Identification of a Galois group by Cycle Shapes

We create a polynomial and find that it is squarefree modulo all primes > 7.

```gap
x:=X(Rationals,"x");;f:=x^8-16*x^4-98;;
gap> Set(Factors(Discriminant(f)));
[ -2, 2, 3, 7 ]
gap> l:=Filtered([8..1000],IsPrimeInt);;Length(l);
164
```

Let's consider the first such prime, 11. We reduce \(f \) modulo 11 and find that it is the product of two factors of degree 4.

```gap
p:=l[1];
gap> UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f) *One(GF(p)),1);
> x_1^8+Z(11)^9*x_1^4+Z(11)^0
```

```gap
fmod:=UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f) *One(GF(p)),1);
> x_1^8+Z(11)^9*x_1^4+Z(11)^0
```

```gap
List(Factors(fmod),Degree);
[ 4, 4 ]
```

The ‘Collected’ command transforms such a list into a nicer form: 2 factors of degree 4. We start a list in which we collect this information and do the same calculation in a loop over all other primes.

```gap
shape:=Collected(List(Factors(fmod),Degree));
[ [ 4, 2 ] ]
```

```gap
a:=[];;
gap> Add(a,shape);
```

```gap
for i in [2..Length(l)] do
  p:=l[i];
  fmod:=UnivariatePolynomial(GF(p),CoefficientsOfUnivariatePolynomial(f) *One(GF(p)),1);
  shape:=Collected(List(Factors(fmod),Degree)); Add(a,shape);
od;
```

We now collect the information over all primes, considering (inverse) frequencies out of the 164 primes in \([7, 1000]\). For example 1/3 of all primes gave a factorization into 2 linear factors and 3 quadratic, 1/54 of all primes into a product of 8 linear factors.
We now want to compare this information to the cycle shape distribution in a permutation group.

For this we use an existing classification of transitive subgroups of S_n up to conjugacy. (Such lists have been computed up to degree 35 at the time of writing.)

Consider for example the 10-th group in the list of transitive subgroups degree 8. We collect the cycle structures of all elements and again count frequency information: $1/16$ of all elements have only 1-cycles, $1/2$ have two 4-cycles, $1/8$ has two 2-cycles, $1/3$ four 2-cycles.

This apparently does not agree with the frequencies we got. Thus do this calculation for all (50) transitive groups of degree 8:

We certainly are only interested in groups which contain cycle shapes as we observed. We thus check, which groups (given by indices) contain elements that are: three 2-cycles, two 2-cycles, four 2-cycles, two 4-cycles, and one 8-cycle.
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[4]));
[15, 26, 27, 30, 31, 35, 38, 40, 44, 47, 50]
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[,2]));
[15, 26, 27, 30, 31, 35, 38, 40, 44, 47, 50]
gap> sel:=Filtered(sel,i->ForAny(e[i],j->j[1]=[,,,,,1]));
[15, 26, 27, 35, 40, 44, 47, 50]
8 Groups remain. All but the first contain elements of shapes we did not observe, but we can also consider frequencies:
gap> e{sel};
[[[[],32],[[,,,,1],4],[[,,2],4],[[2],16],[[3],4],[[4],6]],
 [[[],64],[[,,,,1],4],[[,,1],16],[[,,2],5],[[2],10],
 [[2,,1],16],[[3],8],[[4],4]],
 [[[],64],[[,,,,1],4],[[,,2],3],[[1],16],[[2],10],[[2,,1],8],
 [[3],16],[[4],12]],
 [[[],128],[[,,,,1],8],[[,,1],32],[[,,2],4],[[1],32],[[1,,1],16],
 [[2],12],[[2,,1],4],[[3],10],[[4],7]],
 [[[],192],[[,,,,1],4],[[,,1],16],[[,,2],16],[[2],6],[[1,,1],6],
 [[2],32],[[2,,1],16],[[3],8],[[4],14]],
 [[[],384],[[,,,,1],8],[[,,1],12],[[,,1],32],[[,,2],6],[[2],12],
 [[1],96],[[1,,1],12],[[1,,1],16],[[1,2],12],[[2],21],[[2,,1],10],
 [[3],13],[[4],15]],
 [[[],1152],[[,,,,1],8],[[,,1],96],[[,,2],10],[[1],72],[[1,,1],12],
 [[2],18],[[1],96],[[1,,1],6],[[1,1],16],[[1,,1],12],[[2],27]],
 [[[],40320],[[,,,,1],8],[[,,1],7],[[,,1],12],[[,,1],30],[[1],96],[
 [[1],32],[[1,1],360],[[1,,1],15],[[1,1],12],[[2],36],[[1],1440],
 [[1,,1],12],[[1,,1],10],[[1,1],16],[[1,,1],36],[[1,2],36],
 [[2],192],[[2,,1],32],[[2,1],24],[[3],96],[[4],384]]
]
Comparing with the frequencies in the group again, we find that the first group (index 15) gives the best correspondence overall.

gap> List(Collected(a),i->[i[1],Int(164/i[2])]);
[[[[1,2],[2,3]],3], [[[1,4],[2,2]],18], [[[1,8]],54],[[[2,4]],7],
 [[[4,2]],3], [[[8,1]],3]]
(The group has order 32, it has a structure \((C_2 \times D_8) \rtimes C_2.)\)