Mathematics 501								Final (100 points)	Due 5/9/17, 4.10pm
Points (leave blank)									
1	2	3	4	5	6	7	Σ		
Name: (clearly, please) This exam is my own work. Sources (apart from class notes) are indicated. I have not given, received, or used any unauthorized assistance.									

This final is due Tuesday, December 13th 2016 at 4.10 pm (at my office, in my mailbox, or at the in-class final).

Notes

- Put your name on this cover sheet and sign it.
- All problems carry equal weight.
- A description of how you solved the problem, respectively justification of the steps taken, is a crucial part of every solution.
- You are permitted to use class notes and any publication (book, journal, web page). You are not permitted to consult third persons.
Results which are quoted from a publication (apart from the course notes and your lecture notes) must be indicated.
- You may use a computer unless this renders the problem trivial.
- If you need extra sheets, staple them to this final. (You do not need to submit scrap paper.)
- I will put the graded finals with your course grades in your mailboxes in the math department if you have one. Otherwise you can pick up your exam in

1) Construct a BCH code over \mathbb{F}_{3} of length 10 and designed distance 5 .
2) You are given 12 coins, one of which is known to be either lighter or heavier than all the others; you are also given a beam balance. Devise a scheme of three weighings which will identify the odd coin and determine if it is light or heavy; the coins weighed at each step should not depend on the results of previous weighings. (What is the connection between this problem and error-correcting codes over \mathbb{F}_{3} ?)
3) Suppose that \mathcal{D} is a $t-(v, k, 1)$ design. Show that the numbers

$$
\binom{v}{t} /\binom{k}{t},\binom{v-1}{t-1} /\binom{k-1}{t-1}, \ldots\binom{v-t+1}{1} /\binom{k-t+1}{1}
$$

must be integers. Conclude that if there is a $2-(v, 3,1)$ design we must have that $v \equiv 1,3(\bmod 6)$.
4) Let $G=C_{3} 2 S_{2} \leq S_{9}$, acting in product action on $3^{2}=9$ points.
a) Show that the cycle structures of the elements of G are (exactly) $1^{9}, 1^{3} 2^{3}, 3^{3}$ and $3 \cdot 6$.
b) Determine the cycle index for G in this action.
c) G acts (by row- and column-permutations and transposition) on 3×3 matrices whose entries are chosen from $0,1,2$. Determine the number of orbits.
5) For a projective plane of order n we form an incidence matrix $A \in\{0,1\}^{\left(n^{2}+n+1\right) \times\left(n^{2}+n+1\right)}$ with rows corresponding to lines and columns to points. Let \mathcal{C} be the \mathbb{F}_{2}-code generated by the rows of this matrix.
a) Show that for odd n this code \mathcal{C} consists of all the words of even weight.
b) Now consider $n \equiv 2(\bmod 4)$. We form an extended code \mathcal{C}^{\prime} by adding to every code word one parity bit. Show that $\mathcal{C}^{\prime} \subset \mathcal{C}^{\prime \perp}$.
6) Let $n=6$. There are $\binom{6}{2}=15$ pairs of points which we can consider as edges in the complete graph. A factor is a set of 3 disjoint (i.e. not shaing end points) edges. A factorization is a partition of the 15 edges into five factors.
a) Show that two disjoint factors are contained in a unique factorization.
b) Show that there are exactly six factorizations. (Compare the logo for the Combinatorics Seminar shown.)

c) Define an action of S_{6} on factorizations. This gives a homomorphism $S_{6} \rightarrow S_{6}$. Show that it is bijective.
d) Show that the automorphism constructed in c) is an outer automorphism. (Consider for example the image of $(1,2)$ under the map).
(We thus conclude that S_{6} has two nonequivalent transitive permutation actions on 6 points. One can show that this phenomenon is unique to the number 6, but this is not part of the task here.)
7) Show that $P G L(n+1, q)$ acts transitively and primitively on the lines in $P G(n, q)$.

