
MATH502 A. Hulpke
�e LLL algorithm and Applications

A lattice is aZ-module (that is theZ-span of a �nite set of vectors) contained inCn. We also assume
that an inner (hermitian) product (⋅, ⋅) has been de�ned onCn andwill consider norms with respect
to this inner product. O�en, when given a lattice, the problem is to �nd short vectors in this lattice.
In general �nding the guaranteed shortest vectors is hard, but surprisingly it is possible to �nd a
good approximation in polynomial time.

�e LLL Algorithm (Lenstra, Lenstra and Lovász) o�en solves this problem by computing, in
polynomial time, a basis of short (but not guaranteed shortest) vectors.

LLL Algorithm
For a basis {bi} of Rn let {b∗ i} be the corresponding Gram-Schmidt orthogonal basis (GSO), i.e.

b∗ i = bi − ∑
1≤ j<i

µi , jb∗ j where µi , j =
(bi , b∗ j)
(b∗ j, b∗ j)

.

Lemma: Let L ⊆ Rn with basis {bi}. �en for any f ∈ L ∖ {0} we have that

∥ f ∥ ≥min{∥b∗1∥, ∥b∗2∥, . . . , ∥b∗m∥}.

De�nition: We say that {bi} is reduced, if ∥b∗ i∥2 ≤ 2∥b∗ i+1∥2 for 1 ≤ i < n.

�eorem: Let {bi} be a reduced basis of the lattice L and f ∈ L ∖ {0}. �en ∥b∗1∥ ≤ 2(n−1)/2∥f∥

Algorithm: For a given basis, the following procedure computes a reduced basis:

1: while i ≤ n do
2: for j ∈ {i − 1, i − 2, . . . , 1 do
3: bi ∶= bi − ⌈µi , j⌋ ⋅ b∗ j. Update the GSO. {Replacement Step}
4: if i > 1 and ∥b∗ i−1∥2 > ∥b∗ i∥2 then
5: Exchange bi−1 and bi . Update the GSO. {Swap Step}
6: i ∶= i − 1;
7: else
8: i ∶= i + 1;
9: �;
10: od;
11: od;
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�e “full” LLL algorithm includes some improvements that produce better reduction (in part
guideable with a parameter 1/4 < a < 1), update the Gram-Schmidt parameters implicitly, and
never need to write out the b∗ i explicitly. It takes O(n4 logA), with A = maxi ∥bi}, operations on
scalars.

�e LLL algorithm produes in polynomial time a vector whose length is bounded by a factor
from the shortest possible.

Applications
A typical example of the powers of the LLL algorithm is the “subset sum” problem. We are given a
set of positive integers, and want to express a particular number as combination (with coe�cients
0 or 1) of these numbers if possible.

In general this problem is hard (NP-complete) and variations had been proposed as basis for
public-key cryptosystems.

We want to rewrite the problem as a lattice problem: If n numbers a1, . . . , an ∈ N are given, form
n vectors in Qn+1: (1, 0, . . . , 0,−a1), (0, 1, 0, . . . , 0,−a2), (0, . . . , 1, 0,−an−1) and (0, . . . , 0, 1,−an).
Also take the vector (0, . . . , 0, 0, s), where s is the number you want to express.

Assuming the ai and s are large, a short element in the lattice spanned by these vectors must
have a 0 in the last component. �is can only be achieved by summing up some of the ai to s. �e
entries of 1 in the corresponding vectors indicate which numbers are added.

For example, supposewewant to express s = 1215 as a combination of {366, 385, 392, 401, 422, 437}.
We �rst set up the vectors:

gap> nums:=[366,385,392,401,422,437];;

gap> mat:=IdentityMat(Length(nums)+1);;

gap> for i in [1..6] do mat[i][7]:=-nums[i];od;

gap> mat[7][7]:=1215;;

gap> Display(mat);

[ [ 1, 0, 0, 0, 0, 0, -366 ],

[ 0, 1, 0, 0, 0, 0, -385 ],

[ 0, 0, 1, 0, 0, 0, -392 ],

[ 0, 0, 0, 1, 0, 0, -401 ],

[ 0, 0, 0, 0, 1, 0, -422 ],

[ 0, 0, 0, 0, 0, 1, -437 ],

[ 0, 0, 0, 0, 0, 0, 1215 ] ]

Next we call the LLL for the standard inner product. We only care about the “basis” component:

gap> LLLReducedBasis(mat);

rec(basis:=[ [ 0, 0, 1, 1, 1, 0, 0 ], [ 0, 1, 1, 0, 0, 1, 1 ],

[ 1, 0, 1, -1, 1, 1, -1 ], ...
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�e �rst vector (always the shortest) has a 0 in the last component and entries in position 3,4 and 5.
Indeed the three numbers at these positions add up to 1215.

Note that the second vector has a 1 in the last component, i.e. we combine to “almost” 1215. If
we want to eliminate such �ukes (which easily could become short) we can either change the inner
product to weight the last component more, or simply scale all the numbers up.

gap> for i in [1..7] do mat[i][7]:=mat[i][7]*1000;od;Display(mat);

[ [ 1, 0, 0, 0, 0, 0, -366000 ], ...

gap> b:=LLLReducedBasis(mat);

rec(basis:=[ [ 0, 0, 1, 1, 1, 0, 0 ], [ 2, -1, -1, 1, 1, 1, 0 ],

[ 1, -2, 2, -2, 1, 0, 0 ], [ 1, 1, 1, -2, 0, 2, 0 ],

In general, however, as the LLL algorithm is not guaranteed to �nd the shortest vectors (this
could be done by an exhaustive search of combinations), it is possible that it produces combinations
of s with coe�cients di�erent from 1.

Nevertheless, this “o�en good” performance makes the subset sum scheme infeasible for cryp-
tographic purposes.

Subset-Anagrams
For another example of a combination-type problem, suppose we have a (long) list of words. We
want to �nd combinations of di�erent words, that use the same letters1. Again one can solve this by
exhaustive search.

For another solution, form a n×26 matrixM, each row corresponding to one word. �e entries
in the row count how o�en the letter occurs in this word.

gap> Read("deptnames.g");

gap> deptnames{[1..3]};

[ "jeff achter", "henry adams", "adam afandi" ]

gap> List(CHARS_LALPHA,i->Number(deptnames[1],j->j=i));

[ 1,0,1,0,2,2,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 ]

gap> nam:=List(deptnames,n->List(CHARS_LALPHA,i->Number(n,j->j=i)));;

Two di�erent combinations of words then correspond to a (row) vector x ∈ {−1, 0, 1}n such that
xM = 0. (�e 1’s are one word, the −1’s another.)

We thus are searching for −1/0/1-solutions to a system of equations.
Many combinatorial problems can be phrased this way!

To �nd such solutions, we want to �nd the Z-nullspace of M, i.e. the vectors v ∈ Zn such that
vM = 0. �ese vectors form a lattice. Chances are good, that a short vector in this lattice will be a
−1/0/1 solution.

1�is was for example a weekly puzzle on NPR’s “Weekend edition” on May 5, 2002: Find two countries, such that
the letters in their names can be rearranged to spell two other countries; for example: MALI + QATAR = IRAQ +MALTA
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To �nd the Z-nullspace, ordinary Gauß-elimination will not work, as it produces rational solu-
tion. Multiplying out all denominators might create only a multiple of the lattice.

Instead we will use the Smith normal form: Write PMQ = D with P ∈ Zn×n, Q ∈ Z26×26 both
invertible and D ∈ Zn×26 diagonal. �en �nd a Z-basis for the Z-nullspace of D. (�is is very easy
because of the diagonal form.) If xD = 0 then xPMQ = 0, thus xP ∈ N(M).

As P is invertible, it is easily seen that we will get a Z-basis for N(M) from a Z-basis for N(D).
To calculate thiswe use the online help, which tells us that the output toSmithNormalFormIntegerMatTransforms

contains a component normal which will be D and rowtrans which will be P. We also note that
NullspaceMat �nds a Z-basis in this particular case, as D is diagonal.

gap> snf:=SmithNormalFormIntegerMatTransforms(nam);

gap> mat:=NullspaceMat(snf.normal);

gap> Set(Flat(mat));

[ 0, 1 ]

gap> mat:=mat*snf.rowtrans;;

gap> Length(Set(Flat(mat)));

2083

Now we perform LLL reduction on this basis. We are only intrested in those vectors in the
solution, whose entries are −1, 0, 1. We sort the solution by to the number of entries.

gap> red:=LLLReducedBasis(mat,1);; # 1 should be 1-epsilon

gap> sol:=Filtered(red.basis,i->IsSubset([-1,0,1],Set(i)));;

gap> Sort(sol,function(a,b) return a*a<b*b;end);

Let us �nally verify the �rst solution:

gap> sol[1];

[ 0, -1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1,

[...]

gap> Filtered([1..106],i->sol[1][i]=-1);

[ 2, 13, 20, 21, 32, 35, 46, 47 ]

gap> deptnames{last};

[ "henry adams", "vance blankers", "michael capps", "renzo cavalieri",

"bryan elder", "tegan emerson", "jianli gu", "derek handwerk" ]

gap> Collected(Flat(last));

[ [ ’ ’, 8 ], [ ’a’, 12 ], [ ’b’, 2 ], [ ’c’, 4 ], [ ’d’, 4 ], [ ’e’, 14 ],

[...]

gap> Filtered([1..106],i->sol[1][i]=1);

[ 5, 8, 9, 19, 24, 36, 55, 86 ]

[ "javier alvarez", "dan bates", "ryan becker", "karleigh cameron",

"edwin chong", "melissa erdmann", "paul kennedy", "rachel pries" ]

gap> Collected(Flat(last));

[ [ ’ ’, 8 ], [ ’a’, 12 ], [ ’b’, 2 ], [ ’c’, 4 ], [ ’d’, 4 ], [ ’e’, 14 ],

[...]
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