − 1 are new. Thus there are

∣ωG ∣ ⋅ ∣g∣ − (∣ωG ∣ − 1) ∣ωG ∣ ⋅ ∣g∣ − ∣ωG ∣ + 1 = ∣ωG ∣ ⋅ (∣g∣ − 1) + 1 = [G∶S] ⋅ (∣g∣ − 1) + 1

Schreier generators.

Performance I.20: Wewill see later (note III.33 in chapter III) that the rather large

number of Schreier generators [G∶S] ⋅ (∣g∣ − 1)+ 1 in general is the best possible for

a subgroup generating set.

However in practice this set of generators is typically highly redundant. We

can remove obvious redundancies (duplicates, identity), but even then much re-

dundancy remains.

There are essentially three ways to deal with this:

• For every arising Schreier generator, we test in step 11 whether it is already

in the subgroup generated by the previous Schreier generators and discard

redundant generators. Doing so requires many element tests.
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• We pick a small (random) subset of the Schreier generators and hope1 that

these elements generate the stabilizer. To make this deterministic (i.e. repeat

if it fails) one needs a means of verification that everything went well.

A more concrete analysis of generation probability (which makes it possible

to make the probability of an error arbitrary small) is possible if one chooses

random subproducts of the Schreier generators (essentially products of the

form sε11 s
ε2
2 ⋯s

εk
k with ε i ∈ {0,±1}) [BLS97]. Still, the verification problem

remains.

If we know the normal structure of a group improvements are possible, see

section II.4.

Application: Normal Closure

Let U ≤ G. The normal closure of U in G is

⟨U⟩G = ⋂{N ∣ U ≤ N ⊲ G}

the smallest normal subgroup of G containing U .

One of its uses is in the computation of commutator subgroups, for example if

G = ⟨g⟩, then G′ = ⟨a−1b−1ab ∣ a, b ∈ g⟩
G
.

If we start with generators ofU andG, we can compute this closure in a variant

of the orbit algorithm:

Algorithm I.21: NormalClosure of a subgroup.

Input: Two generating systems g and u for subgroups G = ⟨g⟩ and U = ⟨u⟩.
Output: A generating system for the normal closure ⟨U⟩G .
begin
1: n ∶= [];
2: for x ∈ u do {start with u}
3: Add x to n;
4: od;
5: for d ∈ n do {orbit algorithm starting with n}
6: for g ∈ g do
7: c ∶= d g ;
8: if c /∈ ⟨n⟩ then {inclusion in group closure}
9: Add c to n;

10: fi;
11: od;
12: od;
13: return n;

1The probability that a small random subset generates a finite group is often very high. Proofs exist

for example for random subsets of two elements in the case of symmetric groups [Dix69] or simple

groups [LS95].
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end

Proof:The algorithm clearly terminates, ifG is finite, as only finitelymany elements

may be added to n in step 8.

As n is initialized by u, we have that U ≤ ⟨n⟩. Furthermore, as we only add

conjugates of the elements in n, we have that ⟨n⟩ ≤ ⟨U⟩G .
We now claim that for every x ∈ ⟨n⟩ and every g ∈ G we have that x g ∈ ⟨n⟩.

As (xy)g = x g yg it is sufficient to consider x ∈ n. Because we can express g as a

word in g this statement holds by the same argument as in the orbit algorithm.This

proves that ⟨n⟩ ⊲ G. But ⟨U⟩G is the smallest normal subgroup of G containingU ,

which proves that ⟨n⟩ = ⟨U⟩G . ◻

Consequence: What to ask for?

The ability to calculate orbits, essentially at a cost proportional to the length of the

orbit, influences the design of other algorithms. If there is a natural group action

defined, it is sufficient to compute and return only a list of representatives, from

these one could obtain all objects as orbits of the representatives.

Doing so not only makes the output size smaller, but typically also saves sub-

stantial memory and computing time. In general algorithms of this type do not

only determine representatives, but also their stabilizers (of course not computed

by an orbit algorithm), knowing them for example use information about the orbit

length

Typical examples of this are group elements – conjugation by the group forms

orbits, called conjugacy classes. Instead of enumerating all elements, it is sufficient

to list only representatives of the classes. The stabilizer of an element then is the

centralizer.

When dealing with subgroups of a group similarly conjugacy forms orbits. A

typical computation will determine subgroups only up to conjugacy, the stabiliz-

ers here are the normalizers. Some prominent classes of subgroups, such as Sylow

subgroups also typically are computed via single representatives.

I.4 Random Elements

We have already talked (and will talk again) about using random elements. In this

sectionwewant to describe a general algorithm to form (pseudo)-randomelements

of a group G = ⟨g⟩ if only the generating set g is known.
Our first assumption is that we have a (perfect) random number generator.

(GAP for example uses theMersenne Twister algorithm, http://en.wikipedia.

org/wiki/Mersenne_twister.) Using this, one can try to multiply generators

together randomly. The problem is that if we only multiply with generators, the
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word length grows very slowly, making it difficult to obtain any kind of equal dis-

tribution in a short time.

This is resolved by multiplying products of elements together iteratively. The

following algorithm is a modification of [CLGM+95] due to Charles Leedham-

Green. It looks deceptively simple, but performs in practice rather well and its be-

haviour has been studied extensively [GP06]. Unfortunately there are cases when

its result will not approximate a uniform distribution [BP04].

Algorithm I.22: (Pseudo)Random, “Product Replacement”

Let g a set of group elements. This algorithm returns pseudo-random ele-

ments of ⟨g⟩.
The algorithm consists of an initialization step and a routine that then will

return one pseudo-random group element in every iteration.

The routine keeps a (global) list X of r = max(11, ∣g∣) group elements and

one extra group element a. (Experiments show that one needs r ≥ 10.)
Pseudorandom()

begin
1: s ∶= Random([1..r]);{pick two random list elements}
2: t ∶= Random([1..r] ∖ [s]);
3: e ∶= Random([−1, 1]);{random choice of product/quotient}
4: if Random([1, 2]) = 1 then {random product order}
5: X[s] ∶= X[s]X[t]e ;{replace one list entry by product}
6: a ∶= aX[s];{accumulate product}
7: else
8: X[s] ∶= X[t]eX[s];{replace one list entry by product}
9: a ∶= X[s]a;{accumulate product}

10: fi;
11: return a;
end

The list X is initialized by the following routine:

begin
X = [];{initialize with repetitions of the generator set}
k ∶= ∣g∣;
for i ∈ [1..k] do

X[i] ∶= g i ;
od;
for i ∈ [k + 1..r] do

X[i] ∶= X[i − k];
od;
a ∶= 1;
for i ∈ [1..50] do {50 is heuristic}
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Pseudorandom(); {Initial randomization}
od;

end
The iterated multiplication in steps 5/6 and 8/9 of the Pseudorandom routine

ensures a quick growth of word lengths.

I.5 How to do it inGAP

Group Actions

Group actions being a fundamental functionality, GAP has a rather elaborate

setup for group actions. The heart of it is to specify the actual action by a function:

actfun(ω,g), which will return the image ωg for the particular definition of the

action. No2 test is performed that the function actually implements a proper

group action from the right. GAP comes with a couple of predefined actions:

OnPoints Calculates the image as calculated by the caret operator ^. For

example permutations on points, or conjugacy in a group. If no action

function is given, the system defaults to OnPoints.

OnTuples Acts on lists of points, acting with the same element on each entry

separately via OnPoints (i.e. the induced action on tuples).

OnSets Works like OnTuples but the resulting lists of images is sorted,

considering [B,A] equal to [A,B] (i.e. the induced action on sets of points).

OnRight The image is the image under right multiplication by the group

element. For example matrices on row vectors or group elements on cosets.

The action group on the cosets of a subgroup by right multiplication is so

important, that GAP provides special syntax to do this efficiently (i.e.

without need to store cosets as special objects, in many cases even without

the need to store an explicit list of coset representatives). In a slight abuse of

notation this is achieved by the command

ActionHomomorphism(G,RightTransversal(G,S),OnRight);

OnLines is used to implement the projective action of a matrix group on a vector

space: Each 1-dimensional subspace ⟨v⟩ of the row space is represented by a

vector w = c ⋅ v scaled such that the first nonzero entry of w is one.

Using actions specified this way, one can now calculate

Orbit(G,ω,actfun);

2well, almost no
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RepresentativeAction(G,ω,δ,actfun);,

Stabilizer(G,ω,actfun);,

ActionHomomorphism(G,Ω,actfun,"surjective");] returns a
homomorphism from G to the permutation action on Ω (a list of points

whose arrangement is used to write down permutations). The extra

argument "surjective" ensures that the range is set equal to the image

(otherwise the range is S∣Ω∣). If only the image of this homomorphism is

desired, one can use the function Action instead.

It should be stressed that with few exceptions (Permutation groups on points, sets

or tuples, groups on their elements by conjugation) these functions default to the

fundamental algorithms described in this chapter. In particular their run time

and memory use is proportional to the length of the orbit. Action

homomorphisms use permutation group machinery to compute preimages.

Variations

As described in note I.7 the bottleneck of all these algorithms is finding points in

the partial orbit, both to check whether they are new, and to identify

corresponding transversal elements. To do so efficiently, it is useful to know the

domain Ω in which the orbit lies: Ω might be small and afford a cheap indexing

function – in this case the position in Ω can be used for lookup. Alternatively, Ω

can give information about what kind of hash function to use. For example, when

acting on vectors in characteristic 2, calculating the orbit of [1̄, 0̄, . . . , 0̄] does not
specify, whether all other vectors in the orbit actually are defined over GF(2) or if
they only are defined over extension fields3.

All action functions therefore take (a superset of) the domain as an optional

second argument, e.g. Orbit(G,Ω,ω,actfun);. Doing so can speed up the

calculation.

A second variant (relevant for finding representatives or calculating stabilizers) is

the situation that G acts via a homomorphism, for example if a permutation

group acts on a module via matrices. In such a situation we do not want to

actually evaluate the homomorphism at each step. On the other hand the only

group elements ever acting are the generators. It therefore is possible to specify

two lists, generators g and their acting homomorphic images h as optional

arguments. For example in the function call Stabilizer(G,ω,g,h,actfun);
Then images are calculated using h, but transversal elements and stabilizer

generators calculated using g, i.e. as elements of G.

3As this might actually depend on the user-supplied function actfun the system cannot do this

in general!
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Random elements

The product replacement algorithm, as described in this chapter, is implemented

why the function PseudoRandom. There also is a function Random, which guar-

antees4 a random distribution of group elements. This function essentially uses

methods to enumerate all group elements, and simply returns a group element for

a random index number.

4assuming – which is not true – that the underlying random number generator creates a true ran-

dom distribution



Chapter

II

Permutation Groups

Sediento de saber lo que Dios sabe,

Judá León se dio a permutaciones

de letras y a complejas variaciones

Y al fin pronunció el Nombre que es la Clave,

La Puerta, el Eco, el Huésped y el Palacio.

El Golem

Jorge Luis Borges

Thirsty to see what God would see,

Judah Loew gave in to permutations

with letters in such complex variations

that he at last uttered the Name that is Key.

Portal, Echo, Host and Palace

Translation: Matias Giovannini

Probably the most important class of groups are permutation groups, not least be-

cause every finite group can be represented this way. If you are interested in details,

there is a monograph [Ser03] dedicated to algorithms for such groups which goes

in much more detail.

II.1 Stabilizer Chains and their Computation

We now assume that G is a (potentially large) permutation group, given by a set

of permutation generators. We want to compute with this group (for example: find

its order, and to have an element test), without having to enumerate (and store!)

all its elements. Obviously we have to store the generators, we also are willing to

17
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store some further group elements, but in total we want to store just a few hundred

elements, even if the group has size several fantastillions.

Stabilizer Chains

Thealgorithmwewant to develop is due toCharles Sims [Sim70].As it uses Schreier’s

lemma I.16 this algorithm has been known commonly as the “Schreier-Sims” algo-

rithm.

Its basic idea is the following: We consider a list of points B = (β1 , . . . , βm),
such that the identity is the only element g ∈ G with the property that βg

i = β i for

all i. We call such a list B a base for G. (It clearly is not unique.) Corresponding

to the base we get a Stabilizer chain: This is a sequence of subgroups of G, defined
by G(0) ∶= G, G(i) ∶= StabG(i−1)(β i). (By the definition of a base, we have that

G(m) = ⟨1⟩.)
One interesting property of a base is that every permutation g ∈ G is deter-

mined uniquely by the images of a base βg
1 , . . . , β

g
m it produces. (If h produces the

same images, g/h fixes all base points.)

Note II.1: In general a base is rather short (often length < 10 even for large groups)

but there are obvious cases (e.g. symmetric and alternating groups) where the base

is longer. Still, as every stabilizer index must be at least 2, the length of a base must

be bounded by log
2
∣G∣.

Sims’ idea now is that we can describe G in terms of the cosets for steps in

this chain: An element g ∈ G(i−1) will be in a coset of G(i). Thus we have that

g = a ⋅ r with a ∈ G(i) and b a coset representative for G(i) in G(i−1). As G(i) =
StabG(i−1)(β i) these coset representatives correspond to the orbit of β i underG(i−1).

By using this kind of decomposition inductively, we can write any g ∈ G in the

form g = bmbm−1⋯b1 with b i a coset representative for G(i) in G(i−1) and thus

corresponding to a point in the orbit βG
(i−1)

i .

We can describe these orbits and sets of representatives using the orbit algo-

rithm we studies in the last chapter.

On the computer we thus store a stabilizer chain in the following way:

Each subgroup G(i) in the stabilizer chain is represented by a record with en-

tries giving

• the generators of G(i),

• theorbitof β i+1 underG(i) (we shall use the convention that β i+1 = orbit[1]),

• a corresponding transversal (which in fact will be implemented using a

Schreier vector) and

• a pointer to the stabilizer which is the record for StabG(i)(β i+1).

Example II.2: Let G = A4 with base [1, 2]. Then G = G(0) = ⟨(1, 2, 3), (2, 3, 4)⟩,
G(1) = StabG(1) = ⟨(2, 3, 4)⟩ and G(2) = StabG(1, 2) = ⟨⟩.
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We thus get (for example) the following data structure:

rec(generators:=[(1,2,3),(2,3,4)],

orbit:=[1,2,3,4],

transversal:=[(),(1,2,3),(1,3,2),(1,4,2)],

stabilizer := rec(

generators:=[(2,3,4)],

orbit:=[2,3,4],

transversal:=[(),(2,3,4),(2,4,3)],

stabilizer:= rec(

generators:=[]) ) )

Note II.3: How dowe actually determine a base?We determine the next base point

whenwe need it: β i is simply chosen to be a pointmoved (sowe have a proper orbit)

by some generator of G(i−1).
In some applications, one also might need a base to contain particular points,

which we would chose first.

A naive way to calculate a stabilizer chain would be to simply compute the or-

bit of β1 under G = G(0) and generators for G(1) = StabG(0)(β1) using the Or-

bit/Stabilizer algorithm. We then iterate for G(1) until we end up with a trivial sta-

bilizer.

The only problem with this approach is the large number of Schreier genera-

tors: In each layer the number of generators will increase by the index, leaving us

about ∣G∣ generators in the last step. Overall this would result in a run time that

is exponential in the number of points. The way around this problem is to use the

partially constructed stabilizer chain to remove redundant elements. We therefore

consider element tests first.

Element Test

The basic idea towards an element test is the following algorithm which, given a

stabilizer chain and a group element x, writes x as a product of coset representa-

tives:

Algorithm II.4: Let g ∈ G(0). We want to find the expression g = bmbm−1⋯b1
with b i a coset representative for G(i) in G(i−1).
Input: A stabilizer chain C for a group G and an element g ∈ G
Output: A list L = [b1 , b2 , . . . , bm] of coset representatives, such that g =

bmbm−1⋯b1.
begin
1: L ∶= [];
2: while C .generators <> [] do
3: β ∶= C .orbit[1];
4: δ = βg ;
5: r ∶= C .transversal[δ];
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6: g ∶= g/r;
7: Add r to L;
8: C ∶= C .stabilizer;
9: od;

10: return L
end

Proof: Observe that βr = βg , thus the new g in line 6 is in the stabilizer of β. Thus

at the end of the algorithm, after dividing off representatives, we must have g = 1.
◻

A small modifiication of this algorithm now lets us do an element test for the

group represented by the chain. Consider what happens in algorithm II.4 if g /∈
G. Then obviously the algorithm cannot terminate with g = 1. Instead what will

happen is that at some iteration the image δ may not be in the orbit of β. (This

might be at the very end of the algorithm where .generators and .transversal

are empty.

If we check for this situation, we get a test for whether an element is in a per-

mutation group described by a stabilizer chain. We call this resulting procedure

“ElementTest(C , a)”. This process also is sometimes called “sifting”.

Algorithm II.5: Same setup as algorithm II.4, but if the element is not is the
group, an error is returned.

begin
1: L ∶= [];
2: while C .generators <> [] do
3: β ∶= C .orbit[1];
4: δ = βg ;
5: if C .transversal[δ] does not exist then
6: return not contained;
7: fi;
8: r ∶= C .transversal[δ];
9: g ∶= g/r;

10: Add r to L;
11: C ∶= C .stabilizer;
12: od;
13: if g /= () then
14: return not contained;
15: else
16: return L
17: fi;
end
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The Schreier-Sims algorithm

The element test gives us the chance to remove redundant Schreier generators: We

will build the stabilizer chain not layer by layer, accumulating a large number of

Schreier generators, but instead after obtaining one Schreier generator first test

whether it is redundant by checking whether it is contained in the span of the span

of the Schreier generators found so far. The whole stabilizer chain is computed by

starting with the chain for a trivial group, and adding the groups generators, one

by one, as if they were Schreier generators from a higher level.

To do an element test with the existing partial data structure, we assume that

the layer below the one in which we are calculating orbits (i.e. the C .stabilizer
layer) is a proper stabilizer chain. We also assume that on the current level the

.orbit and .transversal components correspond.

Definition II.6: A partial stabilizer chain is a data structure as described for a

stabilizer chain such that on each layer C we have that for the base point β =
C .orbit[1] the orbit of β under ⟨C .generators⟩ is C .orbit and that

Stab⟨C .generators⟩(β) ≥ ⟨C .stabilizer.generators⟩

If equality holds on every layer, the partial stabilizer chain is called proper.

Whenever we modify a layer, we will have to ensure that it is a a proper chain,

before returning back.

To prove correctness of a stabilizer chain computation the following observa-

tions will be useful, it gives a testable condition which ensures correctness of the

stabilizer chain.

Lemma II.7: Let C be a layer of a partial stabilizer chain with orbit starting at β =
C .orbit[1] and G = ⟨C .generators⟩. Then C is a (proper) stabilizer chain for G
if any of the following conditions hold.1

1. C .stabilizer is a proper stabilizer chain for StabG(β).

2. ∣G∣ = ∣C .orbit∣ ⋅ ∣⟨C .stabilizer⟩∣

Returning to the question of calculating stabilizer chains, we now describe the

processing of a new (Schreier) generator a which is given to a layer C in the chain.

We first use the element test from algorithm II.5 to check whether a is contained

in the group described by C. (Remember, that we assume that C is a proper chain,

if we pass generators to it.) If a is contained, it is redundant, and we ignore it.

Otherwise we know that C does not describe the correct stabilizer in the group,

but only a subgroup.We therefore need to add a to the generators of C and expand

the orbit accordingly (i.e. calculate images of all orbit elements under a and – if any
new orbit elements arose – calculate images for these under all the generators) to

1The conditions are trivially all necessary.
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ensure that C is a partial stabilizer chain. Newly arising Schreier generators are fed

(in a recursive call) to the next layer C .stabilizer.
(If the element test for a did fail not on layer C, but on a lower layer D, this

process immediately creates Schreier generators.)

Once this orbit extension (and processing of Schreier generators) is complete

we know that C .stabilizer is the proper stabilizer for layer C. By lemma II.7,

this means that C is a proper stabilizer chain and we have finished processing of

the new generator a.

We now describe this procedure in a formal way. In the version presented here,

the algorithm picks base points itself, though one can obviously “seed” a partial

base.

Algorithm II.8: Recursive version of the Schreier-Sims algorithm. As the main
algorithm is a recursive function (Extend), we need to perform a separate
initialization.

Input: A generating set g for a permutation group G
Output: A recursive data structure for a stabilizer chain for G.
begin
1: C ∶= rec(generators ∶= []);
2: for a ∈ g do

3: Extend(C , a);
4: od;
5: return C;

end

The actual work is then done in the following recursive function which
extends and modifies the (full or layer) chain C.
Extend(C , a)
begin
1: if ElementTest(C , a) fails then {Extend existing stabilizer chain}
2: if C .generators = [] then {We are on the bottom of the chain}
3: C .stabilizer ∶= rec(generators ∶= []); {Add a new layer}
4: β ∶= one point moved by a; {or a predefined next base point}
5: Add a to C .generators;
6: C .orbit ∶= [β];C .transversal ∶= [1];
7: δ ∶= βa ; s ∶= a;{Special orbit algorithm for single generator}
8: while δ /= β do
9: Add δ to C .orbit; Add s to C .transversal;

10: δ ∶= δa ; s ∶= s ⋅ a;
11: od;
12: Extend(C .stabilizer, s);{s is only Schreier generator}
13: else {The layer already has an existing orbit}
14: O ∶= C .orbit; T ∶= C .transversal; {Extend orbit algorithm}
15: l ∶= ∣O∣;
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16: for δ ∈ O in position 1 to l do {Old points only with new generator}
17: γ = δa ;
18: if γ /∈ O then
19: Add γ to O; update transversal;
20: else
21: s ∶= T[δ]aT[γ]−1;
22: Extend(C .stabilizer, s);
23: fi;
24: od;
25: for δ ∈ O in position > l do {new points with all generators}
26: for b ∈ C .generators ∪ {a} do
27: γ = δb ;
28: if γ /∈ O then
29: Add γ to O; update transversal;
30: else
31: s ∶= T[δ]bT[γ]−1;
32: Extend(C .stabilizer, s);
33: fi;
34: od;
35: od;
36: Add a to C .generators;
37: fi;
38: fi;
end

Performance II.9: We only process a if the element test in line 1 fails. In this case

the test will fail on some (potentially lower) layer in the chain after already dividing

off transversal elements on a higher layer. As this “sifted” element differs from a by
existing transversal factors it clearly does not change the reulting group. However

as it is moving fewer points, it is preferably taken in place of a. This way it will give

immediately Schreier generators on a lower layer.

Note II.10: One can show (see [Ser03]) that the resulting algorithm has a complex-

ity which polynomial in the degree n.

Note II.11: If G is known to be solvable, there is a better algorithm that has been

proposed by Sims in 1990 [Sim90].

Strong Generators

The reason for the recursive structure of the Schreier-Sims algorithm is that we do

not know immediately a reasonable set of generators for the different stabilizers. If

we did, we could build the stabilizer chain very quickly layer by layer, just using the

orbit algorithm. This motivates the following definition:
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Definition II.12: A Strong generating system (SGS) for G is a generating set S for

G, such that the i-th stabilizer G(i) is generated by S ∩G(i).

If we have a stabilizer chain, the union of the generators components on all

layers obviously yields a strong generating system.

Given a strong generating set, we can thus very easily rebuild a stabilizer chain.

This explains, why the computation of a stabilizer chain is often described as com-

putation of a base and a strong generating system.

Performance II.13: A small problem in the construction of a Schreier vector is

that the algorithm may produce unwieldy large expressions for representatives.

Consider for example the group

G = ⟨a = (1, 2, 3, 4, . . . , 100), b = (1, 2)⟩ .

With this generating set, the representative for i will be a i , respectively for i > 50
the power a−(101−i). On the other hand, asG = S100, there are other generating sets,
which produce in average much shorter representative words.

This problem is magnified by the fact that we iteratively add generators.

A way around this problem is to add further group elements (short products of

the existing generators) to the generating set.

In particular, one could rebuild the stabilizer chain with a strong generating set

as new generators to obtain immediately multiple generators on each layer.

Base images and Permutation words

Themost expensive subtask of the Schreier-Sims algorithm is the multiplication of

permutations, in particular if we have to get transversal elements from a Schreier

vector. To improve performance, it is thus desirable to reduce the number of mul-

tiplications.

There are two approaches to do this:

Base Images: If we already know a base B = (β1 , . . . , βm), we know that every per-

mutation g is determined uniquely by the base image (βg
1 , . . . , β

g
m) it produces.

Now suppose that (γ1 , . . . , γm) is a base image under some group element g
and we have h ∈ G. Then (γh1 , . . . , γ

h
m) is the base image for gh.

We thus can represent group elements in the algorithm by their base images.

The cost of one multiplication then is proportional to the length of a base and not,

as permutation multiplication would be, to the length of the domain.

This is in particular relevant if weworkwith a subgroupU ≤ G and have already

a base for G determined.

Words: Instead of multiplying out permutations, we can store products as aword of
permutations, i.e. f gh is stored as [ f , g , h]. Multiplication of words is simple con-

catenation; the inverse of [ f , g , h] is [h−1 , g−1 , f −1]; the image of a point ω under

[ f , g , h] can be computed as ((ω f )g)h .The only test which is hard, is to determine

whether a word represents the identity. For this we need to compute the images of

all points (unless we know a base).
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Randomization

Thebiggest problemwith the Schreier-Sims algorithm is the large number of Schreier

generators on each layer – the problem is that we have no criterion which elements

we can safely ignore.

Experiments show that one can usually ignore at least half the generators, but

there are more problematic cases. This can be rectified, to give a statistically satis-

factory behavior, but is a rather complicated process.

Another way to look at this is that if we only pick some Schreier generators,

we effectively rebuild a stabilizer chain with a set S which claims to be a strong

generating set, but is in effect a proper subset. Consequentially the resulting partial

chain is not describing the group but a proper subset. As every proper subgroup

has index 2 one would thus expect that the element test with this chain will fail

with probability 1

2
for a random group element. Indeed this is true as the following

lemma shows:

Lemma II.14: Suppose we have built a partial stabilizer chain for a groupG which is

missing Schreier generators on some layers (and thus — by lemma II.7 — has too

short orbits on some layers). Then an element of G fails the element test for this

chain with probability at least 1

2
.

Proof: Let S( j) be the groups generated by the Schreier generators on the respective
layer of the chain and G( j) the correct stabilizers. Let i be the largest index in the

stabilizer chain, such that S(i+1) /= StabS(i)(β i). Then S(i+1) in fact has a proper

chain (otherwise i was larger) and we can do a true element test in this group.

Now consider the element test for group elements with the given chain S. Sup-
pose that the probability is p, that a uniformly random element g ∈ G sifts through

layer 1 to i. Let ḡ be the product of transversal elements divided off at this point.

Then r = g/ḡ ∈ G(i+1). Furthermore (multiply one element that passes with el-

ements of G(i+1)) every element of G(i+1) occurs as remainder r for a random g
with the same probability.

On the other hand, by the choice of i, we know that S(i+1) /= G(i+1), thus
[G(i+1)∶S(i+1)] ≥ 2. Thus r passes the element test for S(i+1) with probability ≤ 1

2
.

Sifting thus fails at least with probability

(1 − p) + p
1

2
= 1 −

p
2
≥
1

2

◻

If we suppose that generators passed to the next layer of the Schreier-Sims al-

gorithm are uniformly distributed (which is not true, but often not too wrong), we

can thus take the passing of the element test to indicate with probability ≥ 1

2
that the

chain is in fact correct. If subsequent Schreier generators do not extend the chain,

this probability grows. One thus could stop processing further Schreier generators,

once a fixed number of Schreier generators in a row did not extend the chain.
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Furthermore, in the “RandomSchreier-Sims” algorithmas proposed in [Leo80],

we can form (Pseudo-)random elements of the group G (e.g. using algorithm I.22)

and test whether a fixed number (20 elements is used in [Leo80]) of them pass the

element test with the existing chain.

Verification

The “only” problem with even the best randomized approach is that we can never

guarantee that we obtained a correct stabilizer chain. If2 we want to obtain proven

results, we need to verify the obtained chain.

The following methods can be used for such a verification:

Known Order By lemma II.7 a partial chain will not be proper if the orbit on some

layer becomes to short. In this situation the order of the group as calculated

from the stabilizer chain is too small. If we know ∣G∣we can simply compare.

Combinatorial verification Charles Sims developed in 1970 an combinatorial al-

gorithm for verifying a stabilizer chain obtained with random methods but

did not publish the method. The first description can be found in [Ser03].

Presentations One can use the stabilizer chain to deduce “relations” which have

to hold among the generators of the group – if the chain is too small some

will fail.This will lead to a so-called Todd-Coxeter-Schreier-Sims algorithm,

see section III.10.

Using a Composition series If we know a composition series, we can verify all

composition factors separately, see III.11

If the verification of a chain fails, we have to continue adding Schreier gener-

ators. (Often the failure of a test already provides a particular element that should

be used.)

Changing the base

In some situations it is desirable to have a stabilizer chain for a particular base. We

can certainly achieve this by building a new stabilizer chain. If a chain already exists,

we know the order of the group, and thus can safely use a randomized approach.

Still in many cases when we want to change only a few points in an existing

base this is too expensive. In such a situation it merits to modify an existing base.

Let us assume that we know a base B = (β1 , . . . , βm).
The easy case is if the new base is in fact a possible base image for G, i.e. the

new base is (βg
1 , . . . , β

g
m) for g ∈ G. (Such an element g can be found easily, if it

exists, using the stabilizer chain!)

2a rhetorical “if ” as a mathematician



II.2. CONSEQUENCES OF SCHREIER-SIMS 27

In this situation, we can simply conjugate the whole stabilizer chain (i.e. conju-

gate all generators by g, take the image of all points under g) and obtain the desired
chain.

In general (unless the group is the symmetric group), the newbase Γ = (γ1 , . . . , γn)
will not be a base image. In this situationwe first try, using the base image approach,

to move some base points in B to points in Γ, preferably at the same position, but

even different positions are fine. Call this new base E.
Then we add the remaining points of Γ to E, by introducing trivial stabilizer

steps (i.e. we have orbit 1 and all generators are Schreier generators).This is certainly

possible on some layer of the chain, but it might be the bottom layer. The resulting

base is called H.

Next we use a base swap procedure (see [HEO05, 4.4.7]) that will exchange the

order of two subsequent base points η i and η j in H. (We only need to modify two

subsequent entries in the stabilizer chain, as the previous and following stabilizers

will be equal.)

Using this procedure, we move the base points in Γ (in the right order) to the

start. Finally we delete trivial stabilizer steps at the end of the chain.

II.2 Consequences of Schreier-Sims

Using a stabilizer chain we can perform a variety of calculations for a group G:

• Test whether a permutation g ∈ G

• Given a base image [γ1 , . . . , γm] find, if possible, an element g ∈ G, such
that βg

i = γ i : This is really just a modified element test in which we use the

transversal elements corresponding to the base images.

• Calculate ∣G∣ = ∣βG1 ∣ ⋅ ∣G
(1)∣ = ∣βG1 ∣ ⋅ ∣β

G(1)
2 ∣ ∣G(2)∣ = ⋯ as the product or the

orbit lengths.

• Normal Closure with proper element test.

• Determine the sizes of groups in the derived series D0 = G ,D i = D′i−1 and
lower central series L0 = G , L i = [G , L i−1].

• Determine whether G is solvable or nilpotent.

• Test whether two elements are in the same coset of a subgroup.

• Determine the permutation action on the cosets of a subgroup.

• Determine the point wise stabilizer of a set (i.e. the subgroup stabilizing all

points in the set) by calculating a stabilizer chain for a base starting with the

points from the set.
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• Enumerate G, i.e. assign to every element a number and have efficient func-

tions to translate element to number and vice versa: We noted already that

we can easily translate between elements and base images. We consider each

base image as a list of numbers, according to the position of the point in the

orbit. This is the “multi-adic” representation of a number ∈ {1, . . . , ∣G∣}.

• Obtain random elements with guaranteed equal distribution.

Factorization and Homomorphisms

We have noted before that the element test algorithm II.5 will express a group ele-

ment g as a product of transversal elements. On the other hand, every transversal

element has been obtained as a product of the generators. By keeping track of how

these transversal elements arose as products of the original generators, we can thus
express any group element as a word in the generators.

Note II.15: This looks like a perfect functionality for solving puzzles, such as Ru-

bik’s Cube. Alas thewords obtained are horribly long and in practice infeasible. One
way used to obtain short words [Min98] is to add many short words in the origi-

nal generators to the original generating set, thus automatically obtaining shorter

words for stabilizer generators on lower layers. Recently the tight upper bound of

20 has been proven [Rok10], http://cube20.org, using enormous3 calculations.

A main use of this is in implementing homomorphisms. Suppose that G is a

permutation group and we have a homomorphism φ∶G → H given by a generating

set g of G and the images gφ .
Then expressing an element x ∈ G as word in g lets us evaluate the same word

in gφ , which must be the image xφ .
To speed up the way products of the generator images are formed, we also store

images for the Schreier generators – this way comparatively few products have to

be evaluated. We obtain these images, by building a new stabilizer chain for G that

is only used for the homomorphism. (As we can assume that ∣G∣ is known, we can
use a random Schreier-Sims algorithm with easy verification.)

The elements for which this chain are formed however are not elements of G,
but elements of G × H. We consider only the G-part for purposes of building the
stabilizer chain, the H part then just mirrors the multiplication.

The calculation then starts with a generating set of the form {(g , gφ) ∣ g ∈ g}.
Kernel: If H is also a permutation group, we can represent the direct product as a

permutation group bymoving the points onwhichH acts, i.e. for S3×S4 the element

((1, 2), (3, 4)) is represented by (1, 2)(6, 7). The domain Ω then decomposes in

ΩG ∪ΩH .

LetD = ⟨(g , gφ) ∣ g ∈ g⟩ the group (the “diagonal” subgroup of the direct prod-
uct) representing the homomorphism φ.Then the point wise stabilizer StabD(ΩH)

3Calculations were done using the spare cycles donated by a Hollywood studio and by Google!
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corresponds to the set of elements whose image is trivial, i,e, itsG-projection is the
kernel of φ.

II.3 Backtrack

By “backtrack” wemean an algorithm that will – by traversing a tree fromed from a

stabilizer chain – run (in worst case) through all elements of a permutation group.

It will find (one or all) elements fulfilling a certain property. The input being gen-

erators of a subgroup of Sn (so in an extreme case 2 permutations of degree n gen-

erating a group of order n!) such an algorithm has runtime exponential in its input

size. However is so far the best method known4 for tasks such as

• Centralizer and Normalizer in permutation groups

• Conjugating element in permutation groups

• Set stabilizer and set transporter

• Graph isomorphism

Basic backtrack

The basic version of backtrack takes a permutation group G and builds a tree from

a stabilizer chain of G: The levels of the tree correspond to the layers of the stabi-

lizer chain. Each node corresponds to a (partial) base image (βg
1 , . . . , β

g
k) (k ≤ m).

The branches down from such a node then correspond to the orbit of βk+1 under

G(k). Since a partial base image for the preceding points is already prescribed, the

branches are labelled not with the orbit orb ∶= βG
(k)

k+1 , but with the images of orb
under an element g yielding the partial base image5.

Figure II.1 shows this enumeration for the example of G = A4.

Again, as we consider stabilizer chains as recursive objects, this is a recursive

algorithm.

Input: We are passing a (sub)chain (which describes the tree structure below) C
and a partial product of representatives r, that describes the tree node.

Output: The program prints out all group elements

begin
1: leaf ∶= ∣C .stabilizer.generators∣ = 0; {have we reached a leaf of the

tree?}
2: ∆ ∶= C .orbit;
3: for δ ∈ ∆ do
4: x ∶= C .transversal[δ];
5: if leaf then

4and better methods might impact the question of whether P=NP
5The choice of g does not impact the set of images
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Vertices are the images for the base point 1 and 2 respectively. Edge labels are the

transversal elements. The permutations under the leafs are the resulting group el-

ements.

Figure II.1: Tree structure for A4

6: Print x ⋅ r;
7: else
8: Call recursively for C .stabilizer, x ⋅ r;
9: fi;
10: od;
end
We start with the whole chain for G and offset r = ().

Obviously, instead of printing the elements, we can test the elements for what-

ever property we desire and collect the elements which yield a correct answer.

In this version we are running always in the same way through the orbit. For

several practical (see below) and aesthetic reasons, it can be desirable to run through

elements in a lexicographically ordered way (i.e. compare permutations as base im-

ages for the base {1, 2, 3, . . .}). Then the possible images of the base point are given

by the orbit points (that’s what we chose) mapped under r (as we post-multiply by

r).
We can achieve this by sorting ∆ in line 2 according to the images under r, in

GAP notation SortParallel({δ g ∣ δ ∈ ∆}, ∆).

Pruning

The problem of the basic backtrack routine is that running through all elements

of a larger group will be rather time intensive. A principal aim for any backtrack

search is therefore to prune the search tree.
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This pruning is possible if we are searching only for elements fulfilling a partic-

ular property: It is possible that a partial base image already eliminates all elements

which have these base point images as candidates for satisfying the property.

Example II.16: As an example of such a test, suppose we are looking for an element

that maps (1, 2)(3, 4, 5) to (2, 4)(1, 5, 3). We chose a base starting with {1, 2}.

As an n-cycle must be mapped to an n-cycle, the image of 1 can be only 2 or 4,

eliminating all top branches but two. Furthermore, if 1g = 2, we know that 2g = 4;
respectively 1g = 4 implies 2g = 2. On the second layer we thus have but one branch.

Similar restrictions will hold for the subsequent base points.

An improved backtrack algorithm therefore will, every time a new base image

is selected, employ a (problem-dependent!) test, whether group elements with this

partial base image can in fact fulfill the desired property. Only if they can, lines 5-9

are executed.

Example II.17: We want to find the centralizer of (1, 2, 4)(5, 6, 8) in the groupG =
⟨(1, 3, 5, 7)(2, 4, 6, 8), (1, 3, 8)(4, 5, 7)⟩.This group has order 24, we pick base (1, 2)
and get the chain:

rec( generators := [ (1,3,5,7)(2,4,6,8), (1,3,8)(4,5,7) ],

orbit := [ 1, 3, 5, 8, 7, 2, 4, 6 ],

transversal := [ (), (1,2,7,5,6,3)(4,8), (1,3,5,7)(2,4,6,8),

(1,4,2)(5,8,6), (1,5)(2,6)(3,7)(4,8), (1,6,7)(2,3,5),

(1,7,5,3)(2,8,6,4), (1,8,2,5,4,6)(3,7) ],

stabilizer := rec( generators := [ (2,8,7)(3,6,4) ],

orbit := [ 2, 8, 7 ],

transversal := [ , (),,,,, (2,7,8)(3,4,6), (2,8,7)(3,6,4) ],

stabilizer := rec( generators := [ ] ) ) )

We can map 1 to 1, 2, 4, 5, 6, 8. In each case the image of 2 is then fully determined:

1g 2g x Works?

1 2 ()
√

2 4 (1,2,4)(5,6,8)
√

4 1 (1,4,2)(5,8,6)
√

5 6 (1,5)(2,6)(3,7)(4,8)
√

6 8 (1,6,4,5,2,8)(3,7)
√

8 5 (1,8,2,5,4,6)(3,7)
√

At this point we have actually found all elements in the centralizer.

Such pruning conditions obviously are problem specific.When intelligently ap-

plied, they can often eliminate large parts of the search space. This usually also re-

quires a suitable choice of base.
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Example II.18: Suppose we want to find the setwise stabilizer of ∆ ⊂ Ω. (Without

loss of generality, assume that ∣∆∣ ≤ ∣Ω∣
2
, otherwise we consider the complement

Ω − ∆.) We choose a base whose initial points are chosen from within ∆ as far as

possible, say β1 , . . . , βk ∈ ∆ and G(k) moves no point in ∆. Then clearly G(k) ≤
StabG(∆). Furthermore the possible images for β i (i ≤ k) are restricted to ∆.

Example II.19: We want to find an element g conjugating the permutation x to y.
A first, easily tested, necessary condition is that the cycle structure of x and y is

the same; we now assume that this is the case. We now chose the first base point β1
within a long cycle of x whose length l occurs rarely (so there are few cycles in y
of this length). Then β1 must be mapped to a point which in y occurs in a cycle of

length l if the element g is to map x to y. Furthermore x g = y if and only if x g y = y.
We therefore need to consider only one possible image per cycle in y of the correct
length. Subsequent base points then are chosen from the same cycle in x. For any
such base point βx k

1 the image under g must be (βx k

1 )
g = (βg

1 )
yk , i.e. it is uniquely

determined bythe choice of βg
1 .

In the following discussion we will assume that we have chosen a suitable base,

and that we are doing such problem-specific pruning.

Note II.20: Newer version of backtrack algorithms, so called “Partition backtrack”

routines label the tree not with base images, but with ordered6 partitions of Ω.The

partial base image (γ1 , . . . , γk) then corresponds to a partition with each γ i (i ≤ k)
is in its own cell, a leaf of the tree corresponds to a partition with all points in a cell

of their own.

So far this is just a different description of the basic backtrack algorithm. A dif-

ference is seen, however, once one searches for elements with particular properties.

The condition to stabilize points (or map points in a certain way) can impose con-

ditions on other points (and consequentialy split the remaining cell). For example

when centralizing (1, 2, 3)(4, 5, 6) if we stabilize 1 we also have to stabilize 4.

One can describe such conditions by intersecting the backtrack partition with

a propert-depending partition.

The effect of this is that the tree of the backtrack search becomes more shallow.

Properties defining subgroups

Formost properties interesting in a group-theoretic context, the set of elements ful-

filling the condition we search for actually forms a subgroup, respectively a double

coset. (A double coset is a subset of elements of the form SgT = {sg t ∣ s ∈ S , t ∈ T}
for S , T ≤ G.) For example:

• Centralizer, Normalizer, set stabilizer, automorphism group of a graph are

subgroups.

6I.e. the order in which the cells occur is relevant
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• In a conjugacy test: Find g with ag = b. Here the fulfilling elements are in a

double coset CG(a) ⋅ h ⋅ CG(b) if h is one solution.

• Testing for isomorphism between the graphs Γ and Θ. If h is one isomor-

phism, the set of isomorphisms has the form Aut(Γ)hAut(Θ).

We will now consider only the case of a subgroup, the double coset case is sim-

ilar. We want to find all elements in G that fulfill a testable property. We assume

that this set of elements forms a subgroup P ≤ G.
Clearly we only need to find a generating set of P (and chances are good that

a few random elements of P will generate P). Therefore much time will be spent

in proving that no element outside the subgroup we found so far fulfills the prop-

erty. So let us suppose we know a subgroup K ≤ P (which might be trivial). Also

whenever we find a new element g ∈ P, we update K ∶= ⟨K , g⟩.

Note II.21: When testing for a single “mapping” element (e.g. in a conjugacy test)

of course we are not deliberately building such a subgroup K. However we can still

do so (essentially for free) if we happen to come upon an element stabilizing the

initial object. This way similar benefits are obtained.

Our strategy will be “left-first”, i.e. we first enter the stabilizer of a base point,

before considering any coset. Thus we will have examined the whole of G(i) be-
fore considering any other elements ofG(i−1). In particular, we can assume that we

know G(i) ∩ P before testing any element of G outside G(i).

Note II.22: This observation also shows that the backtrack search will automati-

cally produce a strong generating set for P (or the subgroup K of elements found

so far). We can thus assume (at little cost) that we have a stabilizer chain for K (and

that the algorithm will return a stabilizer chain of P).

If we make this assumption, we can decribe criteria for pruning the search tree:

Lemma II.23: Suppose we knowK = G(l)∩P and thatN is a node which prescribes

the first l base images. Suppose we find an element g below N that is in P. Then

we can discard the whole remaining subtree belowN .

Proof: Any further element of P in this subtree is in the coset Kg. ◻

This test works if we find new elements, but we can do much better: Suppose

we test an element g /∈ K. Then either g ∈ P, in which case we increase K by at

least a factor 2. Or g /∈ P, but then no element in the double coset KgK can be in P
either.

While this condition has the potential to reduce the search space enormously

(making the costmore proportional to ∣P∖G/P∣ than to ∣G∣), the problem is just how

to incorporate it in the backtrack search.

What we would like to do is to test every double coset KgK only once. A stan-

dard method for such duplicate rejection (without explicitly storing all elements of

KgK for every g tested) is to define a “canonical” representative for each double
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coset. Then every element g that is not canonical for its double coset can be dis-

carded (as we will test the – different – canonical representative at another time).

Typically the definition of “canonical” will require some arbitrary symmetry-

breaking condition (all elements are images under a group, so they are in some

way “the same”). What we will use is that the element is minimal with respect to

a comparison of base images (i.e. we lexicographically compare the base images

(βg
1 , β

g
2 , . . .)) among all elements in the double coset. Note that by sorting the orbits

the basic backtrack algorithm will run through elements in this ordering.

Unfortunately finding the smallest element in a double coset (or testingwhether

one element is smallest) is hard. We will instead use weaker conditions, that adapt

well to the tree traversal strategy, testing for minimality in left cosets and right

cosets. While this does not guarantee minimality in the double coset, it is a reason-

able tradeoff between cost and gain.

The first condition uses minimality in the left coset gK:

Lemma II.24: Suppose that N is a node in the search tree that prescribes the first

l base images as (γ1 , . . . , γ l) and that K ≤ P is the subgroup found so far. If g
lies under N and is the smallest element of KgK then γ l is minimal in the orbit

γStabK(γ1 , . . . ,γ l−1)l .

Proof: Suppose not. Let h ∈ StabK(γ1 , . . . , γ l−1) such that γhl < γ l . Then gh ∈ KgK
and gh < g, contradiction. ◻

To use this lemma we need to perform a base change to find the stabilizer

StabK(γ1 , . . . , γ l−1). Note that we will already know StabK(γ1 , . . . , γ l−2), so little

extra work is needed.

The next criterion uses minimality in the right coset Kg.

Lemma II.25: Suppose that N is a node in the search tree that prescribes the first

l base images as (γ1 , . . . , γ l) and that K ≤ P is the subgroup found so far. Let R ∶=
StabG(γ, . . . , γ l−1), S ∶= StabK(β1 , . . . , β l−1), and s = ∣βS

l ∣.
If g lies underN and is the smallest element of KgK then γ l cannot be among

the last s − 1 elements of its orbit under R.

Proof: Let Γ = {βhg
l ∣ h ∈ S} = (β

S
l )

g . Then ∣Γ∣ = s and γ l = β
g
l ∈ Γ.

As any product hg ∈ Kg ⊂ KgK, the minimality of g implies that γ l = min Γ.

If γ = βhg
l ∈ Γ, then γg

−1h−1 g = γ l with g−1h−1g ∈ R = (G(l−1))g . Thus Γ ⊂ γRl
and γRl must contain at least s − 1 elements larger than γ l . ◻

More details (and further criteria) can be found in [Ser03].

II.4 Natural Actions and Decompositions

The algorithms we have seen so far in this chapter were mainly combinatorial in

nature and uses only a small amount of group theory. We now want to look at
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the computation of more structural information, for example a composition series.

(Later wewill (see III.11) that such calculations actually are the key towards efficient

stabilizer chain computations.)

The fundamental idea will be to take a given permutation group G ≤ Sn and

to split it apart into a normal subgroup N ⊲ G and a factor group G/N , again

represented as permutation groups, by finding a suitable action which gives a ho-

momorphism φ∶G → Sm with N = Kernφ.
In this section we will be looking at actions that arise from the natural permu-

tation action. We shall describe these actions, and show how a permutation group

relates to the images of these actions. Much of this is theory that is of interest on its

own. More details can be found in books on permutation groups such as [DM96]

or [Cam99].

Wewill be talking about permutation groups. IfG is a groupwith a permutation
action φ on Ω, the corresponding statements remain true if we interpret them for

the factor G/Kernφ.

Orbits: Intransitive Groups

The first situation we want to look at is that of an intransitive group, i.e. a permu-

tation group which has multiple orbits on its permutation domain:

Suppose we have that Ω = ∆ ⊎ Γ and both Γ and ∆ are orbits7. In this situation

we get two homomorphisms, α∶G → SΓ and β∶G → S∆ , such that Kern α∩Kern β =
⟨1⟩. We set A = Gα and B = Gβ

Now form a new homomorphism, є∶G → A×B, defined by gє = (gα , gβ).Then

Kern є = Kern α ∩Kern β = ⟨1⟩.
We can thus consider G as (isomorphic to) a subgroup of A × B, which will

project on both components with full image. Such a group is called a subdirect prod-
uct, the construction is due to Remak [Rem30].

(We do not really need that G is a permutation group, we just have two homo-

morphisms, whose kernels intersect trivially; respectively two normal subgroups

which intersect trivially.)

We now want to make this construction synthetic, i.e. we want to describe

Image(є) in terms of A and B.
For this we set D = (Kern β)α ⊲ A and E = (Kern α)β ⊲ B.Then (isomorphism

theorem!)

A/D = Gα/(Kern β)α ≅ G/ ⟨Kern α, Kern β⟩ ≅ Gβ/(Kern α)β = B/E ,

i.e. we have isomorphic factor groups of A and B. See figure II.2.
Let ρ∶A → A/D and σ ∶B → B/E the natural homomorphisms and ζ ∶A/D →

B/E the isomorphism given by (gα)ρ ↦ (gβ)σ . We therefore have for the elements

of Gє , that

Gє = {(a, b) ∈ A× B ∣ (aρ)ζ = bσ} .

7or unions of orbits. We do not need that the action on Γ and ∆ is transitive.



36 CHAPTER II. PERMUTATION GROUPS
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Figure II.2: Subdirect Product

We now use this identity for the synthetic construction (the “external” subdirect

product): Suppose we have two groups Assume that ζ ∶A/D → B/E is an isomor-

phism. The set

A⌢B = {(a, b) ∈ A× B ∣ (a
ρ)ζ = bσ} ≤ A× B

is called the subdirect product of A and B. It is an easy exercise to see that A⌢B is

a group and that its image under the projections from A × B onto A and B is the

full component.

Note II.26: The notation A⌢B is misleading: the product also depends on the

choice of factor groups as well as on ζ . We can say that it is the subdirect prod-

uct in which the factor groups A/D and B/E are “glued together”.

Note II.27: If we consider A×B as a permutation group acting on ∆⊎Γ, then A⌢B
arises naturally as an intransitive group, by labelling the points consistently, we get

that G = Gє as permutation groups.

Note II.28: Instead of identifying two factor groups explicitly via the isomorphism

ζ , one also could simply consider one groupQ together with epimorphisms ρ∶A→
Q and σ ∶B → Q. In this context the subdirect product is also sometimes denoted

by A×Q B.

The following property describes the subdirect product in a categorial context

as the fibre product (or pullback) in the category of groups:

Lemma II.29: Let A, B, Q be groups and ρ∶A → Q and σ ∶B → Q both epimor-

phisms8. We consider the subdirect product A⌢B with respect to these homomor-

8One can drop the condition that ρ and σ have to be surjective by considering subgroups of A and
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phisms. Let G be a group which makes the diagram

G
α
- A

B

β
? σ- Q

ρ
?

commutative

(I.e.: There exist homomorphisms α∶G → A and β∶G → B such that for every

g ∈ G we have that gαρ = gβσ ). Then there exists a unique map µ∶G → A⌢B, such
that the diagram

G

A⌢B γ
-

µ -

A

α
-

B

δ
? σ-

β

-
Q

ρ
?

(with γ, δ the obvious projections of the subdirect product) is commutative.

Proof: IfG makes the diagram commutative, thenG is a subdirect product ofGα ≤
A with Gβ ≤ B and as such embeds into A × B as Gє = {(gα , gβ) ∈ A× B}. We

observe (commutativity of the diagram!) that gαρ = gβσ . Therefore

Gє ≤ {(a, b) ∈ A× B ∣ (aρ) = bσ} = A⌢B

Wenow set µ to be the corestriction9 of є toA⌢B. Clearly (µγ = єγ is the projection
of G onto its A-part and similarly for B) this makes the diagram commutative.

To show the uniqueness of µ note that the conditions µγ = α and µδ = β already
prescribe the image gµ ∈ A⌢B. ◻

Returning to the situation of a permutation group, we see that every groupwith

two sets of orbits is a subdirect product of two groups of smaller degree.Thus every

permutation group is obtained by forming iteratively subdirect products of transi-

tive groups. (One could try to define the product of more than 2 factors, in practice

it is far easier to simply consider the iterative construction.)

For example, if A = B = S3, there are three possible factor groups – ⟨1⟩, C2

and S3. Setting Q = ⟨1⟩ yields the direct product ⟨(1, 2), (4, 5), (1, 2, 3), (4, 5, 6)⟩,
Q = S3 yields diagonal subgroups ⟨(1, 2)(4, 5), (1, 2, 3)(4, 5, 6)⟩ (or any relabelling
of the points). Finally the factor group Q = C2 yields the proper subdirect product

⟨(1, 2, 3), (4, 5, 6), (1, 2)(4, 5)⟩ of order 18.

To classify all permutation groups of a given degree n we thus would need to:

• Classify all transitive groups up to this degree.

• Form their iterated subdirect products (such that the degrees sumup to ≤ n).
B instead.

9The function defined by the same rule, but a restricted range
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Blocks: Imprimitive Groups

Permutations par groupes croissant de lettres:

Rvers unjou urlap midis ormea latef eduna

Exercices de style

Raymond Queneau

Let us now consider a group G acting transitively on Ω.

Definition II.30: A partition B = {B1 , . . . , Bk} of Ω (I.e. we have that B i ⊂ Ω and

Ω is the disjoint union of the B i) is a block system, if it is invariant under G. I.e. the
set-wise image Bg

i ∈ B for every g ∈ G. We call the subsets B i the blocks.

Note II.31: The following two block systems always exist.They are called the trivial
block systems:

B1 = {{ω} ∣ ω ∈ Ω} , B∞ = {Ω}

Definition II.32: A group is acting imprimitively on Ω if G acts transitively, and

affords a nontrivial block system. Otherwise we say the group acts primitively.

Lemma II.33: Let B = {B1 , . . . , Bk}. Then for every i , j there exists g ∈ G, such that
Bg
i = B j . In particular ∣B i ∣ = ∣B j ∣ and thus ∣Ω∣ = ∣B1∣ ⋅ ∣B∣.

Proof: Let δ ∈ B i and γ ∈ B j . As G acts transitively, there is g ∈ G such that δ g = γ.
Thus Bg

i ∩ B j /= ∅. As the partition is kept invariant we have that Bg
i = B j . ◻

Corollary II.34: A block system is determined by one block – the other blocks

are just images.

Corollary II.35: Any transitive group of prime degree is primitive.

The following lemma explains the group-theoretic relevance of block systems:

Lemma II.36: Suppose G acts transitively on Ω and let S = StabG(ω) for some

ω ∈ Ω. Then there is a bijection between subgroups S ≤ T ≤ G and block systems

B = {B1 , . . . , Bk} for G on Ω.

Using the convention that B1 is the block containing ω, the bijection is given by
T = StabG(B1), respectively by B1 = ωT .

Proof: Suppose that S ≤ T ≤ G. We set B = ωT and B = BG and claim that B is a

block system:

Let g , h ∈ G, and suppose that Bg ∩ Bh /= ∅. Then there exists δ, γ ∈ B such

that δ g = γh . As B = ωT we have that δ = ωs , γ = ωt for s, t ∈ T . Thus ωs g = ωth ,

and thus sgh−1 t−1 ∈ StabG(ω) = S ≤ T . This implies that gh−1 ∈ T . As T stabilizes

B (by definition), we thus have that Bg = Bh . Thus the images of B under G form

a partition of Ω. Because it was obtained as an orbit, this partition is clearly G-
invariant.
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Vice versa, let B be a block system and let ω ∈ B ∈ B be the block containing ω.
Then any g ∈ G which fixes ω has to fix B, thus StabG(ω) ≤ StabG(B).

To show that the map from subgroups to blocks is surjective, let ω ∈ B be a

block and δ ∈ B. There is g ∈ G such that ωg = δ. But then δ ∈ Bg , thus B = Bg and

g ∈ StabG(B). Thus ωStabG(B) = B.
Similarly, if S ≤ T ≤ G and B = ωT and x ∈ StabG(B) then ωx = ωt for t ∈ T .

Thus xt−1 ∈ S ≤ T and thus x ∈ T which shows that StabG(ωT) = T . This shows

that we have a proper bijection. ◻

Definition II.37: A subgroup S < G is called maximal if S /= G and there is no

subgroup S < T < G such that S /= T /= G.

Corollary II.38: A transitive permutation group is primitive if and only if a point

stabilizer is a maximal subgroup.

Respectively: A subgroup S ≤ G is maximal if and only if the action on the

cosets of S is primitive.

Finding Blocks

Thefollowing algorithm tofindblock systems is due to [Atk75]. Its heart is amethod

that for a given α ∈ Ω determines the finest block system in which 1 and α are con-

tained in the same block. By running through all possible α, we thus find all the

minimal blocks.

Note II.39: As blocks correspond to subgroups containing the point stabilizer (and

therefore form a lattice!) it is easy to build all blocks from these: If 1 ∈ B1 and 1 ∈ B2

are blocks in two different block systems, we use the same algorithm with a larger

seed to find the finest block system, in which B1 ∪ B2 is a subset of one block and

so on.

The algorithm maintains a partition of Ω which is initialized to the seed being

one cell, and all other points in a cell of their own. It then applies the following

trivial observation to join cells, until a G-invariant partition is obtained:

Lemma II.40: If B is block in a block system for G, and α, β ∈ B and g ∈ G then

α g , βg are in the same block.

To store the partition (and simplify the process of joining cells) we maintain a

list r of cell representatives: Each cell is represented by one of its elements (arbitrar-

ily chosen, e.g. as the first element of the ell which the algorithm encountered). For

each point ω ∈ Ω the corresponding representative r[ω] points to the representa-

tive of the cell containing ω. We call r[ω] the label of ω. Then joining two cells is

done by simply replacing the label for elements in the second cell by labels for the

first cell:

Union(α, β)
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Input: Two cells, given by their representatives α and β.
Output: The two cell are joined, representing them by the label for the first cell.

begin
1: for ω ∈ Ω do
2: if r[ω] = β then
3: r[ω] ∶= α;
4: fi;
5: od;

end

Note II.41: This algorithm is of complexityO(∣Ω∣)which is not optimal.The prob-

lem of merging classes is a standard problem in computer science (“Union-find”)

and (more) efficient data structures and algorithms for this task are discussed in

textbooks.

With this we get the actual block system finding algorithm:

Algorithm II.42: This algorithm finds the finest block system, in which a block
fully contains seed ⊂ Ω. We call it with seed = {1, α} to obtain minimal blocks.

Input: A group G = ⟨g⟩ acting transitively on Ω. A subset seed ⊂ Ω.

Output: The finest block system in which all points of seed are together in
one block.

begin
1: r ∶= [];
2: q ∶= []; {A queue of points that have changed their block}
3: µ ∶= seed[1]
4: for ω ∈ Ω do
5: if ω ∈ seed then
6: r[ω] ∶= µ;
7: Add ω to q;
8: else
9: r[ω] ∶= ω;

10: fi;
11: od;
12: l ∶= 1;
13: while l ≤ ∣q∣ do
14: γ ∶= q[l]; δ ∶= r[γ]; {point and its representative}
15: for g ∈ g do

16: α ∶= r[γg];
17: β ∶= r[δ g];
18: if α /= β then {Two points are in the same block but their images are

not}
19: Union(α, β); {join block given by β to block given by α}
20: Add β to q; {As β block got deleted}
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21: fi;
22: od;
23: l ∶= l + 1;
24: od;
25: return r;
end

Proof: Clearly the partition given by r can never be coarser than the minimal block

system given by seed, as we only join cells thatmust be contained in the same block.

We thus need to show only that the partition returned at the end is invariant under

G, i.e. we have to show that if ω, δ ∈ Ω are in the same cell and g ∈ g, then ωg and

δ g are in the same cell.

This property is fulfilled if the following condition holds for all points:

(*) If β is the label for a cell, and ω is in this cell, then βg and ωg

are in the same cell.

Clearly it is sufficient to enforce condition (*) for all points which changed the

label of their cell, starting with changing the cell label for the seed. The queue q
collects the points for which this condition needs to be enforced.

Suppose initially that in line 20 we add all points of the cell labeled by β to

the queue. Then condition (*) is enforced by the while loop in line 13-24 and the

resulting partition therefore clearly G-invariant.
However in the actual algorithm we add only β to the queue, we have to show

that doing so is sufficient: Consider a point ω that is labeled by β and suppose we

relabel ω to α. This can only happen if we also relabel β to α and in this case we

enforce (*) for β and α.
But as ω got relabeled at the same time, and as we already enforced (*) for ω

and β, this will automatically enforce (*) for ω and α. It is therefore sufficient in

line 20 to only add the point labeling a block.

This argument also shows that a point ω can be added to the queue only when

r[ω] = ω gets changed to another label. As this can only happen once, there is a

limit on the queue length, which proves that the algorithm terminates. ◻

Let us now consider what candidates for α we really need for block seeds {1, α}:

Lemma II.43: Let 1 ∈ B ⊂ Ω a block in a block system for G on Ω. Then B is the

union of orbits of StabG(1).

Proof: Suppose there is g ∈ StabG(1) such that α g = β. Than for any block B such

that 1, α ∈ B we have that Bg ∩ B /= ∅, thus B = Bg . Thus also β ∈ B. ◻

This lemma shows that we do not need to test minimal blocks for all α ∈ Ω, but

that it is sufficient to test those α which are representatives for the orbits of StabG(1)
on Ω, and in this case we can actually seed the block with {1} ∪ αStabG(1).
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If we did not yet compute a stabilizer chain forG obtaining StabG(1) is hard. In
this case we just approximate StabG(1) by a subgroupU generated by a few random

Schreier generators and consider the orbits of U instead.

Performance II.44: Even with a better union find routine this algorithm is not

of best-known complexity. A better method, interleaving the block search with a

partial stabilizer chain computation, is described in [Ser03].

Once we have found a block system, the homomorphism representing the ac-

tion on the blocks is obtained by an easy application of the orbit algorithm.

Orbits of normal subgroups

A further connection between group structure and block structures is given by the

following lemma:

Lemma II.45: Let G be a transitive group on Ω and N ⊲ G. Then the orbits of N
form a block system of G

Proof: Let ∆ be an orbit ofN and g ∈ G.We need to show that ∆g is a subset of an or-

bit. (If this holds and ∆g was not an orbit, we can apply g−1 to the enclosing orbit and
obtain that ∆ was a proper subset of an orbit, contradiction.) Thus let δ g , γg ∈ ∆g

for δ, γ ∈ ∆. Then there is n ∈ N such that δn = γ and thus (δ g)g
−1ng = γg . ◻

This gives us a first computational application of the concept of blocks, namely

an improvement of the basic Orbit/Stabilizer algorithm in the presence of a normal

subgroup N ⊲ G: Suppose that G acts on Ω and for ω ∈ Ω we have already com-

puted the orbit ∆ = ωN and the stabilizer S = StabN(ω). Our goal is to determine

ωG and StabG(ω).
As N ⊲ G, lemma II.45 states that ∆ is a block for G. We can thus compute

the orbit of ∆ (acting on sets via the action on elements) under G in an ordinary

Orbit/Stabilizer calculation. The G-orbit ωG then is simply the union of the sets

in the orbit ∆G . The gain in this approach is that instead calculating images of all

points under all generators of G, we always first map just a single point of ∆ (or

its images) and determine – based on whether the image of this point is already

known – whether ∆x is new. The number of redundant images (and of Schreier

generators) thus is reduced roughly by a factor of ∣∆∣.

If we want transversal elements for ωG , we obtain these simply by multiplying

teh elements of N with transversal elements for ∆G .

The stabilizer computed in this algorithm is the set stabilizer StabG(∆). Since
N fixes and is transitive on ∆, and since StabN(ω) = StabG(ω ∩ N), we get that
StabG(∆)/N ≅ StabG(ω)/ StabN(ω), figure II.3.

Thismeans that we can obtain generators for StabG(ω) by correcting generators
for StabG(∆) with elements from N . This correction is simply by an element that

will map ωg ∈ ∆ back to ω.



II.4. NATURAL ACTIONS AND DECOMPOSITIONS 43
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Figure II.3: Stabilizers in presence of a normal subgroup

If there is a chain of subnormal subgroups this process can be iterated which is

the basis of the solvable orbit/stabilizer algorithm, section IV.3.

Basic Sylow Subgroup Computation

A second application of how blocks can be used to reduce a problem is given by

the computation of Sylow subgroups:The following method works reasonably well

in practice and also serves as a good example on how algorithms use reductions of

intransitivity and imprimitivity. It is, however, not of polynomial time as it uses a

backtrack search. A much more elaborate (polynomial time) algorithm has been

proposed by Kantor [Kan85]. Because it reduces to the case of simple groups some

of the routines it requires (section ??) just now are reaching feasibility.

The basic idea of the calculation is that if φ∶G → H is a homomorphism to a

smaller group, we first compute a p-Sylow subgroup Sφ ≤ H. Its full preimage S
then must contain a p-Sylow subgroup of G.

In the case of a subdirect product this is all we need:

Lemma II.46: Suppose G is a subdirect product of A = Gα with B = Gβ . Let Q ≤ G
be such that Qα is a p-Sylow subgroup of A and let ν = β∣Q be the restriction of β
to Q. Let P ≤ Q be such that Pν is a p-Sylow subgroup of Qν . Then P is a p-Sylow
subgroup of G.

Proof: Clearly Q contains a p-Sylow subgroup of G and P contains a p-Sylow sub-

group of Q. Furthermore Pα and Pβ are p-groups, so P is a subdirect product of

p-groups. ◻

We will make use of this lemma in two situations: If G is intransitive (with ho-

momorphisms corresponding to orbit actions) and if G has two different minimal

block systems (with action on the blocks as homomorphisms).
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If G is imprimitive and has only one one minimal block system with block ac-

tion φ we can reduce to the situation that Gφ is a p group, which we will assume

now.

If we cannot reduce further, we use the fact that a p-Sylow subgroup has a non-

trivial center and that (second Sylow theorem!) every element of order p lies in a

Sylow subgroup: By random search we find an element h ∈ G such that p ∣ ∣h∣. (It

can be shown that there are many such elements.) Then g = h
∣h∣
p is an element of

order p and as suchmust lie in a Sylow subgroup. In fact it either lies in the center of

a Sylow subgroup, or there is an element in the center of the same Sylow subgroup

commuting with g.
We therefore computeC ∶= CG(g). AsC stabilizes the partition of Ω into orbits

of ⟨g⟩, it cannot be primitive. If C = G, then (by the assumption about G) we
would haveG being imprimitive with blocks corresponding to cycles of g. But then
the kernel of the block action must fix and centralize (C = G!) all p-cycles, and
therefore is a p-group, making G a p-group as well, in which case we are done.

We therefore can assume that C /= G and thus can compute recursively a p-
Sylow subgroup S of C. If S is a Sylow subgroup of G (by order) we are done.

Otherwise, observe that as g ∈ Z(C), it must lie in every Sylow subgroup of C,
in particular in S.Therefore there is a p-Sylow subgroup P ≤ G, such that g ∈ S ≤ P,
we thus have that S = C ∩ P. There must be an element z ∈ Z(P) of order p, i.e.
P ≤ CG(z). Because it commutes with g, we know that z ∈ C ∩ P = S and clearly

z ∈ Z(S) ≤ Z(P).
We thus search for an element of order p in Z(S) for which CG(z) contains a

p-Sylow subgroup of G. As in the first case we can then recurse on CG(z).

Algorithm II.47: Sylow subgroup computation

Input: A group G on Ω and a prime p
Output: A p-Sylow subgroup S ≤ G.
begin
if G is a p-group then

return G
elif G is intransitive on Ω then
recurse on orbit actions, using lemma II.46

elif p ∤ ∣Ω∣ then
recurse on StabG(1)

elif G has two minimal block systems then
recurse on block actions action, using lemma II.46

elif G has unique minimal block system then
ensure (recursively) the image of block action of G is a p-group

fi;

let h ∈ G such that p ∣ ∣h∣ and set g = h
∣h∣
p .

if p2 ∤ ∣G∣ then
return ⟨g⟩
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fi;
Let C = CG(g);
Recursively, compute a p-Sylow subgroup S of C.
if p ∤ [G∶C] then
return S;

fi;
Let Z = Z(S) {iterative centralizer computation}
for z ∈ Z, ∣z∣ = p do

C ∶= CG(z);
if p ∤ [G∶C] then
recurse on C

fi;
od;

end

Wreath Products and the Embedding theorem

In the same way that every intransitive group is a subgroup of a direct product, we

want to get an “universal” group containing every imprimitive group.

Definition II.48: If G is a group and n a positive integer we denote by

G×n ∶= G ×⋯ ×G
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

the direct product of n copies of G. We call this group the direct power of G with

exponent m

Definition II.49: Let G be a group and H a permutation group, acting on ∆ =
{1, . . . , n}. The wreath product of G with H is

G ≀n H = (G×n) ⋊H

with H acting on G×n by permuting the components of this direct product. The

subgroup G×n ⊲ G ≀n H is called the basis of the wreath product.

If the permutation action ofH is clear from the context, wewill write onlyG ≀H.

The multiplication in the wreath product is simply given by the rules for a

semidirect product. If we consider elements of G ≀ H as tuples (h; g1 , . . . , gn), we
get the following formula:

(h; g1 , . . . , gn) ⋅ (a; b1 , . . . , bn)
= (h; 1) ⋅ (1, g1 , . . . , gn) ⋅ (a; 1) ⋅ (1, b1 , . . . , bn)
= (h; 1) ⋅ (a; 1) ⋅ ((a; 1)−1 ⋅ (1, g1 , . . . , gn) ⋅ (a; 1)) ⋅ (1, b1 , . . . , bn)

= (h ⋅ a; 1) ⋅ (1, g1 , . . . , gn)(a ;1) ⋅ (1, b1 , . . . , bn)
= (h ⋅ a; 1) ⋅ (1, g

1a
−1 , . . . , gna−1 ) ⋅ (1, b1 , . . . , bn)

= (h ⋅ a; g
1a
−1 ⋅ b1 , . . . , gna−1 ⋅ bn)
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The reason for taking as indices the images 1a
−1
under a−1 is purely due to the no-

tation: a maps 1 to 1a , so after the component-permuting action we get that the

element which was in position 1a
−1
now ended up in position 1.

Suppose that G is also a permutation group, acting on Ω. Then G ≀ H can be

represented as a permutation group acting on n disjoint copies of Ω: Each copy of

G in the basis acts on “its” copy of Ω, H is permuting these copies. The action is

clearly faithful. We call this action the imprimitive action of G ≀H, as the copies of

Ω form a nontrivial block system.

The next theorem shows that this imprimitive action can be considered to be

the “source” of all block systems.

Theorem II.50 (Krasner, Kaloujnine, embedding theorem): Let G be a transi-

tive, imprimitive permutation group. Let B be a nontrivial block system forG with

1 ∈ B ∈ B and let T = StabG(B). Let ψ∶G → SB be the action of G on the blocks,

and let φ∶T → SB be the action of a block stabilizer on its block.

We pick coset representatives r j for T inG and define g̃ j ∈ T by r j g = g̃ jr jg . (To
simplify notation we will write jg to indicate the action on B via ψ, i.e. jg ∶= j(g

ψ).)

Then there is a monomorphism µ∶G → Tφ ≀Gψ , given by

g ↦ (gψ ; g̃
1g
−1

φ
, . . . , g̃n g−1

φ)

Furthermore, for a suitable labelling of the points, this homomorphism is simply an

embedding of permutation groups, i.e. one can considerG as a subgroup of Tφ ≀Gψ .

Note II.51: In the context of representation theory µ is simply the induced repre-

sentation φ ↑G .The theorem then is simply the explicit construction of the induced

representation.

Proof: We first check the homomorphism property. Suppose that g , h ∈ G, then by

definition of µ, we have that

gµ ⋅ hµ = (gψ ; g̃
1g
−1

φ
, . . . , g̃n g−1

φ) ⋅ (hψ ; h̃
1h
−1

φ
, . . . , h̃nh−1

φ
)

= (gψ ⋅ hψ ; ̃g(1h−1 )g−1
φ ⋅ h̃

1h
−1

φ
, . . . , ̃g(nh−1 )g−1

φ ⋅ h̃n g−1
φ
)

= ((g ⋅ h)ψ ; ̃g(1(gh)−1 )
φ ⋅ h̃

1h
−1

φ
, . . . , ̃g(n(gh)−1 )

φ ⋅ h̃n g−1
φ
)

= ((g ⋅ h)ψ ; ( ̃g(1(gh)−1 ) ⋅ h̃1h−1 )
φ
, . . . , ( ̃g(n(gh)−1 ) ⋅ h̃n g−1 )

φ
) (II.52)

by the abovemultiplication formula. (Again, h is permuting the components via the

image hψ . I.e. the element in position 1 after permutation is what was in position

k = 1h
−1
before, i.e. the element g̃k g−1

φ = ̃g(1h−1 )g−1
φ
.)

We now observe that

r j(g ⋅ h) = g̃ jr jg h = g̃ j h̃ jg r( jg)h = g̃ j h̃ jg r( j(gh)
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and therefore (̃g ⋅ h) j = g̃ j h̃ jg . Setting j = i(gh)
−1
we get

(̃g ⋅ h)i(gh)−1 = g̃ i(gh)−1 ̃h(i(gh)−1 )g = g̃ i(gh)−1 ̃h i(h−1 g−1 g) = g̃ i(gh)−1 h̃ ih−1 .

This lets us simplify the products in (II.52) to

gµhµ = ((g ⋅ h)ψ ; (̃g ⋅ h)
1(gh)−1 , . . . , (̃g ⋅ h)n(gh)−1 ) = (g ⋅ h)

µ
,

which shows that µ is a homomorphism.

If g ∈ Kern µ then clearly g ∈ Kernψ, implying that r j g = g̃ jr j and thus g̃ j =
r j gr−1j . The values of g̃ j φ that are simply given by the action of g on the multiple

blocks. Triviality of all these ensures that g must be the identity.

For the final statement, observe that the transitivity ofG on the blocks and of T
on its block implies the transitivity of Gµ on the points moved by the wreath prod-

uct in its imprimitive action. Furthermore, if g ∈ StabG(1) then gψ fixes the point

1 and g̃
1g
−1

φ = g̃1φ fixes one point as well. The homomorphism φ therefore maps a

point stabilizers to a point stabilizer, for transitive groups of the same degree this

implies that µ is a permutation homomorphism. ◻

Note II.53: There unfortunately is no analogue to the situation of subdirect prod-

ucts, that would parameterize all transitive, imprimitive subgroups of a wreath

product. An algorithm to construct such subgroups is given in [Hul05]

II.5 Primitive Groups

Agir en primitif et prévoir en stratège.

Feuillets d’Hypnos #72

René Char

Primitive groups are interesting in several ways:They are the images of the per-

mutation action of a group on cosets of maximal subgroups. By theorem II.50 we

also know that every transitive group embeds in an (iterated) wreath product of

primitive groups.

The marvelous fact now is that primitivity is a strong enough condition to

give a rather detailed description of such groups. Indeed this description is strong

enough, that it is possible to enumerate primitive groups for rather large degrees –

currently this has been done up to degree 2000 [DM88, The97, RDU03].

Some Properties

The heart of the analysis will be the consideration of particular normal subgroups.

This is motivated by the following corollary from lemma II.45:
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Corollary II.54: If G is primitive on Ω, and ⟨1⟩ /= N ⊲ G, then N must act tran-

sitively on Ω.

We now look at this in the extreme case of the smallest possible N .

Definition II.55: A normal subgroupN ⊲ G is calledminimally normal, if ⟨1⟩ /= N
and there is no normal subgroup M ⊲ G such that ⟨1⟩ /= M /= N and ⟨1⟩ < M < N .

Lemma II.56: Let G be a group and N ⊲ G a minimally normal subgroup. Then

N ≅ T×k with T simple.

Proof: Let M ⊲ N be the first proper subgroup in a composition series of N .

Then N/M ≅ T is simple. Now consider the orbitM = MG of M under G. Let
D ∶= ⨉

S∈M
N/S and φ∶N → D, g ↦ (S1g , S2g , . . .). Its kernel is K ∶= ⋂S∈M S ⊲ G,

by minimality of N we get that K ∶= ⟨1⟩.Thus φ is injective and N a subdirect prod-

uct of the groups N/S (S ∈ M). But N/S ≅ T is simple, thus the subdirect product

degenerates (by exercise ??) to a direct product. ◻

Definition II.57: The socle of a group G is the subgroup generated by all minimal

normal subgroups:

Soc(G) = ⟨N ⊲ G ∣ N is minimally normal⟩

Lemma II.58: Soc(G) is the direct product of minimal normal subgroups.

Proof: LetM ≤ Soc(G)be the largest normal subgroupofGwithin Soc(G)which is
a direct product of minimal normal subgroups. IfM /= Soc(G) there exists N ⊲ G,
minimally normal, such that N /≤ M. But thenM ∩N ⊲ G. As N is minimally nor-

mal this implies that M ∩N = ⟨1⟩. Thus ⟨M ,N⟩ = M ×N ≤ Soc(G), contradicting
the maximality of M. ◻

Next we want to show that for a primitive group Soc(G) is either minimally

normal, or the product of two isomorphic minimally normal subgroups:

Definition II.59: A permutation group G is semiregular on Ω if StabG(ω) = ⟨1⟩
for every ω ∈ Ω.

Thus G is regular on Ω if and only if G is transitive and semiregular.

Lemma II.60: Let G ≤ SΩ be transitive. Then C ∶= CSΩ(G) is semiregular.

Proof: Suppose that c ∈ StabC(ω) and let δ ∈ Ω. Then there is g ∈ G such that

δ = ωg = ωc g = ωgc = δc , thus c ∈ StabC(δ) for every δ. Thus c = 1. ◻

Lemma II.61: LetG be a primitive group on Ω.Then one of the following situations

holds:

a) Soc(G) is minimally normal
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b) Soc(G) = N × M with N ,M ⊲ G minimally normal and N ≅ M is not

abelian.

Proof: Suppose that Soc(G) is not minimally normal. By lemma II.58 we have that

Soc(G) = N × M with N ⊲ G minimally normal and ⟨1⟩ /= M ⊲ G. Then M ≤
CG(N) and N ≤ CG(M).

As G is primitive, N is transitive on Ω. Thus by lemma II.60 we have that M
must be semiregular. On the other hand M ⊲ G implies that M is also transitive

on Ω, thus N is semiregular. In summary thus both N andM must be regular, and

thus ∣N ∣ = ∣Ω∣ = ∣M∣.
For n ∈ N there exists a unique element mn ∈ M such that (1n)mn = 1. Let

φ∶N → M given by n ↦ mn . Then φ is clearly a bijection. Furthermore (using that

M ,N ≤ SΩ) for k, n ∈ N :

1
k⋅n⋅mk ⋅mn = 1k⋅mk ⋅n⋅mn = ((1k)mk)

n⋅mn
= 1n⋅mn = 1

and therefore mkmn = mkn . Thus φ is an isomorphism.

If N was abelian, then N ×M is abelian and transitive, thus ∣N ×M∣ = ∣Ω∣, con-
tradiction. ◻

We thus have that Soc(G) ≅ T×m with T simple. We say that Soc(G) is homoge-
neous of type T .

Definition II.62: Let G be a group, acting on a vector space V . (For example, G ≤
GLn(p) and V = Fn

p .) We say that G acts irreducibly, if the only subspaces of V
which are invariant under the action of G are V and ⟨0⟩. (See section ?? for the
larger context.)

Theorem II.63: Let G be primitive on Ω and Soc(G) abelian. Then ∣Ω∣ = pm for

some prime p and G = Soc(G) ⋊ StabG(1) with StabG(1) acting (by conjugation)
irreducibly and faithfully on Soc(G) ≅ Fm

p .

Proof: If Soc(G) is abelian, it is minimally normal and thus Soc(G) ≅ Fm
p . It must

act regularly (the only faithful transitive action of an abelian group is the regular

action), thus ∣Ω∣ = pm .
Now consider S ∶= StabG(1). Clearly Soc(G) /≤ S. As S < G is a maximal

subgroup we thus have that G = Soc(G)S. As Soc(G) is abelian, S ∩ Soc(G) ⊲
Soc(G). Also S∩Soc(G) ⊲ S.Thus S∩Soc(G) ⊲ G and therefore S∩Soc(G) = ⟨1⟩.
This shows that G is a semidirect product.

If S was not acting irreducibly on Soc(G) let T ≤ Soc(G) be a proper submod-

ule. Then T is normalized by S and T ⊲ Soc(G), thus T ⊲ G contradicting the fact

that Soc(G) is minimally normal.

The kernel of the action of S on Soc(G) is contained inCG(Soc(G)) = Soc(G),
thus the action is faithful. ◻

It is easily seen that vice versa any such semidirect product acts primitively on

Fm
p . The combination of a linear action with a translation is called an affine action,
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and the primitive groups with abelian socle are therefore called of affine type. They

are correspondence with irreducible subgroups of GLn(p).

Corollary II.64: LetG be a solvable group andM < G amaximal subgroup.Then

[G∶M] = pm for a prime p.

Proof: The image of the action of G on the cosets ofM is a primitive group with an

abelian minimal normal subgroup. ◻

We now study the remaining case, namely that of a nonabelian socle.

Lemma II.65: LetG be a group such that Z(Soc(G)) = ⟨1⟩.ThenG ≤ Aut(Soc(G)).

Proof: Consider the action of G by conjugation on Soc(G). The kernel of this ac-

tion is CG(Soc(G)) ⊲ G. A minimal normal subgroup contained in CG(Soc(G))
would be in Z(Soc(G)), which is trivial. Thus this action is faithful. ◻

Lemma II.66: If N = T×m with T non-abelian simple, then Aut(N) = Aut(T) ≀ Sm
Proof: Let Ti be the i-th direct factor. Let φ ∈ Aut(N). Let R ∶= Tφ

1 . Then R ⊲ N .

Consider somenontrivial element ofR as element of a direct product r = (t1 , . . . , tm)
with t i ∈ Ti . Suppose that t j /= 1 for some j. As Z(Tj) = ⟨1⟩ there exists y ∈ Tj such

that that t yj /= t j . Set s ∶= r
y/r /= 1. Then s ∈ R and s ∈ Tj . As Tj is simple and R ⊲ N

we thus get that Tj ≤ R, thus R = Tj .

This shows that every automorphism of N permutes the Ti . An automorphism

that fixes all Ti then must act on every Ti as an element of Aut(Ti) = Aut(T). ◻

Corollary II.67: Let G be primitive with Soc(G) non-abelian of type T . Then we

can embed G ≤ Aut(T) ≀ Sm .

Types

In this section we introduce important classes of primitive groups. In view of the

preceding corollary, these are in obvious ways subgroups of wreath products.

The first class is a different action of wreath products: Let G be a permutation

group on Ω andH a permutation group on ∆. So far we have had the wreath prod-

uct W ∶= G ≀ H act (imprimitively) on Ω × ∆. We now define a different action

of W on Ω∆ . This is a much larger set. Surprisingly, the action will turn out to be

primitive in many cases.

The action is easiest described if (assume that ∣∆∣ = d) we consider Ω∆ as a

d-dimensional cube each side of which is labeled by Ω. We then let G×d act inde-
pendently in each dimension and H permute the dimensions. That is, we define

(ω1 , . . . ,ωd)
(g1 , . . .gd ;h) ∶= (ωg1′

1′ , . . . ,ω
gd′
d′ ) with i′ = ih

−1
.
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an easy, but tedious calculation shows that this indeed is a group action, which

is called the product action. We note that in this action the base group Gd acts

transitively.

Theorem II.68: Suppose that Ω, ∆ are finite. Then G ≀ H in the product action is

primitive if and only if G is primitive, but nonregular on Ω and H transitive on ∆.

Note II.69: We do not requireG to be “minimal” in this theorem. Essentially, using

the fact that (A ≀ B) ≀ C = A ≀ (B ≀ C), we could enforce this by increasing H.

For the second class of examples, consider a socle of the form T×m with T sim-

ple. Let D be a diagonal subgroup {(t, t, . . . , t) ∣ t ∈ T}. We consider the action of

the socle on the cosets of D (of degree n = ∣T ∣m−1).
As we want to extend this permutation action to a primitive group, we next

consider the normalizerN = NSn(T×m). Clearly all elements ofN induce automor-

phisms of T×m , however the following lemma show that not all automorphisms can

be realized within Sn :

Lemma II.70: Let G ≤ Sn be a transitive group and φ ∈ Aut(G). Then φ is induced

by NSn(G) (i.e. here exists h ∈ Sn such that gφ = gh for every g ∈ G, obviously
h ∈ NSn(G) in this case) if and only if StabG(1)

φ = StabG( j) for some 1 ≤ j ≤ n.

Proof: Exercise ??. ◻

Using this lemma, one sees that not all elements of Aut(T) ≀ Sm are induced

by permutations, in fact outer automorphisms need to act simultaneously on all

components in the same way. Thus N = T ≀ Sm . Out(T) = T×m ⋊ (Sm ×Out(T))
with the outer automorphisms acting simultaneously on all components. Such a

group T×m ≤ G ≤ N is said to be of diagonal type.

Theorem II.71: A group of diagonal type is primitive ifm = 2 or the action ofG on

the m copies of T is primitive.

TheO’Nan-ScottTheorem

We now can state a theorem that classifies the structure of all primitive groups.The

theorem was stated first (with a small error) by L. Scott in 1979. (In principle it

would have been possible to prove this theorem50 years earlier, but the reduction to

the simple case only made sense with the classification of the finite simple groups.)

He notes that a similar theorem was obtained by M. O’Nan, thus the name.

Theorem II.72 (O’Nan-Scott theorem): Let G be a group which acts primitively

and faithfully on Ω with ∣Ω∣ = n. Let H = Soc(G) and ω ∈ Ω. Then H ≅ T×m is

homogeneous of type T for T simple and exactly one of the following cases holds.

1. “Affine”, “Holomorph10 of an abelian group”. T is abelian of order p, n = pm
and StabG(ω) is a complement to H which acts irreducibly on H.

10The holomorph of G is the group G ⋊ Aut(G)
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2. “Almost simple”. m = 1 and H ⊲ G ≤ Aut(H).

3. “Diagonal type”. m ≥ 2 and n = ∣T ∣m−1. Further, G is a subgroup of V =
(T ≀ Sm). Out(T) ≤ Aut(T) ≀ Sm in diagonal action and either

a) m = 2 and G acts intransitively on {T1 , T2} or

b) m ≥ 2 and G acts primitively on {T1 , . . . , Tm}.

In case a) T1 and T2 both act regularly. Moreover, the point stabilizer Vω
of V is of the form Diag(Aut(T)×m).Sm ≅ Aut(T) × Sm and thus Hω =
Diag(T×m).

4. “Product type”.m = rs with s > 1.We have thatG ≤W = A≀B and the wreath

product acts in product action with A acting primitively, but not regularly,

on d points and B acting transitively on s points. Thus n = d s . The group A
is primitive of either

a) type 3a with socle T×2 (i.e. r = 2, s < m),

b) type 3b with socle T×r (i.e. r > 1, s < m) or

c) type 2 (i.e. r = 1, s = m).

We have that Wω ∩ As ≅ A×s1 and Soc(G) = Soc(W). Furthermore W =
A×sG.

5. “Twisted wreath type”. H acts regularly and n = ∣T ∣m . Gω is isomorphic to a

transitive subgroup of Sm .The normalizerNGω(T1) has a composition factor

isomorphic to T .Thus, in particular,m ≥ k+ 1 where k is the smallest degree

of a permutation group which has T as a composition factor.

Note II.73: We do not discuss the twisted wreath case in detail, but note that the

minimum degree for this is 606.

The proof of this theorem is not extremely hard (see for example [DM96]), but

would take us about 3 lectures.

Note II.74: There are various versions of this theorem in the literature which in

particular differ by the labeling of the cases and sometimes split cases slightly dif-

ferently. Our version follows [DM96] and in particular [EH01].

The following table gives translations of the labellings used.

Type 1 2 3a 3b 4a 4b 4c 5

[HEO05, Sec.10.1.3] (i)
(ii)a,

d=1
(ii)b (iii) (ii)b (iii) (ii)b (ii)c

[DM96, Sec.4.8] i iii iv iv v v v ii

[LPS88] I II IIIa IIIa IIIb IIIb IIIb IIIc

[Neu86] I V II III II III IV IV

[Pra90] HA AS HS SD HC CD PA TW
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Note that for case 3a/b we change the case distinction of [DM96, Theorem 4.5A]

from degree 2/> 2 to intransitive/primitive.

Maximal subgroups of the Symmetric Group

Most classes in theO’Nan-Scott theorem contain obviousmaximal elements. Every

primitive group thus is contained in such a maximal element.

As one can show that these subgroups are not just maximal in their classes, but

alsomaximal in the symmetric group, we get a classification of maximal subgroups

of the symmetric group:

Theorem II.75: Let M ≤ Sn be a maximal subgroup of the symmetric group. Then

M is permutation isomorphic to one of the following groups:

• An

• Sa × Sb with a + b = n.

• S l ≀ Sm in imprimitive action for lm = n.

• AGLm(p) with n = pm

• Sa ≀ Sb in product action for n = ab

• T×a .(Sa ×Out(T)) with T simple and n = ∣T ∣a−1

• T ≤ G ≤ Aut(T) for a simple group T

Note II.76: For some degrees there are inclusions among elements in these classes,

but these occur very rarely. A full classification is given in [LPS87].

II.6 Computing a Composition Series

The basic idea of finding a composition series in a permutation group is very easy:

Given a permutation group G, either prove that G is simple; or find

– from a suitable (i.e. we want the degree to stay the same or become

smaller) action – a homomorphism (which we can evaluate by per-

forming the action) φ∶G → H such that H is a permutation group of

degree smaller than that of G or N ∶= Kernφ > ⟨1⟩.

If we can solve this problem, we can recursively attack N and Gφ ≅ G/N un-

til we end up with simple composition factors. Pulling the factors of G/N back

through φ yields a composition series.

If G is an intransitive permutation group we can take for φ the action of G on

one orbit. If G is imprimitive we can take for φ the action on a nontrivial block
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system. (Either these actions already yield a nontrivial kernel, or they yield a group

of smaller degree for which we try again.)

Thus what remains to deal with is the case of G primitive and for such groups

the O’Nan-Scott theorem provides structure information. Our main aim will be to

find Soc(G). Then the action of G on Soc(G) or on the components of Soc(G)
yields homomorphisms with nontrivial kernel.

The affine case

The first case we want to treat is the case of G being primitive affine. In this case

the socle is an elementary abelian regular normal subgroup, often abbreviated as

EARNS. Given G, we therefore want to find an EARNS in G if it exists. The algo-

rithm for this is due to [Neu86].

Clearly we can assume that G is a group of prime-power degree n = pm = ∣Ω∣.
We first consider two special cases:

If StabG(α) = 1 for α ∈ Ω, then G is regular, and thus of prime order. It is its

own EARNS.

Definition II.77: A transitive permutation group G on Ω is called a Frobenius
group if for every α, β ∈ Ω (α /= β) the two-point stabilizer StabG(α, β) = ⟨1⟩.

A classical (1902) result of Frobenius shows that in our situationGmust have an

EARNS (for a proof see [Pas68]). As ∣G∣ ≤ n(n−1) this is easily found. (See [Neu86]
for details.)

No suppose we are in neither of these cases. Let α, β ∈ Ω.We consider the two-

point stabilizer Gαβ ∶= StabG(α, β) /= ⟨1⟩. By choosing β from an orbit of StabG(α)
of shortest length, we can assume that Gαβ is as large as possible.

Let ∆ = {ω ∈ Ω ∣ ωg = ω∀g ∈ Gαβ}. IfG has an EARNS N , then for γ ∈ ∆ there

is a unique n ∈ N such that αn = γ. Then for h ∈ Gαβ we have that

h−1n−1h
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈N⊲G

n = h−1
°

∈Gαβ≤StabG(γ)

⋅ n−1hn
²
∈StabG(γ)

∈ N ∩ StabG(γ) = ⟨1⟩

and thus n ∈ C ∶= CG(Gαβ).

In particular C acts transitively on ∆, N ∩ C acts regularly on ∆, thus ∣∆∣must

be a p-power (if either of this is not the case, G has no EARNS).

Now consider the homomorphism φ∶C → S∆ , then the image Cφ is transitive

on ∆.The kernel of φ consists of elements that stabilize all points in ∆ (in particular

α and β) and centralize Gαβ , thus Kernφ ≤ Z(Gαβ).

For γ ∈ ∆ ∖ {α} we have that Gαβ ≤ StabG(α, γ), but as β was chosen to yield

a maximal stabilizer, we get equality. Thus StabC(αγ)φ = ⟨1⟩ and Cφ is a Frobenius

group.

Let K ≤ C such that Kφ = (N ∩C)φ is the EARNS of Cφ . Thus N ∩K /= ⟨1⟩ and
we just need to get hold of some element in N ∩ K to find N .
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We claim that K is abelian: This is because K is generated by Kernφ ≤ Z(Gαβ)
and by elements of N ∩C which commute with each other (N is abelian) and with

Kernφ ≤ Gαβ (as they are in C).
Next compute P = {x ∈ Kernφ ∣ x p = 1}. (As Kernφ is abelian, this is easy.)

We now find x ∈ K ∖Kernφ such that ∣x∣ = p.
Then 1 /= xφ = gφ for some g ∈ N ∩ K ≤ and x−1g ∈ Kernφ. As K is abelian

∣x−1g∣ = p, thus x−1g = h ∈ P and g ∈ N ∩ Px.
We thus run through the elements h ∈ P, and test whether ⟨xh⟩G is abelian and

regular – if so it is the EARNS.

Note II.78: A variant of this method can be used to find in a regular normal sub-

group of G also for type 5 groups.

Note II.79: Variants of the method (see [LS97]) can be used to find the largest

normal p-subgroup (also called the p-core) Op(G) ⊲ G, and from this the radical
of O∞(G) ⊲ G, which is the largest solvable subgroup of G. These methods also

construct a homomorphism from G to a group of not larger degree such that the

kernel is Op(G), respectively O∞(G).

Finding the socle and socle components

The method given here follows [Neu87]. They differ from what is used in practice

but give an idea of the methods used, while being easier to understand.

Theorem II.80 (Schreier’s conjecture): Let G be a simple non-abelian group.Then

Aut(G)/G is solvable of derived length ≤ 3.

Proof: Inspection, following the classification of finite simple groups [Gor82]. ◻

Lemma II.81: Let G be a primitive group with no nontrivial abelian normal sub-

group. Let S ∶= Soc(G) = T1 ×⋯ × Tm with Ti ≅ T simple non-abelian. Let U ≤ G
be a 2-Sylow subgroup and N = ⟨Z(U)⟩G . Then S = N ′′′.

Proof: By Feit-Thompson 2 ∣ ∣Ti ∣. As Ti is subnormal in G, we know that U ∩ Ti /=
⟨1⟩.Thus every element of Z(U)must centralize some elements in Ti . Considering

G embedded in Aut(T) ≀ Sm we thus see that elements of Z(U) may not move

component i. Thus Z(U) ≤ Aut(T)m ∩ G ⊲ G. Thus ⟨Z(U)⟩G ≤ Aut(T)m ∩ G.
But (Aut(T)m)′′′ = T×m by theorem II.80.

On the other hand, Z(U ∩ Ti) /= ⟨1⟩ and (as those elements commute with all

other Tj and with U ∩ Ti , we have that Z(U ∩ Ti) ≤ Z(U). Thus Z(U) ∩ Ti /= ⟨1⟩,
which shows that T×m ≤ ⟨Z(U)⟩G . ◻

Using this lemma we easily obtain Soc(G).
Note that the only case in which Soc(G) can be primitive itself is in diagonal

action for m = 2. In this case it is not hard to find an element in Ti (just take a

maximal nontrivial power of a random element try the normal closure).
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Otherwise we can use further reduction to imprimitivity/intransitivity to find

the socle components.

Composition Series

Nowwe have all tools together to determine a composition series for a permutation

group. If a group is primitive, we determine the socle and its direct factors. If the

socle is abelian, the group is of affine type. In this case we can take the conjuga-

tion action on the nonzero socle elements to get a homomorphism with nontrivial

kernel. (Note that the methods of chapter ?? then provide methods for obtaining a

composition series through the socle.)

Otherwise, the socle is a direct product ofm nonabelian simple groups. Ifm > 1,
we can take the conjugation action on these m factors to get a homomorphism. If

m = 1, or we are in diagonal type 3a, this homomorphism has trivial image. In

this case, however, we know that [G∶ SocG] must be small due to Schreier’s con-

jecture II.80. In such a situation we can simply take the regular permutation action

for G/ Soc(G) as homomorphism.

Together, this provides reductions until G is simple, we therefore get a compo-

sition series.

The same idea can of course be used to test whether a group is simple. For

finite simple groups, the classification [Gor82] furthermore provides the informa-

tion that in most cases the isomorphism type of such a group can be determined

from the group’s order. In particular, we have the following result of Artin (for clas-

sical groups) [Art55] and Teague [Cam81]:

Theorem II.82: Let G ,H be finite simple groups with ∣G∣ = ∣H∣, but G /≅ H. Then

either (up to swapping the groups)

• G ≅ A8 ≅ PSL4(2) and H ≅ PSL3(4).

• G = PSp2m(q) and H ≅ O2m(q) form ≥ 3 and odd q. (These are the Dynkin

diagrams of type B and C.)

In either of these two special cases, one can use further, easily obtained, infor-

mation such as centralizer orders to distinguish the groups.

Chief Series

Computing a chief series is not much harder. The only difference is that we always

have to ensure normality in the whole group.We can do this by simply intersecting

conjugates.

Lemma II.83: Suppose that N ⊲ G and M ⊲ N with N/M simple. Then L ∶=
⋂g∈G M g ⊲ G. If N/M is non-abelian then N/L is a minimal normal subgroup

of G/L.
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Proof: Exercise ??. ◻

If N/M (and thus N/L) is (elementary) abelian, we useMeataxe-typemethods,

see chapter ??, to reduce to chief factors.
In practice onewould first compute the radical R ∶= O∞(G). As this is obtained

from iterated computations of p-cores Op(G) we have in fact already some split of

R into chief factors and finish using the Meataxe.

The radical factor G/R then is treated using reduction to orbits, block systems

etc.

II.7 Other groups with a natural action

There is a variety of other groups, which have naturally a faithful permutation ac-

tion and thus could be treated like permutation groups. For example:

• Matrix groups G ≤ GLn(p). Here the action is on vectors in Fn
p .

• Groups of group automorphisms G ≤ Aut(H). The action is on elements of

H.

Note II.84: We could (using the orbit algorithm) simply compute an isomorphic

permutation group. However the permutation degree then tends to be large and

for memory reasons it is often convenient to keep the original objects.

There is however one fundamental problem, for example for stabilizer chains:

In general these groups have few short orbits.Thus, just picking randombase points,

will likely lead to very long orbits, often even to regular orbits (i.e. the first stabilizer

is already trivial).

One can try to invest some work in finding short orbits (for matrix groups, for

example base points that are eigenvector of random matrices or subgroups gener-

ated by random matrices have been proposed [MO95], as they guarantee the orbit

to be not regular). In general, however this will not be sufficient.

Instead we consider additional, different, actions of G, which are related to the

original action, but are not necessarily faithful. If H is the image of such an action,

we would consider the permutation group G ⌢H with the whole factor group H
glued together (so abstractly, the group is isomorphic G), acting intransitively. We

then pick base points initially from the points moved by H, thus obtaining smaller

orbit lengths. Once we need to pick base points from the original domain, we have

a smaller group which automatically yields shorter orbits.

Since the second action can be obtained from the first, we do not really need to

write down this pseudo-subdirect product, but simply consider different actions.

In terms of defining a stabilizer chain, each layer of the chain simply carries

a description of the appropriate action. Furthermore, we might switch the action

multiple times in one stabilizer chain.
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If G is a matrix group (over a field F of size > 2) an obvious related action

is to act projectively, i.e. on 1-dimensional subspaces instead on vectors. This will

typically reduce the initial orbit length by a factor of ∣F − 1∣.
If G is a group of automorphisms of another group H, one can determine a

characteristic (i.e. fixed under all automorphisms) subgroup N ⊲ H and initially

consider the induced actions on N and on H/N .

Incidentally, it can be useful to do something similar for permutation groups: If

the group is imprimitive, consider first the action on the blocks to get much shorter

orbits.

II.8 How to do it inGAP

Stabilizer Chains

The genss package provides a generalized stabilizer chain setup that also will

work for example for matrix groups.

Backtrack

Blocks and primitivity

The test for primitivity is similar to the orbit functionality, in particular it is

possible to provide a domain and an action function.

IsPrimitive(G,dom,actfun) tests whether G acts (transitively and)

primitively on the domain dom. If it does not, Blocks(G,dom,actfun)

determines a nontrivial block system. (It returns fail if the group acts

primitively.)

For a permutation group acting transitively on its natural domain,

AllBlocks(G) returns representatives (namely the blocks containing 1) of all

nontrivial block systems.

Primitive Groups

Primitive groups have been classified up to order several 1000, and are available

via the PrimitiveGroup selector function.

Subdirect products and wreath products

While there is a generic SubdirectProduct command, the easiest way to create

them is as subgroups of P:=DirectProduct(A,B). Let e1:=Embedding(P,1),

e2:=Embedding(P,1). Then Image(e1,x)*Image(e2,y) is the element

represented by the pair (x,y).

The subdirect product then is generated by first modifying all generators of A with

a corresponding element of B, making the mappings compatible. Using names for

greek letters, and constructing the corresponding elements of the the command:
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List(GeneratorsOfGroup(A),

x->Image(e1,x)

*Image(e2,PreImagesRepresentative(sigma,

Image(zeta,Image(rho,x)) )));

together with (Image(e2,E)) (which is the kernel of beta as subgroup of the

direct product).

The wreath product G ≀H can be created as WreathProduct(G,H,a), where

a∶H → Sn is a homomorphism indicating the permutation action. If H is a

permutation group itself, the homomorphism can be ommitted.

If both G and H are permutation groups, WreathProductImprimitiveAction

and WreathProductProductAction create particular permutation actions.

For any product W created this way, Embedding(W,i) for 1 ≤ i ≤ n are

monomorphisms G →W , Embedding(W,n+1) is the monomorphism H →W .

Finally Projection(W) is the epimorphismW → H.

Composition series and related functions

Series for a group are always returned as a list, descending from larger to smaller

subgroups. CompositionSeries(G) determines a composition series.

DisplayCompositionSeries(G) prints a composityion series structure in

human-readable form.

Based on comnposition series methods, ChiefSeries(G) calculates a chief

series. ChiefSeriesThrough(G,normals) determines a series through

particular normal subgroups. ChiefSeriesUnderAction(H,G) returns a series

of subgroups normal under the action of the supergroup H.

Matrix groups and automorphism groups





Chapter

III

Finitely presented groups

Finitely presented groups are probably the most natural way to describe groups.

Unfortunately they also are the computational least tractable and only afford a re-

stricted set of methods.

In this chapter and the following we will often have to talk about generating

systems, and about words (product expressions) in a particular generating system.

If g and h are two sequences of elements of the same cardinality, and w(g) is a
product of elements of the one generating system, then we will writew(h) to mean

the same product expression, but with every g i replaced by h i .

III.1 What are finitely presented groups

Free Groups

Definition III.1: A group F = ⟨ f ⟩ is free on the generating set f if every map

f → H into a group H can be extended to a homomorphism F → H.

Note III.2: This is a property the basis of a vector space has.

It is not hard to show that the isomorphism type of a free group is determined

by the cardinality of the generating system, we therefore will usually talk about a

free group of rank m.

We now want to show that free groups exist. For this we consider a set of m
letters: x1 , x2 , . . . , xm . (Or, if one prefers, a, b, c, . . . — in this case often upper case

letters are used to denote inverses.) We add m extra symbols x−11 , . . . , x−1m , we call

the resulting set of symbols our alphabet A.
For this alphabet Awe consider the set A∗ of words (i.e. finite sequences of let-

ters, including the empty sequence) inA. Nextwe introduce an equivalence relation
̃ on A∗: Two words in A are said to be directly equivalent, if one can be obtained

61
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from the other by inserting or deleting a sequence x ⋅ x−1 or x−1x. We definẽ
as the equivalence relation (smallest classes) on A∗ induced by direct equivalence.

We now consider F = A∗/̃. On this set we define the product of two classes as

the class containing a concatenation of representatives. One then can show:

Theorem III.3: a) This product is well-defined.

b) F is a group.

c) F is free on x1 , . . . , xn .

Proof: Tedious calculations:The hardest part is associativity as we have to consider

multiple cases of cancellation. ◻

Note III.4: By performing all cancellations, there is a shortest representative for

every element of F, we will simply use these representatives to denote elements of

F.

Presentations

Now suppose that F is a free group of rank m. Then every group generated by m
elements is isomorphic to a quotient F/N . We want to describe groups in such a

way by giving a normal subgroup generating set for N .

Definition III.5: A finitely presented group G is a quotient F/ ⟨R⟩F ≅ G for a finite

subset R ⊂ F. If g is a free generating set for F we write G ≅ ⟨g ∣ R⟩ to describe this
group and call this a presentation of G.
We call the elements of R a set of defining relators for G.

Instead of relators one sometimes considers relations, written in the form l = r.
We will freely talk about relations with the interpretation that the corresponding

relator l/r is meant.

Note III.6: In general there will be many different presentations describing the

same group.

Note III.7: Besides being a convenientway for describing groups, finitely presented

groups arise for example naturally in Topology, when describing the fundamental

group of a topological space.

Lemma III.8: Every finite group is finitely presented

Proof: Suppose ∣G∣ < ∞. Choose a map φ∶ F∣G∣ → G that maps generators to the

elements of G. It extends to a surjective homomorphism. Kernφ has finite index

in F∣G∣ and thus a finite number of Schreier generators. ◻

In this chapter we want to study algorithms for (finite or infinite) finitely pre-

sented groups.
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Note III.9: We will typically represent elements of a finitely presented group by

their representatives in the free group, but we should be aware that these represen-

tatives are not unique. Also there is in general no easy “normal form” as there is for

small examples. (See chapter V for more information about this.)

III.2 Tietze Transformations

There are some simplemodifications of a presentation that donot change the group.

They are called Tietze Transformations:

Lemma III.10: Suppose we have a presentation G = ⟨g ∣ R⟩. Then the following

transformations (called “Tietze Transformations”) do not change G:

1. Add an extra relator that is a word in R.

2. Delete a relator that can be expressed as a word in the other relators.

3. For a word w in g, add a new generator x to g and a new relator x−1w to R

4. If a generator x ∈ g occurs only once and only in one relator, delete x and

delete this relator.

Proof: Transformations 1 and 2 obviously do not change ⟨R⟩F . For Transformations

3 and 4 there is an obvious map between the old and new groups, which preserves

all relators and thus is an isomorphism. ◻

Note that steps can be combined to have one relator be used to reduce another

one.

Tietze transformations were defined in the context of the following

Lemma III.11: Suppose that the presentations P1 = ⟨g ∣ R⟩ and P2 = ⟨h ∣ S⟩ yield
isomorphic groups. Then there is a sequence of Tietze transformations from P1 to
P2.

Proof: (Idea) If there is an isomorphism between P1 and P2 go first from P1 to
Q = ⟨g ∪ h ∣ R ∪ S ∪ T⟩ by adding relators T that express h in terms of g and de-

duce the relators in S, then delete the redundant g by expressing them as words in

h to go from Q to P2. ◻

This lemma itself is of little use, as the path of transformations between presen-

tations is not known, it is not even known to be bounded in length.

They can however be used heuristically to try to simplify a presentation:

Only apply transformations whichmake a presentation immediatelymore sim-

ple; either by removing or shortening relators or by removing generators without

increasing the overall length of the relators too much.
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Note III.12: By combining transformations, we get the following transformations

which are more useful:

1. Replace a relator r by x−1rx for x ∈ g. In particular, if r = xa starts with x,
this yields the cyclically permuted word ax.

2. If two relators overlap non-trivially: r = abc, s = db f , we can use s to replace
b in r: r = ad−1 f −1c.

3. If there is a relator in which one generator x ∈ g occurs only once, say r =
axb, then replace all occurrences of x by a−1b−1 and then delete x and r.

In practice (such as the commandSimplifiedFpGroup inGAP), Tietze trans-
formations perform the following greedy algorithmby repeating the following steps:

1. Eliminate redundant generators using relators of length 1 or 2 (this will not

change the total relator length).

2. Eliminate up to n (typically n = 10) generators, as long as the total relator

length does not grow by more than m (m = 30%).

3. Find common substrings to reduce the total relator length, until the total

improvement of a reduction round is less than p (p = 0.01%).

Clearly this has no guarantee whatsoever to produce a “best” presentation, but

at least often produces reasonable local minima.

III.3 Algorithms for finitely presented groups

The obvious aim for algorithms would be for example tests for finiteness or com-

putation of group order, however there are some even more basic questions to be

resolved first:

In what can be considered the first publication on computational group theory,

in 1911 [Deh11] the mathematician Max Dehn asked for algorithms to solve the

following problems (called “Dehn Problems” since then):

Word Problem Given a finitely presented group G, is there an algorithm that de-

cides whether a given word represents the identity in G?

Conjugacy Problem Given a finitely presented groupG, is there an algorithm that

decides whether the elements represented by two words u, v ∈ G are conju-

gate in G.

Isomorphism Problem Is there an algorithm that decides whether a pair of finite-

ly presented groups is isomorphic?
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These problems have been resolved for some particular classes of presentations.

In attacking any such questions in general, however, we are facing an unexpected

obstacle, which shows that no such algorithms can exist:

Theorem III.13 (Boone [Boo57], Novikov [Nov55]): There cannot be an algorithm

(in the Turing machine sense) that will test whether any given finitely presented

group is trivial.

Proof: Translation to the Halteproblem (stopping problem) for Turingmachines.◻

Because of this problem the method we present may look strangely toothless,

or may be only heuristics. This is a consequence of this fundamental problem.

III.4 Homomorphisms

There is one thing that is very easy to do with finitely presented groups, namely

working with homomorphisms:We define homomorphisms by prescribing images

of the generators. It is easy to test whether such a map is a homomorphism, as long

as we can compare elements in the image group:

Lemma III.14 (von Dyck’s Theorem): Let G = ⟨g ∣ R⟩ be a finitely presented group.
For a group H we define a map φ∶ g → H. Then φ extends to a homomorphism

G → H if and only if for every relator r ∈ R we have that the relator evaluated in

the generator images is trivial: r(gφ) = 1.

Proof: Homework. ◻

Clearly evaluating such a homomorphism on an arbitrary elementw(g) simply

means evaluating w(gφ).
As this test is easy, much of the functionality for finitely presented groups in-

volves homomorphisms – either working with homomorphic images, or finding

homomorphisms (so-called “Quotient algorithms”). The easiest of these is proba-

bly to find epimorphisms onto a certain group:

Finding Epimorphisms

Given a finitely presented group G = ⟨g ∣ R⟩ and another (finite) group H, we can

find an epimorphism φ∶G → H by trying to find suitable images gφi ∈ H for each

generator g i ∈ g.
If we have a candidate set of images, they will yield an epimorphism if:

• The relators evaluated in the generator images are trivial: r(gφ) = 1H , and

• The generator images generate H: H = ⟨gφ⟩ (otherwise we just get a homo-

morphism.)



66 CHAPTER III. FINITELY PRESENTED GROUPS

As g and H are finite, there is just a finite set of generator images to consider

for a given H, testing all therefore is a finite process.

If φ∶G → H is an epimorphism and h ∈ H, the map g ↦ (gφ)h is also an

epimorphism, it is the product of φ and the inner automorphism of H induced by

h. It therefore makes sense to enumerate images of the generators of G only up to

inner automorphisms of H.

Suppose that g = {g1 , . . . , gm} and the images are {h1 , . . . , hm}. If we permit

conjugacy by h we can certainly achieve that h1 is chosen to be a fixed represen-

tative in its conjugacy class. This reduces the possible conjugacy to elements of

C1 = CH(h1).
Next h2 can be chosen up to C1 conjugacy. We can do this by first deciding on

the H-class of h2, say this class has representative r. Then the elements of rH cor-

respond to CH(r)∖H. Thus C1 orbits on this class correspond to the double cosets

CH(r)∖H/C1. Conjugating r by representatives of these double cosets gives the pos-
sible candidates for h2.

We then reduce conjugacy to C2 = CH(h1 , h2) and iterate on h3.
This yields the following algorithm, called the GQuotient-algorithm (here bet-

ter: H-quotient) (Holt [HEO05] calls it Epimorphisms):

Algorithm III.15: Given a finitely presented group G and a finite group H,
determine all epimorphisms from G to H up to inner automorphisms of H.

Input: G = ⟨g1 , . . . , gm ∣ R⟩
Output: A list L of epimorphisms
begin
1: L ∶= [];
2: Let C be a list of conjugacy class representatives for H
3: for h1 ∈ C do {Image of g1}
4: for r2 ∈ C do {Class of image of g2}
5: Let D2 be a set of representatives of CH(r2)∖H/CH(h1).
6: for d2 ∈ D2 do {Image of g2}
7: h2 = rd22 ;
8: . . .
9: for rk ∈ C do {Class of image of gk}

10: Let Dk be representatives of CH(rk)∖H/CH(h1 , h2 , . . . , hk−1).
11: for dk ∈ Dk do {Image of gk}
12: hk = r

dk
k ;

13: if ∀r ∈ R: r(h1 , . . . , hk) = 1 and H = ⟨h1 , . . . , hk⟩ then
14: Add the map g i ↦ h i to L.
15: fi;
16: od;
17: od;
18: . . .
19: od;
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20: od;
21: od;
22: return L;
end

Note that this is not completely valid pseudo-code, as (lines 8 and 18)
we permit a variable number of nested for-loops. In practice this has to be
implemented recursively, or by using a while-loop that increments a list of
variables.

Note III.16: Note that the algorithm classifies epimorphisms, not quotient groups.

If H has outer automorphisms, we will get several epimorphisms with the same

kernel.

Note III.17: If we know that ∣G∣ = ∣H∣ we will in fact find isomorphisms between

G andH. In fact, ifG andH are both permutation groups, once we determine a set

of defining relators for G (section III.10) this approach offers a naive isomorphism

test. In such a situationmore restrictions on the generator images become available

and help to reduce the search space.

If we set G = H and run through all possibilities, we find automorphisms of G
up to inner automorphisms and thus can determine generators for Aut(G).

There are newer and better algorithms for isomorphism and automorphism

group of permutation groups.

III.5 Quotient subgroups

Staying with the homomorphism paradigm, the most convenient way to represent

arbitrary subgroups of finite index is as pre-images under a homomorphism.

Definition III.18: Let G be a finitely presented group. A quotient subgroup (φ,U)
of G is a subgroup S ≤ G that is given as preimage S = φ−1(U) of a subgroup

U ≤ Gφ where φ∶G → H is a homomorphism into a (typically finite) group.

The idea behind quotient subgroups is that we can calculate or test properties

in the image, thus reducing for example to the case of permutation groups. For

example (see exercise ??):

• g ∈ S if and only if gφ ∈ U = Sφ .

• The quotient representation for NG(S) is (φ,NGφ(U)).

• The core (intersection of conjugates) of S is (φ, CoreG(U)).

• If S , T ≤ G are both quotient subgroups given by the homomorphisms φ
and ψ respectively, we can consider the larger quotient ξ∶G → Gφ

⌢Gψ and

calculate the intersection there.

If we have a quotient subgroup S = φ−1(U) ≤ G the cosets S∖G are in bijection

with the cosets U∖Gφ
. We can thus compare cosets or consider the action of G on
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the cosets of S. As S is the point stabilizer in this action, Schreier generators for this
give a set of generators for S, thus converting a quotient subgroup in a “traditional”
subgroup given by generators.

III.6 Coset Enumeration

In the real world, we will also encounter subgroups given by generators and not as

a quotient subgroup. Coset enumeration is a method that will produce the permu-

tation representation on the cosets of this subgroup, provided it has finite index.

This representation is an obvious choice to represent the subgroup as a quotient

subgroup.

The fundamental idea behind the algorithm is that we perform an orbit algo-

rithm on the cosets of the subgroup, constructing new cosets as images of existing

cosets onder group generators or their inverses. Aswe do not have a proper element

test wemight not realize that certain cosets are the same, but we can eventually dis-

cover this using the defining relators of the group.

The method, one of the oldest group theoretic procedures, was originally pro-

posed for hand calculations. It is often named after the inventors as the “Todd-

Coxeter algorithm” or simply as “Coset Enumeration”.

Note III.19: In view of theorem III.13 the term “algorithm” is problematic (and

ought to be replaced by “method”): The runtime cannot be bounded, that is the

calculation may not finish in any preset finite time.

The main tool for coset enumeration is the coset table. It lists the cosets of the
subgroup and for each coset the images under every generator and generator in-

verse. Coset 1 is defined to be the subgroup. Every other coset is defined to be the

image of a prior coset under a generator.

We alsomaintain a table for every relator.These tables trace the images of every

coset under the relator generator by generator. We know (as the relator has to be

trivial in the group) that the coset needs to remain fixed under this relator (as it

represents the identity element).

Finally we keep a similar table for every subgroup generator, here however we

can only require the trivial coset to remain fixed, as other cosets do not need to

remain fixed under the subgroup.

Example III.20: Consider G = ⟨a, b ∣ a2 = b3 = (ab)5 = 1⟩ and S = ⟨a, ab⟩ ≤ G.
Then the coset table starts as:

a a−1 b b−1

1

the relator tables initially are:

a a
1 1

b b b
1 1

a babababa b
1 1
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and the subgroup tables:

a
1 1

b−1 a b
1 1

We now start defining new cosets by taking the image of an existing coset under

a generator or its image. We enter the inverse information: If ag = b then bg−1 = a.
We also fill in all entries in the tables whose images become defined.

What may happen, is that such an entry fills the last hole in a table. Then we

get an deduction that the image of one coset under the next generator must be the

existing value on the other side of the table entry. We enter these deductions in the

table as if they were definitions.

Example III.21 (Continued): In our example the first subgroup table immediately

tells us that 1a = 1. We enter this in the coset table. (We will use underlines to

denote definitions of cosets and bold numbers to denote the most recent change.

An exclamation mark denotes a deduction.)

a a−1 b b−1

1 1 1

We also update the other tables:

a a
1 1 ! 1

bbb
1 1

a babababab
1 1 1

a
1 1

b−1ab
1 1

We get a deduction 1a = 1, but this happens to be not new.
Because the subgroup tables carry only one row (for the trivial coset) we will

retire the table for the generator a from now on.

Next we define coset 2 to be the image of coset 1 under b:

a a−1 b b−1

1 1 1 2
2 1

a a
1 1 1

2 2

b b b
1 2 1

2 1 2

a b ababab a b
1 1 2 1

2 1 1 2

b−1ab
1 1

Define 3 = 1b
−1
:

a a−1 b b−1

1 1 1 2 3
2 1

3 1

a a
1 1 1

2 2

3 3

b b b
1 2 !3 1

2 !3 1 2

3 1 2 ! 3

a b ababa b a b
1 1 2 3 1

2 3 1 1 2

3 3

b−1 a b
1 3 !3 1



70 CHAPTER III. FINITELY PRESENTED GROUPS

We conclude that 2b = 3 and 3a = 3 (and now also retire the second subgroup

table).

a a−1 b b−1

1 1 1 2 3

2 3 1

3 3 3 1 2

a a
1 1 1

2 2

3 3 ! 3

b b b
1 2 3 1

2 3 1 2

3 1 2 3

a b a b a b a b a b
1 1 2 2 3 3 1

2 2 3 3 1 1 2

3 3 1 1 2 2 3

There is no new conclusion. We set 2a = 4

a a−1 b b−1

1 1 1 2 3

2 4 3 1

3 3 3 1 2

4 2

a a
1 1 1

2 4 ! 2
3 3 3

4 ! 2 4

b b b
1 2 3 1

2 3 1 2

3 1 2 3

4 4

a b a b a b a b a b
1 1 2 4 2 3 3 1

2 4 2 3 3 1 1 2

3 3 1 1 2 4 2 3

4 4

We conclude 4a = 2

a a−1 b b−1

1 1 1 2 3

2 4 4 3 1

3 3 3 1 2

4 2 2

a a
1 1 1

2 4 2

3 3 3

4 2 4

b b b
1 2 3 1

2 3 1 2

3 1 2 3

4 4

a b a b a b a b a b
1 1 2 4 4 2 3 3 1

2 4 4 2 3 3 1 1 2

3 3 1 1 2 4 4 2 3

4 2 3 3 1 1 2 4 4

Now we set 4b = 5:

a a−1 b b−1

1 1 1 2 3

2 4 4 3 1

3 3 3 1 2

4 2 2 5
5 4

a a
1 1 1

2 4 2

3 3 3

4 2 4

5 5

b b b
1 2 3 1

2 3 1 2

3 1 2 3

4 5 4

5 4 5

a b a b a b a b a b
1 1 2 4 5 4 2 3 3 1

2 4 5 4 2 3 3 1 1 2

3 3 1 1 2 4 5 4 2 3

4 2 3 3 1 1 2 4 5 4

5 4 4 5

As there is no deduction, we define 4b
−1
= 6.

a a−1 b b−1

1 1 1 2 3

2 4 4 3 1

3 3 3 1 2

4 2 2 5 6
5 4

6 4

a a
1 1 1

2 4 2

3 3 3

4 2 4

5 5

6 6

b b b
1 2 3 1

2 3 1 2

3 1 2 3

4 5 !6 4

5 !6 4 5

6 4 5 ! 6

a b a b a b a b a b
1 1 2 4 5 !6 4 2 3 3 1

2 4 5 !6 4 2 3 3 1 1 2

3 3 1 1 2 4 5 !6 4 2 3

4 2 3 3 1 1 2 4 5 !6 4

5 6 4 4 5

6 6

We conclude 5a = 6 and 5b = 6. The second table then implies 6a = 5. (Also all



III.6. COSET ENUMERATION 71

relator tables are filled with no new deduction.)

a a−1 b b−1

1 1 1 2 3

2 4 4 3 1

3 3 3 1 2

4 2 2 5 6

5 6 6 6 4

6 5 5 4 5

At this point all places in the table are closed and no deductions pending.

Once we have reached the point of all tables closed and no deductions pending,

the columns of the coset table give permutation images for the group generators

that are consistent with all relators (as we maintained the relator tables).

If there are n rows, we have thus obtained a homomorphism φ∶G → Sn , such
that Sφ = StabGφ(1). This is all we need to represent S as a quotient subgroup. (In

particular, [G∶S] = n equals the number of rows in the table.)

In the example we would have a ↦ (2, 4)(5, 6) and b ↦ (1, 2, 3)(4, 5, 6). We

can also read off coset representatives as follows:

2 = 1
b

3 = 1
b−1

4 = 1
ba

5 = 1
bab

6 = 1
bab−1

Note III.22: On the computer, we can save space by not storing images under in-

verses and the subgroup and relator tables – we can simply compute their contents

by scanning through relators (i.e. looking at images of cosets under subsequent gen-

erators within the relator forwards and backwards), respectively by looking up im-

ages.

To avoid having to scan through all relators and all cosets, the following ob-

servation is useful: After a definition (or deduction) occurs obviously only relators

that make use of this new definition are of interest for renewed checking. Suppose

that abcd is a relator, which scans at coset x only up to ab but hangs at c (ignoring
the scan from the right).Then a new result can occur only if the coset xab (meaning

the coset if we apply ab to coset x) gets its image under c defined.
In this situationwe can instead consider the (equivalent) relator abcdab = cdab

and consider it being scanned starting at coset xab .

We therefore perform the following preprocessing: We form a list of all cyclic

permutations of all relators and their inverses and store these according to the first

letter occurring in the permuted relator. Let Rc
g be the set of all such permutations

that start with the letter g.
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Then if the image of coset y under generator g is defined as z, we scan all relators
in Rc

g starting at the coset y and all relators in Rc
g−1 starting at z = y

g .

This then will take care of any relator that might have scanned partially before

and will scan further now.

Coincidences

There is one other event that can happen during coset enumeration. Closing a table

rowmight imply the equality of two (prior considered different) cosets. In this case

we will identify these cosets, deleting one from the tables. In doing this identifica-

tion, (partially) filled rows of the coset table might imply further coincidences. We

thus keep a list of coincidences to process and add to it any such further identifica-

tions and process them one by one.

Example III.23: For the same groups as in the previous example, supposewewould

have followed a different definition sequence, and doing so ended up with the fol-

lowing tables. (The underlined numbers indicate the definition sequence.)

a a−1 b b−1

1 1 1 2

2 3 3 1

3 2 2 4 5

4 6 6 5 3

5 3 4

6 4 4

a a
1 1 1

2 3 2

3 2 3

4 6 4

5 5

6 4 6

b b b
1 2 1

2 1 2

3 4 5 3

4 5 3 4

5 3 4 5

6 6

a b a b a b a b a b
1 1 2 3 4 6 1

2 3 4 6 1 1 2

3 2 5 3

4 6 1 1 2 3 4

5 6 4 5

6 4 5 6

b−1ab
1 1

We now define 1b
−1
= 7 and get (from b3 ∶ 7 → 1 → 2 → 7) that also 2b = 7.

Furthermore, it lets us fill the second subgroup table:

b−1 a b
1 7 !7 1
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We get the consequence 7a = 7 and similarly 7a
−1
= 7. Thus we get

a a−1 b b−1

1 1 1 2 7

2 3 3 7 1

3 2 2 4 5

4 6 6 5 3

5 3 4

6 4 4

7 7 7 1 2

a a
1 1 1

2 3 2

3 2 3

4 6 4

5 5

6 4 6

7 7 7

b b b
1 2 7 1

2 7 1 2

3 4 5 3

4 5 3 4

5 3 4 5

6 6

7 1 2 7

a b a b a b a b a b
1 1 2 3 4 6 ! 3 2 7 7 1

2 3 4 6 ! 3 2 7 7 1 1 2

3 2 7 7 1 1 2 3 4 ! 5 3

4 6 ! 3 2 7 7 1 1 2 3 4

5 6 4 5

6 4 5 6

7 7 1 1 2 3 4 ! 5 3 2 7

with the implications 6b = 3 and 4a = 5. As we had 4a = 6, cosets 5 and 6 must

coincide. (As we had 6b = 3 and 5b = 3 there is no subsequent coincidence.)

After this coagulation the table is again closed:

a a−1 b b−1

1 1 1 2 7

2 3 3 7 1

3 2 2 4 5

4 5 5 5 3

5 4 3 3 4

7 7 7 1 2

Strategies

As the examples show, the performance of coset enumeration depends crucially on

the definition sequence (i.e. which cosets are defined as what images at what point).

A large body of literature exists that outlines experiments and strategies. The two

main strategies, named after their initial proposers are:

Felsch (1959/60) Define the next coset as the first open entry (by rows and within

a row by columns) in the coset table. This guarantees that the image of each

coset under each generator will be defined at some point.

HLT (1953, for Haselgrove1, Leech and Trotter). If there are gaps of length 1 in a

subgroup or relator table, fill these gaps (in the hope of getting immediately

a consequence).This method is harder to understand theoretically, but often

performs better in practice.

There is a large corpus of variants and modifications to these strategies (for

example the addition of redundant relators). In particular with hard enumerations

often just particular variants will finish.

1Indeed with “s”, not with “z”
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Theorem III.24 (Mendelsohn, 1964): Suppose that [G∶S] < ∞ and that the strategy

used guarantees that for every defined coset a and every generator g the images

ag , and ag−1 will be defined after finitely many steps, then the coset enumeration

terminates after finitely (but not bounded!) many steps with the correct index.

Proof:(Idea) If the process terminates, the columns yield valid permutations for the

action on the cosets of S. To show termination, assume the contrary. By the con-

dition we can (by transfinite induction) build an infinite coset table which would

contradict [G∶S] < ∞. ◻

Applications and Variations

A principal use of coset enumeration is to get a quotient representation for sub-

groups for purposes such as element tests or subgroup intersection. We will also

see in section III.8 that the coset tables themselves find use in the calculation of

subgroup presentations.

One obvious application is the size of a group, by enumerating the cosets of the

trivial subgroup. (However in practice one enumerates modulo a cyclic subgroup

and obtains a subgroup presentation.)

In general there are many different coset tables corresponding to one subgroup

which simply differ by the labels given to the different cosets. For comparing coset

tables or processing them further it can be convenient to relabel the cosets to bring

the table into a “canonical” form.

Definition III.25: A coset table is standardized if when running through the cosets
and within each coset through the generator images (ignoring generator inverses),

the cosets appear in order of the integers 1, 2, 3, . . ..

A standardized coset table thus is the coset table we would obtain if we per-

formed a pure Felsch-style enumeration and after each coincidence relabeled cosets

to avoid “gaps”.

If we have a coset table we can easily bring it into standard form by running

through cosets and within cosets through generator images and reassigning new

labels according to the order in which cosets appear.

The following lemma now is obvious:

Lemma III.26: There is a bijection between subgroups of G of index n and stan-

dardized coset tables for G with n cosets.

III.7 Low Index Subgroups

A prominent variation of coset enumeration is the so-called Low-Index algorithm
that for a given n will find all subgroups of a finitely presented group G = ⟨g ∣R⟩ of
index ≤ n (up to conjugacy).
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We will construct these subgroups by constructing all valid standardized coset

tables for G on up to n cosets.

For simplicity let us initially assume that we do not want to eliminate conju-

gates:

The basic step in the algorithm (computing one descendant) takes a partially

completed, standardized coset table, involving k ≤ n cosets. (The initialization is

with the empty coset table.) If the table is in fact complete, it yields a subgroup.

Otherwise we take the next (within cosets and within each coset in order of

generators) open definition, say the image of coset x under generator g.
We now split up in several possibilities on assigning this image: We can assign

x g to be one of the existing cosets 1, . . . , k, or (if k < n) a new coset k + 1.
For each choice we take a copy of the coset table and make in this copy the

corresponding assignment. Next we run the deduction check, as in ordinary coset

enumeration. (According to remark III.22, we only need to scan the relators in Rc
g

at coset x and Rc
g−1 at x

g , as well as relators for consequential deductions.)We enter

deductions in the table. However if a coincidence occurs, we know that we made

an invalid choice, and abandon this partial table, backtracking to the next (prior)

choice.

Otherwise we take this new partial table (which so far fulfills all relators as far

as possible and is standardized by the way we selected the next open definition)

and compute its further descendants.

More formally, this gives the following algorithm:

Algorithm III.27: This is a basic version of the low index algorithm without
elimination of conjugates.

Input: G = ⟨G ∣ R⟩, index n
Output: All subgroups of G of index up to n, given by coset tables.
begin
Initialize T as empty table for G.
L ∶= [];
return Descendants(T).

end

The Descendants routine performs the actual assignment and calls a
second routine Try to verify validity and process deductions. We assume that
an image 0 indicates that the image is not yet defined.
Descendants(T)
begin
1: if T is complete then
2: Add T to L;
3: else
4: m=number of cosets defined in T
5: Let coset x under generator g be the first undefined (x g = 0) image.
6: for y ∈ [1..m] do
7: if yg

−
1 = 0 then {otherwise we have an image clash}
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8: Let S be a copy of T;
9: In S set x g = y and yg

−1
= x;

10: Try(S,x,g);
11: fi;
12: od;
13: if m < n then {is one more coset possible?}
14: Let S be a copy of T
15: Add coset m + 1 to S;;
16: In S set x g = m + 1 and (m + 1)g

−1
= x;

17: Try(S,x,g);
18: fi;
19: fi;
end

The validity test is the last routine. It takes a partial coset table S in which
an assignment x g has just been made and then performs dependencies and
continue search if no coincidences arise.
Try(S , x , g)
begin
1: Empty the deduction stack;
2: Push x , g on the deduction stack;
3: Process deductions for S as in coset enumeration;
4: if no coincidence arose then
5: call Descendants(S);
6: fi;

end

Next we want to consider conjugacy. Using a standard approach to the con-

struction of objects up to a group action, we define a (somehow arbitrary) order

on coset tables which tests conveniently for partial coset tables, and then for each

(partial) table test whether it can be the smallest in its class (the group acting by

conjugation of subgroups in our case). If not we discard the candidate.

Such a test would be performed before line 5 of the function Try.

The ordering of coset tables we use is lexicographic, considering the table row

by row. I.e. for two tables S , T of size n we have that T < S if for some 1 ≤ x ≤ n
and some generator g the following holds:

• For all y < x and any generator h, we have that yh is the same in S and T .

• For all generators h before g we have that xh is the same in S and T .

• x g is smaller in T than in S.

To determine the coset table for a conjugate, observe that a coset table yields

the conjugation action on the cosets of a subgroup. In this action the subgroup is

the stabilizer of the point 1, and every conjugate is the stabilizer of another point x.
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If g ∈ G is an element such that 1g = x, then g would conjugate the subgroup to the
conjugate corresponding to x. Among coset tables, this conjugation would happen

as relabeling of points and permutation of cosets by g.
But (the permutation action is given by the coset table) we can determine such

an element g from the coset table.

As we have only a partial coset table this construction may not yet succeed (or

we may be lacking entries to compare yet), in any case it will eliminate groups that

are not first in their class. We also often can perform this pruning already for an

only partially constructed coset table.

Performance III.28: There are many variations and improvements. For example,

as long relators rarely yield a deduction but only are conditions to test, it can make

sense to only consider the shorter (whatever thismeans) relators for the determina-

tion of coset tables and simply test each table obtained afterwards for the remaining

relators.

Note III.29: There are variations to only obtain normal subgroups. However, given

the knowledge of all small groups up to order 2000, the following approach makes

more sense: If N ⊲ G has small index consider Q = Gφ = G/N .

Typically either Q is solvable or even nilpotent (and then N can be found via

powerful quotient algorithms) or Q has a faithful permutation representation on

the cosets of a subgroup U ≤ Q of small index. (Here we use the knowledge of

groups of small order to obtain concrete bounds.)

Then the preimage of U under φ can be obtained by an ordinary low-index

calculation for such a small index, together with quotient algorithms applied to

subgroups.

A detailled algorithm doing this is described in [Fir05] and e.g. implemented

in GAP with the LINS package.

An somewhat alternative view of the low-index algorithm is as a version of the

GQuotient algorithm III.15. Enumerating all possible columns of the coset table is

in effect like enumerating all m-tuples of elements in the symmetric group Sn that
fulfill the relations, replacing the “surjectivity” condition to be just transitivity of

the image. The main benefit of the low-index routine is that it implicitly uses the

defining relators to impose conditions on the permutations. This can be of advan-

tage, if the quotient group is large (which typically means: Sn or An).

III.8 Subgroup Presentations

Any subgroup of finite index of a finitely presented group is finitely generated by

lemma I.16. In fact it also is finitely presented:

To state the theoremweneed some definitions: Let F = ⟨ f1 , . . . , fm⟩ a free group
and R = {r1( f ), . . . , rk( f )} a finite set of relators that defines the finitely presented

group G = ⟨g ∣ R⟩ as a quotient of F. We consider g as the elements of G that are

the images of the free generators f .
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Suppose that S ≤ G with n = [G∶S] < ∞.We choose a transversal of coset repre-

sentatives for S: t1 = 1, t2 , . . . , t[G∶S], and form the Schreier generators (lemma I.16)

s i , j = t i g j(t i g j)−1 for S.
If the representative t i for the i-th coset is defined as t i = t j ⋅ gx , the Schreier

generator s j ,x is trivial by definition. This is exactly the case when we make a new

definition in the coset table. In this case, we call the pair ( j, x) “redundant” and let
I ⊂ {1, . . . , n} × {1, . . . ,m} be the set of all index pairs that are not redundant, i.e.
the set of Schreier generators that are not trivial by definition is {s i , j ∣ (i , j) ∈ I}.
As there are n−1 coset representatives that are defined as image of a “smaller” coset

representative under a group generator, we have ∣I∣ = n ⋅m−(n− 1) = n ⋅ (m− 1)+ 1.
As G is a quotient of F, we have a subgroup U ≤ F which is the full preimage

of S under the natural epimorphism F → G.
Now consider thatw( f1 , . . . , fm) ∈ U is aword in f such that the corresponding

elementw(g1 , . . . , gm) ∈ S. Then we can (as in the proof of Schreier’s theorem I.16)

rewrite w(g1 , . . . , gm) as a word in the Schreier generators s i , j . (For this we only
need to know the action of G on the cosets of S.)

We form a second free group E on a generating set {e i , j ∣ (i , j) ∈ I}. Let
ρ∶U → E be the rewriting map, which for any such word w( f1 , . . . , fm) ∈ U re-

turns a word ρ(w) ∈ E which represents the expression ofw(g1 , . . . , gm) as a word
in the nonredundant Schreier generators s i , j .

Theorem III.30 (Reidemeister): Let G = ⟨g ∣ R⟩ a finitely presented group and

S ≤ G with [G∶S] < ∞. Then S is finitely presented and

S = ⟨e i , j for (i , j) ∈ I ∣ ρ(tx ry t−1x ), 1 ≤ x ≤ n, 1 ≤ y ≤ k⟩

is a presentation for S on the Schreier generators. (We are slightly sloppy in the

notation here by interpreting the tx as representatives in F.)

Proof: If we evaluate t−1x ry tx in the generators g of G, these relators all evaluate to
the identity.Therefore the rewritten relators must evaluate to the identity in S. This

shows that there is an epimorphism from the finitely presented group onto S.
We thus only need to show that any relation among the s i , j can be deduced from

the rewritten relators: Let w(e) be a word such that w(s) = 1 in S. By replacing

e i , j by t i f j(t i f j)−1 we can get this as a new word v( f ), such that v(g) = 1 in G.
Therefore v can be expressed as a product of conjugates of elements in R: v( f ) =

∏
z
r
uz( f )
xz where the uz denote words for the conjugating elements.

Now consider a single factor ru( f ). As the tx are representatives for the right
cosets of S, we can write u( f ) = t−1x ⋅ q( f ) where q(g) ∈ S and x is defined by

S ⋅ u(g)−1 = S ⋅ tx . Thus ru( f ) = (tx ⋅ r ⋅ t−1x )
q( f )

. Rewriting this with ρ, we get
ρ(tx ⋅ r ⋅ t−1x )ρ(q), which is a conjugate of a rewritten relator. ◻
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We note an important consequence:

Corollary III.31 (Nielsen, Schreier): Any subgroup of finite index n of a free

group of rank m is free of rank n ⋅ (m − 1) + 1.

Proof: Rewriting will produce no relators for the subgroup. ◻

Note III.32: This theorem also holds without the “finite index” qualifier. It is usu-

ally proven in this general form using algebraic topology (coverings).

Note III.33: Every generating set of a free group must contain at least as many

elements as its rank. (Proof: Consider the largest elementary abelian quotient that

is a 2-groupQ = F/F′F2.The images of a generating set generateQ as vector space,

the rank of F is the dimension of Q. Then use elementary linear algebra.) This

proves that the number of Schreier generators given by lemma I.16 in chapter I

cannot be improved on in general.

Note III.34: In practice, Reidemeister rewriting oftenproducesmany trivial Schreier

generators and relators that are trivial or of length 1 or 2 (which immediately elim-

inate generators). Thus typically the resulting presentation is processed by Tietze

transformations to eliminate such trivialities.

To perform this rewriting in practice, it is easiest to form an augmented coset
table by storing (for entries that are not definitions) in position for coset x and gen-
erator g also the appropriate Schreier generator s, such that tx ⋅ g = s ⋅ tx . We can

construct this from the permutation action on the cosets by a simple orbit algo-

rithm.

Scanning a word in the generators of G through the coset table, and forming

the product of the Schreier generators encountered “on the way” then expresses

this element as a product of the Schreier generators. (This is exactly what we did

in the proof of Schreier’s Lemma. The augmented coset table thus provides a nicer

way of visualizing this proof.

Reidemeister’s theorem then simply states that we need to scan every relator for

G at every coset of S to get a presentation in the Schreier generators.

Example III.35: Let us go back to example III.20 where we enumerated cosets. Our

coset table was

a a−1 b b−1

1 1 1 2 3

2 4 4 3 1

3 3 3 1 2

4 2 2 5 6

5 6 6 6 4

6 5 5 4 5

with representatives

t1 = 1

t2 = b
t3 = b−1
t4 = ba
t5 = bab
t6 = bab−1
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This defines the following nontrivial Schreier generators and augmented coset ta-

ble:

c = t1at−11 = a
d = t2bt−13 = b3
e = t3at−13 = b−1ab
f = t4at−12 = baab−1
g = t5at−16 = bababa−1b−1
h = t5bt−16 = babbba−1b−1
i = t6at−15 = bab−1ab−1a−1b−1

and

a a−1 b b−1

1 c1 c−11 2 3

2 4 f −14 d3 1

3 e3 e−13 1 d−12
4 f 2 2 5 6

5 g6 i−16 h6 4

6 i5 g−15 4 h−15

Note thatwe only define Schreier generators for the generators, andnot for inverses.

If, for representatives t i , t j and a generator g, we have that t i ⋅ g = s ⋅ t j , then s−1 t i =
t j g−1. That is the inverse of a Schreier generator is exactly the Schreier generator

for the inverse entry in the coset table.

Now we trace the relators at every coset and collect the Schreier generators on

the way:

a2 b3 (ab)5

1 c2 d cg f de
2 f d g f dec
3 e2 d ecg f d
4 f h f decg
5 gi h g f dec
6 ig h (ih)5

Eliminating duplicates and cyclic permutations (which are just conjugates) we get

the presentation

S = ⟨c, d , e , f , g , h, i ∣ c2 = d = e2 = f = h = gi = ig = cg f de = (ih)5 = 1⟩

We eliminate trivial and redundant (i = g−1) generators and get

S = ⟨c, e , g ∣ c2 = e2 = cge = (g−1)5 = 1⟩

We now can eliminate g = c−1e−1 and get

S = ⟨c, e ∣ c2 = e2 = (ec)5 = 1⟩

which is easily seen to be a dihedral group of order 10 (so the initial group G must

have had order 6 ⋅ 10 = 60).

Note III.36: The occurrence of cyclic conjugates of the relator cg f de is not really
surprising, but simply a consequence of the power relator (ab)5. One can incor-

porate this directly in the rewriting algorithm, similarly to a treatment (generator

elimination) for relators of length 1.

Performance III.37: As the rewritten presentation is on n(m − 1) + 1 generators,
even Tietze transformations typically cannot rescue humongous presentations ob-

tained for subgroups of large index. Thus there is a natural limit (a few thousand)

on the subgroup index for which rewriting is feasible.



III.8. SUBGROUP PRESENTATIONS 81

Themodified Todd-Coxeter algorithm

In the Reidemeister-Schreier algorithm Schreier generators were introduced in an

existing coset table to reflect the difference between representative images and rep-

resentatives of the images.

A similar result arises if we demand in general that the tables do not just rep-

resent equality of cosets, but of group elements. This is done in a variant of coset

enumeration, called theModified Todd-Coxeter algorithm (MTC). In it, difference

between images and representatives is corrected by augmenting tables with suitable

products of subgroup generators.

For this, introduce symbols u i that represent the subgroup generators. In the

i-th (one row) subgroup table, we then have that the image of coset 1 is u i ⋅ 1 (since
it reflects the tracing of the i-th subgroup generator. The relator tables however

(which all represent the identity of the group) remainwith rows starting and ending

with a number j. We also reserve space in the coset table to store correcting factors,

given as products of the subgroup generators.

The general process than follows exactly as in the ordinary coset enumeration,

with the difference that we maintain equality of elements. Thus:

• When closing a table row – say we have that coset x under generator g gives

coset y – there might be factors associated with the two entries that join, that

is the entries are actually a ⋅ x and b ⋅ y with a and b words in the {u i}. Then

the consequence we record in the coset table is that the image of x under g
is a−1b ⋅ y and the image of y under g−1 is b−1a ⋅ x. This introduces cofactors
(words in the {u i}) into the augmented coset table.

• When recording images from the coset table in the subgroup or the relator

table, these cofactors are kept. That is, if we have entry a ⋅ x in a table and

know, from the coset table, that x under the next generator g maps to b ⋅ y,
we enter ab ⋅ y in the next column of the table.

Instead of describing this in a formal algorithm, we illustrate this by re-doing

the same coset enumeration as in Example III.20, just this time with the extra co-

factors.

Example III.38: We call the subgroup generators s = a and t = ab and thus have

the subgroup tables as:

a
1 s ⋅ 1

b−1 a b
1 t ⋅ 1

From the first table, we deduce that 1a = s ⋅ 1 and enter this in the coset table:

a a−1 b b−1

1 s ⋅ 1 s−1 ⋅ 1

(Entering this in the first row of the relator table for a2 would give us that s2 = 1,
but we don’t need to record this now since it will arise from relator tracing.)
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Next we define 2 = 1b as before with no change to the previous entries. Once we

define 3 = 1b
−1
, however we need to enter this correctly into the second subgroup

table

We also get the second subgroup table as:

b−1 a b
1 3 ! t ⋅ 3 t ⋅ 1

This gices the consequences that 3a = t ⋅ 3, and 3a
−1
= t−1 ⋅ 3. We enter this in the

coset table.

The definitions of 4 = 2a , 5 = 4b and 6 = 4b
−1
again proceed as before. At this

point, the first row of the relator table for (ab)5 closes:

a b a b a b a b a b
1 s ⋅ 1 s ⋅ 2 s ⋅ 4 s ⋅ 5 ! t−1 ⋅ 6 t−1 ⋅ 4 t−1 ⋅ 2 t−1 ⋅ 3 3 1

2. . .

3. . .

this gives the cosequence 5a = s−1 t−1 ⋅ 6 and 6a
−1
= ts ⋅ 5. Entering this in the

relator table for a2 gives the consequences that 6a = ts ⋅ 5 and 5a
−
1 = s−1 t−1 ⋅ 6. The

augmented coset table now is complete as:

a a−1 b b−1

1 s ⋅ 1 s−1 ⋅ 1 2 3

2 4 4 3 1

3 t ⋅ 3 t−1 ⋅ 3 1 2

4 2 2 5 6

5 s−1 t−1 ⋅ 6 s−1 t−1 ⋅ 6 6 4

6 ts ⋅ 5 ts ⋅ 5 4 5

As before, we can now trace words in the generators of G through the coset

table, accumulating a word in the generators of S through the cofactors.

If we trace a word that represents an element g ∈ S from coset 1, we need to end

at coset 1 again. The fact that the coset table reflects euqality of elements, not just

of cosets, however means that the collected cofactor word is an expression for g as
a word in the generators of S.

If we compare this augmented coset tablewith the one inExample III.35 (page 80),

we note that the cofactors express the nontivial Schreier generators as words in the

chosen generators of S. It is not hard to show that this holds in general.

We thus get the obvious corollary of Theorem III.30: Traciong all relators at all

cosets yields a presentation for S as a finitely presented group in the chosen ghener-
ators!

Example III.39: We continue the example. Tracing a2 at coset 1 yields (as promised)

the traced word (and thus relator) s2. Ditto we get t2 = 1 from tracing relator a2 at
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coset 3. Tracing a2 at coset 5 gives s−1 t−1 ts, which is the trivial word, and thus no

useful relator. Similarly almost all other traces yield relators that are trivial or can-

cel freely. Tracing coset 6 through relator (ab)5 however (finally) yields the word
(st)5.

We conclude, that

S = ⟨s, t ∣ s2 = t2 = (st)5⟩

is a presentation for S (and thus S is a dihedral group of order 10).

Note III.40: This example is misleading in that it suggests the MTC to produce a

nicer subgroup presentation, furthermore on a chosen (smaller) generator set.This

is misleading: Once the index gets larger the length of the cofactor expressions (it-

erated products double length with each multiplication) often get infeasibly long.

This is even an issue for the coset enumeration itself – algorithms typically store

these cofactors in a decoding tree that reflects the multiplication structure, storing

each factor as a product/quotient of prior factors (and thus of shorter length). Fur-

thermore, Tietze transformations (see III.34) typically are better at reducing the

generator number of a presentation onbtained by Reidemeister-Schreier, than re-

ducing the relator lengths obtained fromMTC. MTC however is the way to go for

evaluating homomorphisms, given on subgroup generators (which are not Schreier

generators chosen for an existing coset table).

An important application ofMTC is the followingmethod, often used to deter-

mine the order of a finite finitely presented group: Choose for S a cyclic subgroup

⟨x⟩ (often x is itself chosen as a generator of the group or a short product of genera-
tors). In this case all cofactors will be powers of x (and thus the issue of word length
is not critical). Furthermore, all relators for s obtained will have the form x e i = 1,
thus ∣⟨x⟩∣ = lcmi(e i) can be obtained easily. One then has ∣G∣ = [G∶ ⟨x⟩] ⋅ ∣⟨x⟩∣.

III.9 Abelian Quotients

We have seen already a method (the GQuotient algorithm, algorithm III.15) which

for a finitely presented groupG finds all quotient groupsG/N isomorphic to a given

finitely presented group H.

In general, onewould like to do this not only for a specificH, but for the “largest

possible H” within some class of groups. Such algorithms are called “quotient al-

gorithms”, we will encounter them again later in section V.6.

Here we want to determine the largest abelian quotient. By the “quotient sub-

group” paradigm, this is equivalent to determining the derived subgroup G′ of a
finitely presented group G = ⟨g ∣ R⟩.

The principal idea is the following observation: Suppose that F is the free group

in which the presentation for G is given and φ∶ F → G is the epimorphism. Let

N = F′ = ⟨x−1 y−1xy ∣ x , y ∈ F⟩F . then Nφ = G′. Thus F/N ⋅Kernφ ≅ G/G′.
We thus get a description for G/G′ by simply abelianizing the presentation for

G, i.e. considering it as a presentation for an abelian group.
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As the generators in an abelian group commute, we can describe the relators for

G/G′ by a matrix A: The columns correspond to the generators ofG/G′ (images of

the generators of G), each row represents one relator, which we can assume to be

in the form g e11 g
e2
2 ⋯g

em
m , we simply store the exponent vector [e1 , . . . , em].

Now consider the effect of elementary transformations over Z on the rows and

columns of A (i.e. swap, adding a multiple of one to another and multiplication

by ±1): Such transformations on the rows correspond to a change of the relator

set R, but (as they are invertible) these new relators will generate the same group.

Transformations of the columns correspond to a generator change forG/G′. Again
the invertibility of the transformation shows that the new elements still generate the

whole of G/G′.
We now recall, that we can use such transformations to compute the Smith Nor-

mal Form of A, i.e. we can transform A into a diagonal matrix S with divisibility

conditions among the diagonal entries2.

This new matrix S will describe a group isomorphic to G/G′. As S is diagonal,
this group is simply a direct product of cyclic groups of orders given by the diagonal

entries (using order∞ for entry 0).

If we do not only compute the Smith Normal Form S of A, but also determine

matrices A = P ⋅S ⋅Q, thematrixQ describes the necessary change of the generating

system, thus Q−1 describes how to form a homomorphism G → C with C ≅ G/G′
the abelian group given by the diagonal entries in S.

Performance III.41: The bottleneck of such a calculation is that — even if the en-

tries in S are small — the calculation of the Smith Normal Form can often produce

intermediate coefficient explosion. (It becomes even worse for the (non-unique!)

transformationmatrices P andQ.)There is an extensive literature considering strate-

gies for such calculations (in particular on how to keep entries in P and Q small).

To indicate the difficulty, note that the standard approach of reduction modulo

a prime does not work, because we can always scale modulo a prime. One way

to rescue this is to use a theorem relating the diagonal entries of S to the gcd’s of

determinants of minors of A, and calculating these determinants modulo a prime.

This however does not yield transforming matrices.

Abelianized rewriting

We can combine the algorithms of this section and the previous one and ask for

the abelian invariants of a subgroup. Instead of performing one algorithm after the

other, rewriting relators and then abelianizing them, it is beneficial to immediately

abelianize relators while rewriting. This avoids maintaining long relators interme-

diately and leads to a much more nimble performance.

Determining the abelianization of a subgroup is one of a handful methods

known for determining the infinity of certain groups (there is nouniversalmethod):

Find a subgroup (of smallish index) whose abelian quotient is infinite.

2In fact we only need diagonalization here (which is not a unique form).
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III.10 Getting a Presentation for a permutation group

In some situations we have a group G already given as a permutation group, but

want to obtain a presentation forG.This occurs for example when computing com-

plements to a normal subgroup (see V.4) or to test whether a map on generators

extends to a homomorphism.

In GAP such functionality is provided by the following commands:

IsomorphismFpGroup lets GAP choose the generating system in which the

presentation is written (typically yielding more generators but a nicer presenta-

tion). IsomorphismFpGroupByGenerators produces a presentation in a partic-

ular generating system.

Reverse Todd-Coxeter

A basic algorithm is due to [Can73], it might be considered easiest as a reversal of

coset enumeration:

Suppose we start a coset enumeration for G acting on the cosets of the trivial

subgroup, starting without relators. We write tx to denote the representative for

coset x as given by the coset table.

At some point we will define a new coset y which is in fact equal to an already

existing coset x. Thus tx t−1y must be trivial in G and thus must be a relator. We add

this as a relator to the enumeration process (and fill in the corresponding relator

table as far as possible). We continue with this until we get and up with a complete

table.

Clearly we only added valid relators for G. On the other hand these relators

define a group which (as we can see by performing a coset enumeration by the

trivial subgroup) has the same order as G, thus the relators yield a presentation for

G.
In a variation, suppose that S ≤ G and that we know already a presentation of S.

Wenow formapresentation on the generators for S togetherwith the generators for
G. As relators we start with the known relators for S as well as relators that express
the generators for S aswords in the generators forG.Then start a coset enumeration

for the cosets of S inG. If two cosets x and y seem different we know that tx t−1y ∈ S,
thus we can express it as a word in the generators of S. The corresponding relator

would have enforced equality of x and y and thus is added to the set of relators.

By the same argument as before, the result will be a presentation for G. We can

use Tietze-transformations to eliminate the generators of S and obtain a presenta-

tion purely in the generators of G though typically of longer total relator length.

We can iterate this process over a chain of subgroups. In particular we can do

this for the subgroups in a stabilizer chain and get a presentation in a strong gen-

erating set.

An application of this is a test whether a map from a permutation group to

another group, given by generator images, extends in fact to a homomorphism.

Construct a stabilizer chain for the prospective homomorphism. Then proceed as
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if constructing a presentation. Instead of adding relators, check whether the rela-

tors evaluate trivially in the generator images. This is in fact an alternate view of

problem ?? in chapter II.

Note III.42: We can use this method as well, if we want to verify a stabilizer chain

that has been obtained with randommethods, and might indicate the group being

too small: Using this chain, we compute a presentation and then check that the

group generators fulfill this presentation. If the chain was too small they will not.

This yields the so-called “Todd-Coxeter-Schreier-Sims” algorithm mentioned in

section II.1.

Despite the fact that the Todd-Coxeter method has no bounds on the run-

time whatsoever, this produces a respectable performance in practice. (See also

section III.11.

Using the composition structure

The presentations obtained with this method often are rather messy. It therefore

often makes sense to use more information about the composition structure of G
and to build a presentation for G from presentations for its composition factors.

The cost of this is that wewill get a presentation in a new generating set. Inmost

applications this is of little concern.

By induction it is sufficient to describe a process that constructs a presentation

for a groupG from a presentation forN ⊲ G, one forG/N , and a choice of elements

of G that represent the generators for G/N .

Lemma III.43: Let N = ⟨n⟩ ⊲ G and G = ⟨N , g⟩. Suppose that N = ⟨m ∣ R1⟩ is a

presentation for N and that G/N = ⟨h ∣ R2⟩ is a presentation for G/N such that

h i = Ng i . For an element x ∈ N let ρ(x) be the expression of x as a word in m.

Then the following is a presentation for G:

⟨h ∪m ∣ R1 ∪ R3 ∪ R4⟩

where R3 = {r(h)/ρ(r(g)) ∣ r ∈ R2} and R4 = {m
h j
i /ρ(n

g j
i ) ∣ i , j}.

Proof: It is easily seen that the relations all hold in G. To show that the presenta-

tion does not define a larger group, observe that the relations in R4 (h−j 1m ih j =
word in m implies m ih j = h j ⋅word in m) permit us to write every element in the

presented group as a word in h with a word inm. The relations in R3 show that (up

to changes inm) every word in h can be transformed to one of ∣G/N ∣ possibilities.
The relations in R1 similarly reduce the words inm to ∣N ∣ classes. Thus the presen-

tation defines a group of order ≤ ∣G∣. ◻

Using this lemma and a composition series of G, we can form a presentation

for G based on presentations of the composition factors (see the next section for

these).
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Performance III.44: In practice one often gets a nicer presentation and faster per-

formance by using a chief series of G and using the (obvious) presentations for

direct products of simple groups.

The simple case

While we could easily write down a presentation for a cyclic factor, in general one

will still need presentations for the simple composition factors.

Oneway (which is currently used inGAP) is to use themethod of section III.10.

For small composition factors this produces reasonable presentations (albeit noth-

ing to boast about).

A much better approach is — mirroring how one would prove theorems — to

use the vast amount of theoretical information that has been obtained (for example

in the course of the classification of finite simple groups) about simple groups.

If we go through the classes of nonabelian finite simple groups, the following

information is found in the literature:

Alternating Group It is a not too hard exercise to show that for odd n, An is gen-

erated by the elements g1 = (1, 2, n), g2 = (1, 3, n), . . . , gn−2 = (1, n − 1, n)
and that

⟨g1 , . . . , gn−2 ∣ ∀i , j > i ∶ g3i = (g i g j)
2 = 1⟩

is a presentation.

Groups of Lie Type This class includes the groups coming from matrix groups,

such as PSLn(q). The unified way to construct these groups also offers a

“generic” way to write down a presentation (“Steinberg-presentation”).

Sporadic Groups Finally there are 26 so-called “sporadic” groups that do not fit

in the previous classes (they include for example the Mathieu groups). For

these ad-hoc presentations are known.

An excellent source for such information is theATLASof simple groups [CCN+85].

Given a simple composition factor A, we construct an isomorphism (for exam-

ple by a variant of algorithm III.15) to an isomorphic group B in “nice” form, for

whichwe can just write down the presentation.This lets us transfer the presentation

to A.
We will see more efficient ways of constructing such isomorphisms later in sec-

tion ??.
Alas very little of this approach is actually implemented.

III.11 Upgrading Permutation group algorithms to Las Vegas

We have seen before in section II.1 that fast algorithms for permutation groups

rely on randomized computation of a stabilizer chain and therefore may return a

wrong result. To rectify this onewould like to have a subsequent step that will verify
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that the chain is correct. If not, we then can simply continue with further random

elements until a renewed test verifies correctly.

Such an algorithm is sometimes called a “Las Vegas” algorithm (in analogy to

“Monte Carlo” algorithms): We have a randomized computation of a result that

may be wrong, but can do a subsequent verification. (The runtime of such an algo-

rithm thus is good in average, but can be unbounded in the worst case of repeated

verification failure.)

The basic approach is the following (again much of the later steps is not imple-

mented):

1. Compute a randomized stabilizer chain for G.

2. Using this chain compute a composition series. (As part of this we get for

each factor G i > G i+1 in this series an epimorphism G i → G i/G i+1.)

3. Using constructive recognition of the simple factors (see ??), write down a

presentation for each simple factor F.

4. Use the method of lemma III.43, construct a presentation forG. If the initial
chain was too small this is in fact a presentation for a smaller group.

5. Verify that the elements of G actually fulfill the presentation.

To obtain a good runtime complexity for permutation group algorithms in gen-

eral, we want these steps all to be “fast” (in terms of the degree of the initial permu-

tation group G). This means in particular: We need to be able to construct isomor-

phisms for the simple factors “quickly” (which in fact has been proven) and need

to obtain “short” presentations for the simple factors (basically of relator length

log
2 ∣F∣).
The Steinberg presentationsmentioned in the last section do not fulfill this, but

for almost all cases short variants are known [BGK+97, HS01]. Only the so-called

Ree-groups (Lie Type 2G2) are missing so far.

III.12 How to do it inGAP

Free Groups and Finitely Presented Groups

Free groups are generated either for a particular rank (as FreeGroup(k) for an
integer k, or for particular names of the generators as FreeGroup(s1,s2,...,sk)
for strings s i . Note that the names of the generators are purely print names and do

not necessarily correspond to variables3, however the convenience function

AssignGeneratorVariables(F) when applied to a free group F, will assign –

if possible – global variables to the group generators named that way, overwriting

previous values of these variables.

3For connoisseurs of the confusing it is possble to have different generators being named the same,

or to assign generator “x” to variable “y” and vice versa.
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Finitely presented groups are created as quotiets of a free group by a list of

relators, relators being expressed as elements of the free group. If F is a free group

whose generators are all named by single letters, the function

ParseRelators(F,s) will take a string s which represents a presentation

written in traditional form – possibly including equalities, and return a list of

relators of an equivalent presentation. Numbers (even without a leading caret

operator) are interpreted as exponents, a change from lower- to upper-case (or

vice versa) is taken to represent inverses. Thus, the following three definitions all

define the same finitely presented group (of order 18), differing only in the level of

convenience to the user:

gap> f:=FreeGroup("a","b","c");

<free group on the generators [ a, b, c ]>

gap> AssignGeneratorVariables(f);

#I Assigned the global variables [ a, b, c ]

gap> rels:=[f.1^f.2/f.3,f.3*f.1/(f.2^-1*f.3),

> Comm(f.1,f.2^2*f.3), (f.2^3*f.3^-1)^2*f.1^-10];

[ b^-1*a*b*c^-1, c*a*c^-1*b, a^-1*c^-1*b^-2*a*b^2*c,

b^3*c^-1*b^3*c^-1*a^-10 ]

gap> rels:=[a^b/c,c*a/(b^-1*c),Comm(a,b^2*c),(b^3*c^-1)^2/a^10];

[ b^-1*a*b*c^-1, c*a*c^-1*b, a^-1*c^-1*b^-2*a*b^2*c,

b^3*c^-1*b^3*c^-1*a^-10 ]

gap> rels:=ParseRelators(f,"a^b=c,Bc=ca,[a,b2c],(b3C)2=a10");

[ b^-1*a*b*c^-1, c*a*c^-1*b, a^-1*c^-1*b^-2*a*b^2*c,

b^3*c^-1*b^3*c^-1*a^-10 ]

gap> g:=f/rels;

<fp group on the generators [ a, b, c ]>

Elements of Finitely Presented Groups

The elements of a finitely presented group G are displayed the same way as the

elements of the (underlying) free group, but they are different objects. (The

function AssignGeneratorVariables will also work for finitely presented

groups. In particular, equality tests for elements of a finitely presented group will

potentially trigger hard (or even impossible) calculations to establish for example

a faithful permutation representation. This however does not impl that elements

are automatically reduced, as the following example shows:

gap> f:=FreeGroup("a");

<free group on the generators [ a ]>

gap> g:=f/[f.1^5];

<fp group on the generators [ a ]>
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gap> a:=g.1;;

gap> a^5; # display is not reduced

a^5

gap> a^5=a^0; # but test is properly done

true

If G is small or has a well-behaving4 presentation, the command

SetReducedMultiplication(G) will enforce an intermediate reduction of

products, representing each newly created element by a normal form

representative

gap> SetReducedMultiplication(g);

gap> a^5;

<identity ...>

gap> a^28;

a^-2

Creating and Decomposing Elements

For an element x of a finitely presented group G, UnderlyingElement(x)
returns the element y of the free group used to represent x. For an element y of a
free group, LetterRepAssocWord(y) returns a list of integers that represents y
as a product of the (numbered) generators, negative numbers indicating inverses.

The reverse translations require element families (which are system objects

representing the groups elements without being a group or having an element

test). Elements of free groups are created from integer lists by

AssocWordByLetterRep(familyfree,intlist ), elements of finitely

presented groups via ElementOfFpGroup(familyfp,freeelement ). For

example:

gap> famfree:=FamilyObj(One(f));;

gap> AssocWordByLetterRep(famfree,[1,2,3,-2,1]);

a*b*c*b^-1*a

gap> famfp:=FamilyObj(One(g));;

gap> ElementOfFpGroup(famfp,f.1*f.2);

a*b

A finitely presented group has the attributes

FreeGroupOfFpGroup,FreeGeneratorsOfFpGroup, and

RelatorsOfFpGroup which let an algorithm obtain the underlying presentation.

4well-behaving being defined only in that this functionality works



III.12. HOW TO DO IT IN GAP 91

Presentations and Tietze Transformations

Presentations are objects that are not groups and which can be modified.

PresentationFpGroup creates a presentation from a finitely presented group,

FpGroupPresentation creates a (new!) finitely presented group from a

presentation.

For a presentation P, the command TzGoGo(P) applies (in a greedy algorithm)

Tietze transformations to eliminate generators and make the presentation shorter.

(It will only delete generators and never create new ones.) As generator

elimination in general increases the length of a presentation, this typically returns

a somewhat heuristic result that balances generator number and presentation

length. (It clearly is not guaranteed that the result in any way is “shortest” or

“standardized”.)

The function IsomorphismSimplifiedFpGroup does similar, but does the

group/presentation translation automatically and also preserves the connection

between the old group and the new one.

Subgroups and Coset Tables

Subgroups

Subgroups of finitely presented groups typically are using the method of

section III.5 for calculations – the actual homomorphism being hidden from the

user. It can be obtained via the attribute DefiningQuotientHomomorphism(S).
Subgroups represented this way often get printed as Group(<fp, no

generators known>) unless the user requested an explicit ist of (Schreier)

generators.

If a subgroup is given by generators, typically a coset enumeration is performed to

get the permutation representation on the cosets.

Coset Enumeration

On a pure user level coset enumeration is hidden from the user and performed

automatically for purposes such as element tests or group order calculations. One

can see coset enumeration being performed by setting the appropriate

InfoLevel higher: SetInfoLevel(InfoFpGroup,2). Doing so will print

status messages about the progress of the enumeration.

To perform a coset enumeration for a subgroup S ≤ G on its own, the command

CosetTable(G,S can be used. The function returns (for memory reasons, as

there are typically far more cosets than generators) a transposed coset table with

rows corresponding to the generators and their inverses g1, g−11 , g2 g−12 and so on,

and columns corresponding to the cosets.

On a lower level, CosetTableFromGensAndRels(fgens,rels,sub ) takes as

fgens the generators of the free group via which G was defined

(FreeGeneratorsOfFpGroup(G)), rels the relators as words in these
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generators (RelatorsOfFpGroup(G)), and sub generators of the subgroup S as
elements of the free group (i.e. use UnderlyingElement).
Coset tables in GAP typically are standardized using StandardizeTable.

The implementation of the Todd-Coxeter algorithm in GAP is relatively basic, the

package ace provides an interface to a far more powerful external enumerator.

Low Index

The function LowIndexSubgroupsFpGroup(G,n) determines all subgroups of

a finitely presented group G of index ≤ n up to conjugacy. In many cases

n ∈ [10..30] is a reasonable index if G is generated by 2 or 3 elements. As the

runtime grows with the number of generators, it is usually worth to simplify the

presentation first using Tietze transformations.

As low index calculations can take a long time, and it often is useful to get some

subgroups quicker, an alternative user interface uses iterators:
LowIndexSubgroupsIterator(G,n) creates an iterator object I. For this
object NextIterator(I) always produces the next subgroup until

IsDoneIterator(I) returns true.

gap> it:=LowIndexSubgroupsFpGroupIterator(g,15);

<iterator>

gap> NextIterator(it);

Group(<fp, no generators known>)

gap> while not IsDoneIterator(it) do

> Print(IndexInWholeGroup(NextIterator(it)),"\n");

> od;

2

3

6

9

A variant of the low-index process lets the user provide a subgroup S as third
argument – the computer then determines only subgroups containing S.

Subgroup Presentations

The commands PresentationSubgroupRrs (Reidemeister-Schreier, selecting

Schreier Generators) and PresentationSubgroupMtc (Modified Todd Coxeter,

using the provided subgroup generators, see note /refmtc) create a subgroup

presentation using an augmented coset table. They return a presentation object, as

used by Tietze transformations and indeed immediately apply Tietze

transformations to reduce the presentation created and to eliminate obvious

redundancies.

A more user friendly interface is by creating homomorphisms, that also provide

for translation between subgroup elements in the original group, and elements of
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the group in the new presentation. For a subgroup S of a finitely presented group,

IsomorphismFpGroup(S) creates such an isomorphism using Reidemeister

Schreier, IsomorphismFpGroupByGenerators(S,gens ), for a generator list
gens, uses the Modified Todd-Coxeter to produce a presentation on particular

desired generators.

Homomorphisms

Epimorphisms to known finite groups

The command GQuotients(G,Q) classifies epimorphisms G → Q, assuming

that Q is a group for which conjugacy classes and double cosets can be computed

efficiently – e.g. a permutation group. (The operation works not only for a finitely

presented G, but also for arbitrary finite G, effectively computing a presentation

for G to test for homomorphisms.)

Abelian Quotients

For a matrix with integer entries, SmithNormalFormIntegerMat(M)

determines the Smith Normal Form,

SmithNormalFormIntegerMatTransforms(M) returns a record that also

contains transforming matrices such that S.rowtrans ⋅M ⋅ S.coltrans = S.normal.
MaximalAbelianQuotient(G) forms the corresponding homomorphism. If

G/G′ is finite the image is a pc group, if it is infinite the image is a finitely

presented group.

Getting Presentations

In consistence with subgroup presentations, for a finite group G the function

IsomorphismFpGroup(G) determines a presentation (it returns an

isomorphism to the corresponding finitely presented group, from which the

presentation can be obtained. The presentation is built using a composition series,

generators are chosen by the algorithm.

Similarly IsomorphismFpGroupByGenerators(G,gens ) uses the reverse
Todd-Coxeter process to determine a presentation for G on a given generating set.
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IV

Pc Groups

Solvable groups occupy a special place in group theory: They can be obtained as

iterated extensions of cyclic groups – the most basic groups which are – and hold

many special properties, both in terms of the existence of structures (such as Sy-

low systems), and computability (such as solvability of polynomials in terms of

radicals). In this chapter we will be concerned less with the particular theory of

solvable groups, but will use their special structure simply to obtain a very memo-

ry efficient way of storing elements. We will revisit this structure in later chapters,

both as a tool for finding quotients of finitely presented groups (Section V.6), as

well as for reducing calculations in larger groups to their constituent factors (Sec-

tion ??).
Much of what is described in this chapter can be generalized to the case of

infinite groups, the reader is referred to [Eic01].

While many algorithms have been developed specifically for solvable groups,

they often can be considered as special cases of the more general framework we

will describe in chapter ??.

IV.1 Pc presentations

Our starting point is that of presentations for extensions as given in section III.10.

Assume that G is finite and solvable. Then the composition series consists of cyclic

factors of prime order andwe trivially get a presentation ⟨g∣gp = 1⟩ for each of these
cyclic factors. Combining these, we therefore get a presentation of the following

form for G:

• Assuming the composition series is G = G0 > G1 > . . . > Gn = ⟨1⟩, we have
generators g1 , . . . , gn with G i−1 = ⟨G i , g i⟩.

95
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• We get power relations for R3: If [G i−1∶G i] = p i , we have that g p ii can be

expressed as a word in the generators g i+1 and following

• For R4 we get conjugacy relations: If i < j we have that g g ij can be expressed

as a word in g i+1 and following. (In fact one can do better if the group is

supersolvable and even better if it is nilpotent.)

Definition IV.1: Such a presentation is called a PC-presentation (with “PC” stand-
ing alternatively for “polycyclic”, “power-conjugate” or “power-commutator”.)

We observe that the relations in R4 permit us to change the order of generators in

a word; the power relations in R3 restrict exponents. Thus every element of G can

be written (uniquely) as a product g e11 g
e2
2 ⋅⋯ ⋅ g

en
n with 0 ≤ e i < p i . We call this form

the normal form of the word, the process of bringing a word into normal form is

called collection and will be described in more detail in section IV.2 below.

More generally, we can consider such a set of generators g1 , . . . , gn for any solv-
able groupG. It is called a polycyclic generating set (short PCGS).Whenever a PCGS

is chosen, we get a bijection between group elements and valid exponent vectors.

The composition series defined by suffixes ⟨g i , g i+1 , . . . , gn⟩ of a PCGS is called
the corresponding PC series. Given a solvable group there typically is a choice

amongst multiple series (and generators) and it is natural to pick a series that has

particular desired properties. For example onemight want it to refine a chief series.

We will study a particularly nice version in section IV.4.

If for M = ⟨g i , g i+1 , . . . , gn⟩ and N = ⟨g j , g j+1 , . . . , gn⟩ we have that M ,N ⊲ G
and M/N is elementary abelian, we call g i , g i+1 , . . . , g j−1 a layer in the PCGS.

As in Linear algebra with coefficient vectors it is tempting to translate arith-

metic in a solvable group with a chosen PCGS to exponent vectors. Given a full PC

presentation this is possible – the product of two elements is obtained simply by

concatenating the corresponding words, and collecting the result to normal form.

Thismakes it possible to use a polycyclic presentation to define a solvable group
on the computer, representing its elements by exponent vectors.We shall call groups

in this representation PC groups.
Such groups have a couple of algorithmically interesting properties:

• The storage of elements is very space efficient and close to optimal, being

essentially of size log ∣G∣.

• The natural homomorphism for the factor groups related to the composition

series is easily evaluated (we just need to trim exponent vectors to a suitable

prefix).

• For elementary abelian layers in the series, the corresponding part of the

exponent vector yields a vector space representation. This is the principal

idea behind many efficient algorithms we will see later (see chapter ??).

There are essentially three ways of creating such PC groups:
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• It may be possible to simply write down the pc presentation for a group of

interest (for example, it is not hard to construct the pc-presentation for a

semidirect product from pc-presentations for the factors). The reader how-

ever should be aware that not any arbitrary presentation that syntactically

fulfills the rules for a pc presentation corresponds to a group with that struc-

ture. We will find a criterion for this in section V.4.

• If we have already a solvable group, represented in a different way (for exam-

ple as a permutation group), and choose a PCGS from a composition series,

we can determine (as in section III.10) the corresponding PC presentation by

evaluating the left sides of the rules of type R3 and R4, and expressing these

as words in normal form. We will see a particular efficient way for this in

section IV.5.

• Generalizing the idea of abelian quotients from section III.9 there are algo-

rithms that will determine quotients of finitely presented groups in the form

of PC groups, see section V.6.

IV.2 Collection

A word about complexity

IV.3 Induced pc systems

Suppose that G is a pc group and S ≤ G. Suppose we have some generating set

s = {s1 , . . . , sk} for S. Consider the exponent vectors for the s i as rows in a matrix.

Our aim is to bring this matrix into row echelon form.

Suppose that s i corresponds to an exponent vector [a, . . .]. Then a power sei
will have exponent vector [1, . . .] (as gcd(a, p) = 1 for p being the relative order in
the first component).

Similarly, if s j has coefficient vector [b, . . .], then s j/s
b/a
i has exponent vector

[0, . . .].

It is easily seen that these transformations do not change the group generated.

We can therefore transform s to a new generating set ŝ such that the matrix of

exponent vectors is in row echelon form. Such a generating set ŝ is called an induced
generating set (or IGS) for S. If we assume reduced row echelon form, we can even

obtain a unique generating set for S, called a canonical generating set (or CGS).
If we have an induced generating set for S and g ∈ G arbitrary, we can attempt to

divide generators of the IGS off g to transform the exponent vector for g in the zero
vector. This will succeed if and only if g ∈ S. The remainder will be a “canonical”

(with respect to the chosen IGS) coset representative for the left coset gS. (We have

to divide off from the right to avoid commutators with remaining higher terms

causing problems.)
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Orbit/Stabilizer computations in solvable groups

As suffixes of a PCGS define a subnormal chain, the ideas of section II.4 provide

a very elegant way of determining orbits and stabilizers in solvable groups. By in-

duction we only need to consider the case that g is the first element in a PCGS for

G = ⟨N , g⟩ with N ⊲ G generated by the first suffix, and that for ω ∈ Ω we al-

ready computed the orbit ωN and an IGS for StabN(ω). As p = [G∶N] is prime, the

following two possibilities are the only possible:

a) ∣StabN(ω)∣ = ∣StabG(ω)∣ Then stabilizers stay the same (i.e. we keep the exist-

ing IGS) and we extend the orbit to length p ⋅ ∣ωN ∣ = ∣ωG ∣ by adding images of ωN

under g , g2 , . . . , g p−1.

b) ∣StabN(ω)∣ < ∣StabG(ω)∣ Then ∣ωN ∣ = ∣ωG ∣, i.e. the orbits stay the same. We

determine n ∈ N such that (ωg)n = ω and add g ⋅ n to the IGS for StabN(ω). As
p = [ StabG(ω)∶ StabN(ω)] this will be an IGS for StabG(ω).

IV.4 LG series

A particular nice situation is that of so-called “special pc-groups” (defined by a

series of rather technical conditions [CELG04]), which not only provide particu-

larly good algorithms, but also often a very “sparse” presentation which makes the

collection process go fast.

IV.5 Computing a PCGS for permutation groups

If we have a solvable group given already as group of permutations (or other objects,

acting on a set in away to enable use of stabilizer chains, as describes in section II.7)

we could obtain a pc-presentation as in section III.10. There is however a more

efficient algorithm [Sim90] which we will describe in this section.

The algorithm takes a set of generators {a i} for a permutation group G. It re-
turns a PCGS g1 , . . . , gn for G that is at the same time also a strong generating set.

The corresponding stabilizer chain can be used to determine exponent vectors.

The basic step of the algorithm is that we assume by induction that for a normal

subgroup N ⊲ G (initializing with the trivial subgroup) we have a PCGS (which is

also a strong generating set) and a stabilizer chain.The inductive step then consists

of finding elements that together with N will generate a normal subgroup N ≤ M ⊲
G such that M/N is elementary abelian.

To find such extra generators, consider an element a /∈ N such that ap ∈ N
for a prime p. (This second condition can be fulfilled easily by replacing a by a

power.) If for all g ∈ G we have that the commutator [a, ag] ∈ N (which implies

that [ag , ah] ∈ N), then a and its conjugates, together with N , generate a normal
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subgroup M such that M/N is p-elementary abelian. Thus M is the subgroup as

desired.

Otherwise, there is a conjugate ag such that b ∶= [a, ag] /∈ N . This means that

Nb lies in a lower subgroup of the derived series of G/N than Na did. We thus re-

place a by b and repeat testing the commutators. After each failure the element Nb
lies in a lower group of the derived series of G/N . If G (and thus G/N) is solvable,

the last subgroup in this finite series is abelian, which shows that this iteration can

happen only a finite number of times. (In fact [Sim90] proposes to use a bound on

the derived length, due to [Dix68], to test solvability of an arbitrary group G using

the same algorithm.)

Instead of constructing all conjugates ag , we use the idea of algorithm I.21 and

form iterated conjugates under generators of G, adding only those conjugates c i
that are not yet in the span of the existing elements. A dimension argument shows

that the resulting element list (c1 , c2 , . . . cdim(M/N)) will yield a basis for M/N and

that the concatenation of the PCGS for N with (c1 , c2 , . . . cdim(M/N)) will form a

PCGS for M.

We also want to modify the new generators to maintain a strong generating

set. This is done at the same time as the redundancy test for new candidates for

the c i : We start with a stabilizer chain for N and in each step extend this to a sta-

bilizer chain for ⟨N , c1 , c2 , . . . , c j⟩. If we have this chain and are processing c j+1
we sift this element through the chain, using algorithm II.5. If the element sifts

through, it is redundant and can be ignored, thus lets assume that the sifting pro-

cess for ⟨N , c1 , c2 , . . . , c j⟩ fails on some level S of the stabilizer chain. We then

have a partially sifted element d that has been obtained from c j+1 by modifying

it with elements from N and c1 , . . . , c j . This means that ⟨N , c1 , c2 , . . . , c j , c j+1⟩ =
⟨N , c1 , c2 , . . . , c j , d⟩, and that d could take the place of c j+1 in a PCGS. (The changes

generating set is simply an IGSwith respect to the old generating set.) Furthermore,

∣⟨N , c1 , c2 , . . . , c j , d⟩∣ = p ⋅ ∣⟨N , c1 , c2 , . . . , c j⟩∣ with p prime. Thus if we extend the

stabilizer chain layer S by d, we get a stabilizer chain for ∣⟨N , c1 , c2 , . . . , c j , d⟩∣ and
no lower layer in the stabilizer chain needs to be changed. That means that d can

be added as part of a strong generating set.

The resulting PCGS/strong generating set thus consists of sifted elements ob-

tained from the c i . It obviously refines a normal series ofG with elementary abelian

steps.

Finally, let us look in more detail at the step of extending the chain at S with

the element d.This element will normalize N and it stabilizes the base points in the

chain above S. Thus d normalizes S, and as in section II.4 we can extend the orbit

in a more efficient way and gives a factorized structure to transversal elements that

can be used to improve storage of a factored transversal.

Having determined a PCGS, we would like to determine exponent vectors for

elements x ∈ Gwith respect to it. Standard permutation groupmethodswill express

x as a word in the strong generators, i.e. the PCGS, but not in the required order

and with factors possibly repeating. If we only take the generators in the PCGS that
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are in the topmost elementary abelian layer of the corresponding normal series, the

exponent sums for these generators yield the first part of the exponent vector. By

dividing off the corresponding product of PCGS elements from x we then fall one

layer below and can iterate this process, eventually building the whole exponent

vector.

Note IV.2: If we are given a permutation group G and a normal subgroup N ⊲ G
such that G/N is solvable, the same algorithm, initializing with a stabilizer chain

for N will produce a chain for G and elements representing a PCGS for G/N . This

provides an efficient way to represent solvable factor groups as PC groups.

IV.6 How to do it inGAP

(Such groups are called PcGroups in GAP.)
In GAP one can convert a (solvable) permutation group into such a form using

the command IsomorphismPcGroup.
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Rewriting

Rewriting is the formal context in which we use a presentation to bring elements

into normal form. To make this deterministic we will consider relations instead of

relators and consider them as rules from→to.
If you know the basic theory behind Gröbner bases, many ideas will look fa-

miliar.

V.1 Monoids and Rewriting Systems

DefinitionV.1: Amonoid is a set with an associative binary operation and an iden-
tity element. (In other words: we drop the condition on inverses.)

If {x1 , . . . , xn} is an alphabet, we consider the set of words (including the empty

word) over this alphabet. With concatenation as operation they form a monoid.

We define finitely presented monoids analogous to finitely presented groups.

Note however that due to the lack of inverses we have to write in general relations

instead of relators.

LemmaV.2: Every group is amonoid and every finitely presented group is a finitely

presented monoid.

Proof: Finitely presented is the only thing that needs showing: If G = ⟨g ∣ R⟩ we
form a monoid generating set m = {g1 , g−11 , . . .} (with g−1i understood as a formal

symbol). Then a monoid presentation is

⟨m ∣ {r = 1 ∣ r ∈ R} ∪ {g i g−1i = 1, g
−1
i g i = 1 ∣ 1 ≤ i ≤ m}⟩

◻

101
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Performance V.3: For finite groups one can often do better, as relations of the

form am = 1 imply the existence of inverses.

Wenow suppose thatwe have freemonoid F consisting ofwords in the alphabet

f .
We also assume to have a total ordering ≺ defined on F, which fulfills the fol-

lowing conditions:

i) ≺ is a well-ordering: Every nonempty set has a least element.This means that

there are no infinite descending sequences.

ii) ≺ is translation invariant: If a, b, c, d ∈ F and a ≺ b then cad ≺ cbd. This

implies that the empty word is the smallest element of F.

We call such an ordering a reduction ordering

ExampleV.4: Suppose that the elements of the alphabet f are totally ordered.Then

the “length-plus-lexicographic” ordering on F (i.e. first compare words by length

and then lexicographically) is a reduction ordering.

DefinitionV.5: A rewriting systemR on F is a collection of rules of the form a → b
with a, b ∈ F and b ≺ a.

If we consider the rules of the rewriting system simply as relations, a rewriting

system defines a monoid presentation. Similarly every monoid presentation yields

a rewriting system in an obvious way. We will also talk about rewriting systems for

groups, meaning the isomorphic monoid.

Given a rewriting system, we consider its rules as methods to “simplify” ele-

ments of F.

Definition V.6: If u, v ∈ F we write u → v (with respect to R) if there is a rule
a → b in R such that u contains a as a substring (i.e. u = xay with x , y ∈ F and

v = xby is obtained by replacing a in u by b.
We write u ∗→v if there is a sequence of words u0 = u, u1 , u2 , . . . , un−1 , un = v

such that u i → u i+1.

Because the ordering is translation invariant we have that v ≺ u in this case

which justifies the idea of “simplification”.

Definition V.7: We consider u, v ∈ F to be equivalent with respect to R, written
u ∼ v, if there is a sequence of words u0 = u, u1 , u2 , . . . , un−1 , un = v such that

u i
∗
→u i+1 or u i+1

∗
→u i .

It is not hard to see that ∼ is in fact the finest equivalence on F defined by R,
thus the equivalence classes correspond to the elements of the finitely presented

monoid defined byR.

Definition V.8: A word v ∈ F is called reduced if there is now ∈ F such that v → w
(with respect toR).
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We need the fact that ≺ is a well-ordering to ensure that for u we can compute

a reduced element v with u ∗→v in finitely many steps.

Algorithm V.9: Given a rewriting system R, and a word u, find a reduced

word v such that u ∗→v.
begin
1: ok ∶= true;
2: while ok do
3: ok ∶= f al se;
4: for Rules l → r in R do
5: if l occurs in u then
6: Replace u = alb by arb;
7: ok ∶= true;
8: fi;
9: od;

10: od;
end

Note that in general there are multiple ways to apply rules to a word. Thus in

general reduced words are not automatically normal forms and u ∼ v does not

imply that u ∗→w and v ∗→w for a unique element w ∈ F. Our aim is to rectify this.

V.2 Confluence

Weconsider three slightly different properties which a rewriting system could have:

Definition V.10: A rewriting systemR on F

i) has the Church-Rosser property if u ∼ v implies that there is q ∈ F such that u ∗→q
and v ∗→q.

ii) is confluent if w ∗→u and w ∗→v imply that there is q such that u ∗→q and v ∗→q.

iii) is locally confluent if w → u and w → v imply that there is q such that u ∗→q and
v ∗→q.

Lemma V.11: SupposeR has the Church-Rosser Property. Then every ∼ class con-
tains a unique reduced element, the canonical representative for this class.

In particular, if we have u ∗→v with v reduced, then v is uniquely determined by

R and u.

Proof: Suppose that u ∼ v are both reduced. Then by the Church-Rosser prop-

erty there exists q with u ∗→q and v ∗→q. But as u and v are reduced we must have

u = q = v. ◻
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Corollary V.12: LetM be a monoid given by the rewriting systemR. IfR has the

Church-Rosser property, then the word problem in this monoid can be solved.

Proof: An element is trivial if its canonical representative is the empty word. ◻

Testing for the Church-Rosser property seems to be hard. However we will see

now that it is in fact equivalent to local confluence, which is much easier to test.

Theorem V.13: For any rewriting systemRwith a reduction ordering the Church-

Rosser property, confluence and local confluence are equivalent.

Proof: i)⇒ ii): Suppose thatR has the Church-Rosser property and thatw , u, v ∈ F
such that w ∗→u and w ∗→v. Then u ∼ w ∼ v and thus there exists q such that u ∗→q
and v ∗→q.

ii)⇒ i): Assume thatR is confluent and that u ∼ v. We want to find a q such that

u ∗→q and v ∗→q.

By definition V.7 we have a sequence of words

u0 = u, u1 , u2 , . . . , un−1 , un = v

such that u i
∗
→u i+1 or u i+1

∗
→u i .

We now proceed by induction on n. If n = 0 we can set q = u = v. If n = 1 we
set q to be the smaller of u and v.

Thus assume n ≥ 2. Then u1 ∼ v and by induction there is a such that u1

∗
→a

and v ∗→a. If u0

∗
→u1, we simply set q = a.

If instead u1

∗
→u0, by confluence there is q such that u0

∗
→q and a ∗→q. But then

v ∗→q, as we wanted to show.

ii)⇒ iii): Obvious as local confluence is a special case of confluence.

iii)⇒ ii): Suppose that R is locally confluent but not confluent. Let W be the set

of all words w, for which confluence fails. Because ≺ is a well-ordering, there is a
smallest element w ∈W .

Suppose that w ∗→u and w ∗→v. We want to show that there is q such that u ∗→q
and v ∗→q, contradicting the failure of confluence.

Without loss of generality, we can assume that u /= w /= v (otherwise we could
set q = u or q = v). Consider the first rewriting step of both deductions. We get
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w → a and w → b with a ∗→u and b ∗→v.

u
↗ ↘

a d
↗ ↘ ↗ ↘

w c q
↘ ↗

b ↗
↘

v

Because we assume local confluence, we know that there is c with a ∗→c and b ∗→c.
As w was chosen minimal in W , and a ≺ w, we know that confluence cannot

fail at a. Thus there is d such that u ∗→d and c ∗→d. Therefore also b ∗→d.
By the same argument as before, confluence does not fail at b. Thus there is q

such that d ∗→q and v ∗→q. But then u ∗→q, which we wanted to show. ◻

V.3 The Knuth-Bendix algorithm

As confluent rewriting systems solve the word problem, we would like to obtain

such rewriting systems. In this section we will see a method that can be used to

modify an existing rewriting system to become confluent. (If you know Gröbner

bases, you will find this approach familiar.)

Theorem V.13 tells us that for confluence we only need to ensure local conflu-

ence. Suppose that this does not hold, i.e. we have a word w with two reductions

w → u and w → v but we cannot further rewrite both u and v to the same word q.
We want to consider “minimal” failure situations

LemmaV.14: Suppose that local confluence fails atw but not at any proper subword

of w. Then one of the following holds:

a) w is the left hand side of a rule in R and contains the left hand side of another

rule as subword (probably the whole of w).

b)w = abc with nonempty a, b, c and ab and bc both are left hand sides of rules in

R.

Proof: Suppose the two reduction are d → e and f → g. If d and f occur in w
without overlap, we can still apply both reductions in either order and obtain the
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same result q:
q = a e b g c

↑
v = a d b g c

↑
w = a d b f c

↓
u = a e b f c

↓
q = a e b g c

Thus there needs to be an overlap of d and f . This overlap can either have one

left hand side completely include the other — that is case a). Otherwise the sides

overlap in the form abc with ab = d and bc = f . This is case b).

If there is a prefix or suffix to abc in w then w is not minimal. ◻

Corollary V.15: If local confluence fails at a minimal w, then w = abcd such that

b is not empty, either c or d is empty and abc and bd are left hand sides of rules.

The basic idea of themethod now is that we inspect all such overlaps. If we have

a failure of local confluence, i.e. we havew ∗→u andw ∗→v with u, v both reduced and
u /= v we add a new rewriting rule u → v (or v → u if u ≺ v).

This rule will not change the equivalence relation ∼, but it will remove this over-

lap problem.

When continuing on other overlaps, we need of course to consider also overlaps

with this new rule. Thus this process may never terminate.

If it terminates (and one can show that it will terminate if there is a finite conflu-

ent rewriting system induced byR), we have a confluent rewriting system, which

allows us to calculate a normal form for the monoid presented byR.

AlgorithmV.16: This method is called (after its proposers) the Knuth-Bendix1

algorithm.

Input: A list L of rules of a rewriting system R.
Output: L gets extended by deduced rules so that the rewriting system is

confluent.
begin
1: pairs ∶= [];
2: for p ∈ L do
3: for q ∈ L do
4: Add (p, q) and (q, p) to pairs.
5: od;
6: od;

1Donald Knuth is also the author of “The Art of Computer Programming” and the creator of TEX.

Peter Bendix was a graduate student.
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7: while ∣pairs ∣ > 0 do
8: remove a pair (p, q) from pairs.
9: for all overlaps w = xabc with left(p) = ab and left(q) = xbc and (x = ∅

or a = ∅) do
10: Let wp = x ⋅ right(p) ⋅ c and wq = a ⋅ right(q).
11: Using L, reduce wp to a reduced form zp and wq to zq.
12: if zp /= zq then
13: if zp ≺ zq then
14: Let r be a new rule zq → zp.
15: else
16: Let r be a new rule zp → zq.
17: fi;
18: Add r to L.
19: for p ∈ L do
20: Add (p, r) and (r, p) to pairs.
21: od;
22: fi;
23: od;
24: od;
end

Proof: We are testing explicitly the conditions of lemma V.14 for all pairs. ◻

NoteV.17: Analogous toGröbner bases, one candefine a “reduced” confluent rewrit-

ing system in which no left hand side can be reduced by the remaining rules.

Analogous to theorem III.24 we remark

Theorem V.18: If R is a rewriting system describing the finite group G, then the

Knuth-Bendix algorithm will terminate after finite time with a confluent rewriting

system.

Arithmetic: Collection

Once we have a confluent rewriting system for a group, we can compute the nor-

mal form for any word, and thus compare elements. Typically one would simply

assume that all words are reduced. Multiplication of elements then consists of con-

catenation and subsequent reduction.

In GAP, one can enforce such a reduction for a given finitely presented group

with the command SetReducedMultiplication(G);

Definition V.19: This process of reduction to normal form is called collection2.

2The name stems from the special case of polycyclic presentations for p-groups, for which this

process has been studied in a purely theoretical context in [Hal33]
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Performance V.20: While confluence implies that the order of applying reduc-

tions does not have an impact on the final reduced (normal) form, it can have a

substantial impact on the runtime. This question has been studied primarily for

the case of pc presentations (see below).

V.4 Rewriting Systems for Extensions

Similar to the situation for presentations (section III.10), we want to construct a

rewriting system for a group from rewriting systems for a normal subgroup and for

its factor group. Noting that the presentations in III.10 already come with a G/N-

part and an N-part, as well as with conjugacy relations that can be used to write

every element as a G/N-part and an N-part, we simply need to define a suitable

order in which these transformations are reducing.

The key to this is to combine two orderings on two alphabets to the so-called

wreath product ordering on the union of alphabets:

Definition V.21: Suppose that ≺A is an ordering on an alphabet A and ≺B and

ordering on an alphabet B. We consider the disjoint union A ∪ B. On this set we

define the wreath product ordering ≺A ≀ ≺B as follows:
We can write a word in A ∪ B as a product of words in A and in B: Let v =

a0b1a1b2a2 . . . am−1bmam and w = c0d1c1d2c2 . . . cn−1dncn with a i , c i ∈ A∗ and

only a1 or am permitted to be the empty word (and ditto for c) and b i , d i ∈ B or

empty.Then v ≺A ≀ ≺B w if b1b2 . . . bm ≺B d1d2 . . . dn , or if b1b2 . . . bm = d1d2 . . . dn
and [a0 , a1 , . . . , am] is smaller than [c0 , c1 , . . . , cn] in a lexicographic comparison,

based on ≺A.

Lemma V.22: If ≺A and ≺ B are reduction orderings, then ≺A ≀ ≺ B is.

Note V.23: A rule ab → ba′ with a, a′ ∈ A∗ and b ∈ B∗ is reducing with respect

to ≺A ≀ ≺B . Thus (A representing a normal subgroup and B representing a factor

group) wreath product orderings permit to combine rewriting systems of a group

from a rewriting system for a factor group and its normal subgroup.

Complements

If N ⊲ G we define as complement to N a subgroup C ≤ G such that N ∩ C = ⟨1⟩
and G = NC. (In other words: G ≅ N ⋊ C).

Given G and N ⊲ G we want to find whether such a complement exists (and

later want to consider complements up to conjugacy). Here we will consider the

case of N ≅ Fm
p elementary abelian.The case of a solvable N then can be dealt with

by lifting methods as described in chapter ??.
Suppose that G/N = ⟨Ng1 , . . .Ngk⟩ and that C is a complement to N . Then

we can find elements c i ∈ C such that C = ⟨c1 , . . . ck⟩ and Ng i = Nc i . The map

G/N → C, Ng i ↦ c i is a homomorphism.
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Vice versa every homomorphism φ∶G/N → G, such that ⟨N ,G/Nφ
⟩ = G must

be (as ∣G/N ∣ = ∣G/N ∣φ) a monomorphism and define a complementG/Nφ
to N in

G.
The task of finding a complement therefore is equivalent to the task of finding

elements c i ∈ G such that the map G/N → G, Ng i ↦ c i is a homomorphism and

that g i/c i = n i ∈ N .

We do this by considering the n i ∈ N as variables. We want to come up with a

system of equations, whose solutions correspond to complements (and unsolvabil-

ity implies that no complements exist).

For this, suppose that we have a presentation for G/N in the elements Ng i ,
say ⟨ f ∣ r( f ) = 1, r ∈ R⟩. (In practice one would calculate a presentation and then

choose the generators accordingly.) We therefore want that

1 = r(g1n1 , . . . , gknk). (V.24)

We now rewriting these relators with rules reflecting the extension structure:

ng = gn′ with n, n′ ∈ N . As n′ = ng this can be described by the action of G/N on

N . We also have that ng
i n

h
j = n

h
j n

g
i because N is abelian.

With these rules we can collect the terms g i to the left in the same order as in

the original relator. Equation (V.24) thus becomes

1 = r(g1 , g2 , . . . , gk)∏ n
w(g)
i

where the w(g) is a word in the group algebra FpG/N .

For example, if r = f1 f3 f2 f3, we rewrite as

1 = g1g3g2g3 ⋅ n
g3 g2 g3
1 ng2 g3

3 ng3
2 g3 = g1g3g2g3 ⋅ n

g3 g2 g3
1 ng3

2 g g2 g3+13

In this expression we can explicitly evaluate r(g1 , . . . , gn) ∈ N (which will give

the (inverse of) the right hand side of linear equations. If we consider each n i =

(n i ,1 , . . . , n i ,m) as a columnvectorwith variable entries, the remaining part∏ n
w(g)
i

yields linear equations in the variables n i , j .

Considering all relators thus gives an inhomogeneous systemof equations,whose

solutions describe complements.

Example V.25: Consider G = S4 = ⟨a = (1, 2, 3, 4), b = (1, 2)⟩ and the normal sub-

group N = ⟨(1, 2)(3, 4), (1, 3)(2, 4)⟩ ⊲ G. Then a ↦ (1, 3), b ↦ (1, 2) is a ho-

momorphism with kernel N . The action of G on N is described by the matrices

a ↦ ( 1 1

0 1
) and b ↦ ( 1 0

1 1
).

The factor group G/N ≅ S3 has (in these images) the presentation

⟨x , y ∣ x2 = y2 = (xy)3 = 1⟩ .
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We now want to find elements of the form an, bm (with n,m ∈ N) which fulfill

these relations. We get the following equations:

x2 ∶ (an)2 = a2nan = a2na+1

y2 ∶ (bm)2 = b2mbm = b2mb+1

(xy)3 ∶ (anbm)3 = (ab)3nbababmababnbabmabnbm = (ab)3nbabab+bab+bmabab+ab+1

Wenow assumeN as a 2-dimensional vector space overF2 with basis as given.Thus

n = [n1 , n2] andm = [m1 ,m2]. We also evaluate the expressions a2 = (1, 3)(2, 4) =
[0, 1], b2 = () = [0, 0], (ab)3 = () = [0, 0]. The equations thus become in vector

form:

−a2 = [0, 1] = na+1 = [n1 , n2] ⋅ (
0 1

0 0
) = [0, n1]

−b2 = [0, 0] = mb+1 = [m1 ,m2] ⋅ (
0 0

1 0
) = [m2 , 0]

−(ab)3 = [0, 0] = nbabab+bab+bmabab+ab+1

= [n1 , n2] ⋅ (
0 0

0 0
) + [m1 ,m2] ⋅ (

0 0

0 0
) = [0, 0]

which yields the following system of (nontrivial) equations:

n1 = 1

m2 = 0

whose solutions correspond to complements. For example the solution n1 = m1 = 1,
n2 = m2 = 0 corresponds to the generators

(1, 2, 3, 4) ⋅ (1, 2)(3, 4) = (2, 4) and (1, 2) ⋅ (1, 2)(3, 4) = (3, 4).

Note V.26: As classes of complements are parameterized by the 1-Cohomology

group this process can also be considered as a way of calculating 1-Cohomology

groups.

Polycyclic Presentations

Let us now return to the pc presentations for solvable groups, which we studied in

section IV.1:

We have power relations g p ii = v i(g i+1 , . . . , gn). We consider the conjugation

rules (for j > i) of the form g g ij = w i , j(g j , . . . , gn) as rewriting rules

g j g i = g iw i , j(g j , . . . , gn)

with respect to an (iterated) wreath product ordering.

The confluence condition V.14 yields the following easy consequence
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Corollary V.27 ([Wam74]3): A presentation of a form as given in section IV.1

with 2 ≤ p i < ∞ for every i yields a confluent rewriting system, if the following

conditions hold:

Overlap Reduction 1 Reduction2

g p i+1i = g iv i = v i g i
g p j
j g i = v j g i = g p j−1

j g iw i , j (i < j)
g j g

p i
i = g jv i = g iw i , j g

p i−1
i (i < j)

gk g j g i = g jw j ,k g i = gk g iw i , j (i < j < k)

(There are generalizations for infinite polycyclic groups.)

Proof: These are all possible overlaps. ◻

Performance V.28: One can show that a subset of such conditions suffices.

This test makes it possible to test whether an arbitrary presentation that syntac-

tically looks like a PC presentation really is one.Wewill use this as a tool for finding

quotients of given finitely presented groups, essentially trying to write down a pc

presentation that is compatible with being the quotient of a given group.

V.5 Constructing extensions, 2-cohomology

V.6 Quotient Algorithms

As an application of extensions, we consider again the problem of finding quotients

of a finitely presented group.

Definition V.29: A variety of groups is a class of groups that is closed under sub-

groups, factor groups and direct products

Examples of varieties are solvable groups, nilpotent groups, p-groups or abelian
groups. Furthermore one could impose for example conditions on the length of

certain “natural” normal series.

Lemma V.30: Let G be a group. For every variety V there is a smallest normal sub-

group NV ⊲ G such that G/NV is in V .

Proof: If N ,M ⊲ G both have the property, thenG/(N ∩M) is a subdirect product
of G/N with G/M. ◻

The quotient algorithms we will study aim to construct for a finitely presented

groupG the largest quotient group F = G/N in a certain variety, possibly subject to

conditions of order or length of a composition series. (The lemma shows that this

is a sensible aim to have.)

3Originally proven directly for nilpotent groups without recuse to rewriting systems
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NoteV.31: We could apply such an algorithm in particular to free groups.This gives

an – initially crude – way of constructing all groups of a given order in a particular

variety. The difficulty however is the elimination of isomorphic groups.

This approach has been refined for particular cases, incorporating a reason-

ably efficient rejection of isomorphic duplicates. The resulting algorithms are the

p-group generation algorithm [O’B90] and the “Frattini extension” algorithm to

construct all solvable groups of a given order [BE99].

The idea behind the quotient algorithms is as follows:

Assume that we know already a homomorphism φ∶G → H which represents a

smaller quotient (often the largest quotient in which the length of a normal series

is bounded by one less, than we want to acceive).

We now want to find a larger quotient λ∶G → E such that Kern λ < Kernφ
and M = Kernφ/Kern λ is elementary abelian. (Iteration then allows to deal with

arbitrary solvable M. Similar to the lifting paradigm ??, a solvable M really is the

relevant case.)We thus have that Emust be an extension ofM byH.We temporarily

ignore the (obvious) question of what M actually is, but assume that we already

have M – we will study this specifically for the different algorithms.

To describe E we want to use a rewriting system. We assume that we have al-

ready a (confluent) rewriting system for H (as M is elementary abelian, we also

know a rewriting system for it) and build a rewriting system for E using the wreath

product ordering.

In this new rewriting system every rule l → r for H now becomes l → r ⋅ m,

with m ∈ M in E = M .H. We call m a tail for the rule. Because we don’t know the

correct values for m, we consider these tails as variables. We also need rules that

describe the action of H on M.

Since we assumed the rewriting system forH to be confluent, any overlap of left

hand sides of rules in H reduces uniquely. If we consider the same overlap of the

corresponding (extended) rules in E, we get potentially two reductions, products

of the form hm1 and hm2, and thus the condition that m1 = m2. (The confluence

in H implies that the H-part in both reductions must be the same.) Here both m1

and m2 are products of conjugates of tails. The confluence condition for E thus

yields (linear) equations in the tails, very similar to the situation of complements

in section V.4.

These equations need to be satisfied for E to be a proper group. A second set

of equations comes from the fact that E should be a quotient of G. The homo-

morphism φ gives us the images of the generators of G in E. The images of these

generators in E must have the same H-part (but again might have to be modified

with a variable M-tail). We now evaluate the relators of G in these images. Again,

because φ is a homomorphism, we get equations involving only the tails.

We will now use these equations not only to describe the proper extension, but

also to actually determine the largest possibleM. The details of this differ, depend-

ing on the kind of quotients we are searching for.
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p-Quotients

Let us first consider the case of the quotients being p-groups (finite nilpotent groups,
being the direct product of p-groups are essentially equivalent).

We need a bit of theory about generating systems of p-groups:

Definition V.32: Let H be a finite group. The Frattini-subgroup Φ(H) ≤ H is the

intersection of all maximal subgroups of H.

Lemma V.33: Φ(H) consists of those elements that are redundant in every gener-

ating set of H.

Proof: Homework. ◻

TheoremV.34 (Burnside basis theorem): LetH be a finite p-group.ThenΦ(H) =
H′H p . If [H∶Φ(H)] = pr , every set of generators of H has a subset of r elements,

which also generates H.

Proof: SupposeM ≤ Hmaximal.Then (as p-groups are nilpotentNH(M) is strictly
larger than M) we have that M ⊲ H and [H∶M] = p and thus H′H p ≤ M.

On the other handH/H′H p is elementary abelian, and thusΦ(H/H′H p) = ⟨1⟩.
But this implies that Φ(H) ≤ H′H p .

Finally let h = {h1 , . . . , hn} be a generating set for H. Then {Φ(H)h i}
n
i=1 must

generateH/Φ(H), which is an r-dimensional vector space.Thus we can find a sub-

setB = {h i1 , . . . , h ir} ⊂ h such that {Φ(H)h i1 , . . . , Φ(H)h ir} is a basis ofH/Φ(H).
But then H = ⟨B, Φ(H)⟩ = ⟨B⟩. ◻

We note, that H′H p = Φ(H) is the first step of the lower p-elementary central

series of H. (This series is defined by L i = [H, L i−1]L
p
i−1 and has the property that

L i−1/L i is p-elementary abelian and central in H/L i .)

Our aim in constructing p-group quotients of a finitely presented groupG now

will be to construct these quotients in steps along this series. the first step there-

fore will be G/G′G p . (We can determine this subgroup using the abelian quotient,

section III.9, by simply imposing further relations x p = 1 on all generators x.) By
rearranging the generators ofG, and by choosing the basis forG/G′G p suitably, we

will assume that the images of g1 , . . . , gk form a basis for G/G′G p .

All further steps now fit the general scheme described in the previous section.

We assume the existence of a homomorphism φ∶G → H onto a p-groupH such that

Kernφ ≤ G′G p . We want to find a larger quotient λ∶G → E withM ∶= (Kernφ)λ ⊲
E being p-elementary abelian. Because of the choice of series to construct we can

assume that

• M is central in E – i.e. the relations for the action of H on M are trivial.
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• M ≤ Φ(E), i.e. we do not need to consider any extra generators for M. M is

simply generated by all the tails, and the solution space to the equations in

the tails is the largest possible M.

We also assume that we have a pc presentation for H = ⟨h⟩ in the generating

set h = {h1 , . . . , hn}. We shall assume that ⟨hk+1 , . . . , hn⟩ = Φ(H), i.e. the (images

of) the generators h i , . . . , hk generate H/Φ(H) and (by theorem V.34) thus H =
⟨h1 , . . . , hk⟩. As a consequence of this, we can write for i > k every h i as a product

of h1 , . . . , hk . This product expression is implicitly maintained by the assumption

that for every i > k there is a relation in the pc presentation for H in which h i
occurs only once and with exponent one, and all other occuring generators have

index < i. We call this relation the definition of h i .

This condition is trivial in the first step, it will be maintained for all new gener-

ators introduced in the process described here.

Now assume that φ is given by the images gφi for the generators of G in H. By

the choice of basis for G/G′G p we can assume that gφi = h i for i ≤ k (basically

this is the definition of h i for i ≤ k). The further generator images are expressed as

words gφi = v i(h) in the generators of H.

We now want to construct the larger group C which is an extension of M by

H by forming a rewriting system for C as described. (Eventually we shall want a

quotient E of G, this group E will be obtained as a quotient of the group C which

we shall construct first.)

Since elements of H become cosets in C there is potentially a choice which

representatives for elements of H to choose in C. We settle this choce with the

convention that we maintain the definitions of the previous level, i.e. for i ≤ k we

have that h i shall be the image of g i , and that for i > k the generator representing

h i shall be defined as a word in h i , . . . , h i−1 using the definition relation for h i in

H.

This convention implies, that a relation l j(h) → r j(h) ofHwhich is a definition

simply is maintained in C, if it is not a definition, it gets modified to l j(h) → r j(h)⋅
m j , where the m j are variables, representing the elements of M.

We also (implicitly, by incorporating this in the collection process) add rela-

tions mp
j = 1 and – reflecting the planned centrality of M – relations m jh i = h im j .

Next we check the confluence relations V.27, using the fact that the rewriting

system for H is in fact a pc presentation, for all relations obtained from H in this

way. Since the relations forH are confluent this yields (linear, homogeneous) equa-

tions in the m i . We now let M be the solution space for this system of equations.

It will have a basis consisting of some of the m i , while other m j are expressed as

products.

Because the elements of this M fulfill the equations, the modified relations de-

scribe an extension C = M .H of M by H. It is the largest extension of this type
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such thatM is elementary abelian, central and contained in Φ(C). This group C is

called the p-covering group of H.

Each of them i surviving in a basis ofM arose as tail in amodified relation.This

new relation for C is considered as the definition of m i in the next iteration. If m j
was not chosen as basis element the relation l j(h) → r j(h) ⋅m j is not a definition,

and m j is replaced by the appropriate product of the basis elements.

The construction so far only involved H. In a second step we now want to go

from the covering group C to a – possibly smaller – quotient E, which also is a

quotient of G, together with the map λ∶G → E. To do this, we need to determine

the images of the generators of G under λ and evaluate the relations for G in these

images.

We shall assume still that gλi = h i for i ≤ k. (As C = ⟨h1 , . . . , hk⟩ this automat-

ically guarantees that λ is surjective.) For all further generators of g we know that

gφi = w i(h) for some word w i . This relation holds in H, but in the larger group E
might need to be modified by an element of M. We thus set gλi = w i(h) ⋅ l i with
l i ∈ M another variable (which will be solved for).

Then for each relator r(g) of G, we evaluate r({gλi }). These evaluations yield

elements of M (as the relations hold in C/M = H), expressed as words in the m i
and the l j . We use these equations to determine values for the l j in terms of them i ,

also they define further relations amongst the m i . If we consider the subgroup M1

generated by these relations, the factor M/M1 is the largest central step consistent

with a lift λ, thus E ∶= C/M1 is the quotient wewere looking for. (This will eliminate

some variables m i from a basis, the corresponding relations are not considered

definitions any more.)

We finally notice that we now have a larger quotient E, an epimorphism λ∶G →
E and a designation of relations as definitions as needed for the next iteration. The

process stops if either at some step M/M1 is trivial (and thus E = H), or a pre-set

maximal length or order of the quotient is reached.

An Example

To illustrate this process, consider the (infinite) groupG = ⟨x , y∣x3 = y3 = (xy)3 = 1⟩,
we are searching for 3-quotients.

The largest abelian quotient is easily seen to be ⟨a, b ∣ a3 = b3 = 1, ba = ab⟩with
an epimorphism x ↦ a, y ↦ b.

For the first lifting step (no relation is a definition so far), we introduce variables

c, d , e as tails, and get relations a3 → c, b3 → d, ba → abe. (We will implicitly

assume that ⟨c, d , e⟩ is central of exponent 3.) According to V.27, we now need to
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consider the following overlaps, none of which are new:

Overlap Reduction 1 Reduction 2 Equation

a ⋅ a2 ⋅ a ca ac ca = ac
b ⋅ b2 ⋅ b db bd db = bd
b ⋅ a ⋅ a2 abea2 → a3be3 → bce3 bc e3 = 1
b2 ⋅ b ⋅ a da → ad b2abe → ab3e3 → ade3 e3 = 1

We get the 3-covering group

⟨a, b, c, d , e ∣ a3 → c, b3 → d , ba → abe , c3 , d3
, e3 ,

[a, c], [a, d], [a, e], [b, c], [b, d], [b, e], [c, d], [c, e], [d , e]⟩

of order 35 = 243.
Now we impose the condition to be a quotient of G. With the inherited setting

x → a, y → b (asG has only two generators, no variables l i have to be introduced),
the relators become

Relator Evaluation

x3 1 = a3 → c
y3 1 = b3 → d
(xy)3 1 = (ab)3 → a2bebab → a3b3e3 → cde3

from which we conclude that c = d = 1 and e3 = 1. At the end of this step, the

quotient is

⟨a, b, e ∣ a3 → 1, b3 → 1, ba → abe , e3 , ea → ae , eb → be⟩

which is the nonabelian group of order 27 and exponent 3. The relation ba → abe
is the definition of e.

In the next iteration, we append tails to all non-definition relations and get the

relations

a3 → c, b3 → d , ba → abe , e3 → f , ea → aeg , eb → beh,

together with the implicit condition that ⟨c, d , f , g , h⟩ is central of exponent 3.
(Here we introduced tails c and d anew, as above, hoever the relations for G will

impose that bothmust be trivial. We therefore simplify already at this point to c = 1
and d = 1 to reduce the example size.) Note that ba → abe was a definition, and
therefore got no tail.

Since we set c = d = 1 the overlaps of a3 and b3 with itself are not of interest.

The overlap b ⋅ a ⋅ a2 now yields

b = b ⋅ a ⋅ a2 → abea2 → abaega → aba2eg2 → a2beaeg2 → a3be3g3 → b f

and thus f = 1. (Similarly, it also follows from the overlap b2 ⋅ b ⋅ a.)
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With this reduction, all other overlaps yield no new relations:

Overlap Reduction 1 Reduction 2 Equation

e ⋅ b ⋅ a beha → baegh → abe2gh eabe → aebeg → abe2gh
e ⋅ e2 ⋅ e e e
e ⋅ a ⋅ a2 aega2 → a3eg3 → eg3 e g3 = 1
e ⋅ b ⋅ b2 behb2 → eh3 e h3 = 1
e2 ⋅ e ⋅ a a e2aeg → eae2g2 → ag3 g3 = 1
e2 ⋅ e ⋅ b b e2beh → ebe2h2 → bh3 h3 = 1

Evaluating the relators, the only interesting image is the image of (xy)3 which

yields

1 = (ab)3 → a2beabeb → a2baegb2eh → a3b2e2begh3 → b3e3gh2 → gh2

which — together with the relation h3 = 1 implies that g = h. The next quotient

thus is the following group of order 34 = 81:

⟨a, b, e , g ∣ a3 → 1, b3 → 1, ba → abe , e3 , ea → aeg , eb → beg , [g , a], [g , b], [g , e]⟩

where ea → aeg is the definition of g.

Solvable Quotients: Lifting by a module

We now want to generalize this process to a larger class of quotients. However, as

soon as we wantto consider not only p-groups (or finite nilpotent groups), a couple
of problems arise:

• Which primes do we need to consider for M?

• M is not any longer central, we need to consider an action of H on M. How

do we represent conjugates?

• We cannot assume any longer that M ≤ Φ(E) – so M might not be gener-

ated solely by the tails of rules, nor is a lift of the previous homomorphism

automatically surjective.

For solvable groups, these problems have been addressed by two different ap-

proaches, producing “Solvable Quotient” algorithms:

The approach of [Ple87] constructs for the relevant primes p all irreducible H
modules over the field with p elements. This construction is done using the com-

position structure of H. For each module M (i.e. for a defined action of H), the

algorithm then constructs all extensions M .H and tests, whether the given homo-

morphisms φ can be lifted to any of these extensions.

The second approach instead tries to determineM from relations. To deal with

the issue of conjugation, it introduces not ony tail variablesm i , but alsoH-conjugates
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mh
i . Rewriting thus does not any longer produce a system of linear equations, but a

module presentation forM. A process, similar to Coset enumeration, calledmodule
enumeration [Lin91] then is used to determine a basis forM as well as matrices for

the action of H on M.

Hybrid Quotients

Nothing in the methods for solvable groups (with the possible exception of the

method for identifying primes) really requires H to be solvable, but many calcula-

tions become much harder, making a direct generalization infeasible.

Instead, a better approach [DH21] generalizes the concept of the p-covering
group. We describe the facts, but refer to the paper for proofs:

We consider, as before, the situation of a given finite quotient φ∶G → H and a

chosen prime p. We want to find a quotient λ∶G → E such that Kern λ ≤ Kernφ
and that M = (Kernφ)λ is an elementary abelian p-group. Since we can iterate

such a process, we can assume, without loss of generality, thatM is minimally nor-

mal. In fact we will make a slightly weaker assumption, namely that M is a direct

product of minimal normal subgroups of E, which are mutually isomorphic in a

way that is compatible with the conjugation action that is induced by elements of

H. (Or, in other language, the case that M is a direct sum of simple, isomorphic,

FpH modules.) We call such an M homogeneous.

We thus now consider the case of a simple FpH module V . For ease of argu-

ment,assume that V remains simple over the algebraic closure of Fp . We use e to
denote the number of generators of G. Based on Gaschütz [Gas54], the work in

[DH21] now shows:

• There is a finite group ĤV ,e , generated by e elements such that

1. ĤV ,e has an elementary abeliannormal subgroup L ⊲ ĤV ,e with ĤV ,e/L ≅
H.

2. L is the direct product of minimal normal subgroups, all isomorphic

to V as FpH modules.

3. Any finite, e-generated, group with properties i) and ii) is isomorphic

to a quotient of ĤV ,e .

• ĤV ,e is a subdirect product of:

1. e groups, explicitly described as subgroups of a semidirect product

V dim V × H.

2. Extensions of H by V , corresponding to a basis of the 2-cohomology

group H2(H,V). (Furthermore, one can show that this cohomology

group must be trivial, unless V lies in the principal p-block for H.)
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This group ĤV ,e is called the universal (V , e)-cover.
If H is a p-group, there will be only one choice of V (namely the 1-dimensional

trivial module) and ĤV ,e will be equal to the p-covering group defined above.

The algorithm in ??, called hybrid quotient algorithm, now constructs this cover

explicitly. As in the p-Quotient algorithm, the quotient φG → H is extended, via

the underlying free group F of G, to a homomorphism ψ∶ F → ĤV ,e by mapping a

generator f of F to an element4 of ĤV ,e , whose image in H is that of f̄ under φ.
Evaluating the relators defining G under ψ then yields a normal subgroup N ⊲

ĤV ,e such that ĤV ,e/N is themaximal quotientwith a kernel that isV-homogeneous.

V.7 How to do it inGAP

Quotient Algorithms

EpimorphismPGroup(G,p,c) implements the p-quotient algorithm for finding

a quotient group P of p-class (length of the lower p-central series) c, if c is
ommitted the largest p-quotient P is calculated. The function returns a

homomorphism G → P.

A solvable quotient algorithm is provided by

EpimorphismSolvableGroup(G,n), which tries to find a quotient of order up

to n (using only primes involved in n); respectively by
EpimorphismSolvableGroup(G,primes ), which finds the largest solvable

quotient whose order involves only the given primes.

A hybrid quotient algorithm is available under https://github.com/hulpke/

hybrid/hybrid.g

4one shows, that the choice of it is not important
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