The LLL algorithm and Applications

A lattice is a \mathbb{Z}-module (that is the \mathbb{Z}-span of a finite set of vectors) contained in \mathbb{C}^{n}. We also assume that an inner (hermitian) product (\cdot, \cdot) has been defined on \mathbb{C}^{n} and will consider norms with respect to this inner product. Often, when given a lattice, the problem is to find short vectors in this lattice. In general finding the guaranteed shortest vectors is hard, but surprisingly it is possible to find a good approximation in polynomial time.

The LLL Algorithm (Lenstra, Lenstra and Lovász) often solves this problem by computing, in polynomial time, a basis of short (but not guaranteed shortest) vectors.

LLL Algorithm

For a basis $\left\{\mathbf{b}_{i}\right\}$ of \mathbb{R}^{n} let $\left\{\mathbf{b}^{*}{ }_{i}\right\}$ be the corresponding Gram-Schmidt orthogonal basis (GSO), i.e.

$$
\mathbf{b}_{i}^{*}=\mathbf{b}_{i}-\sum_{1 \leq j<i} \mu_{i, j} \mathbf{b}^{*}{ }_{j} \quad \text { where } \quad \mu_{i, j}=\frac{\left(\mathbf{b}_{i}, \mathbf{b}^{*}{ }_{j}\right)}{\left(\mathbf{b}^{*}{ }_{j}, \mathbf{b}^{*}{ }_{j}\right)} .
$$

Lemma: Let $L \subseteq \mathbb{R}^{n}$ with basis $\left\{\mathbf{b}_{i}\right\}$. Then for any $f \in L \backslash\{0\}$ we have that

$$
\|f\| \geq \min \left\{\left\|\mathbf{b}^{*}{ }_{1}\right\|,\left\|\mathbf{b}^{*}{ }_{2}\right\|, \ldots,\left\|\mathbf{b}^{*}{ }_{m}\right\|\right\} .
$$

Definition: We say that $\left\{\mathbf{b}_{i}\right\}$ is reduced, if $\left\|\mathbf{b}^{*}{ }_{i}\right\|^{2} \leq 2\left\|\mathbf{b}^{*}{ }_{i+1}\right\|^{2}$ for $1 \leq i<n$.
Theorem: Let $\left\{\mathbf{b}_{i}\right\}$ be a reduced basis of the lattice L and $f \in L \backslash\{0\}$. Then $\left\|\mathbf{b}^{*}{ }_{1}\right\| \leq 2^{(n-1) / 2}\|\mathbf{f}\|$

Algorithm: For a given basis, the following procedure computes a reduced basis:
while $i \leq n$ do
for $j \in\{i-1, i-2, \ldots, 1$ do
$\mathbf{b}_{i}:=\mathbf{b}_{i}-\left\lceil\mu_{i, j}\right\rfloor \cdot \mathbf{b}^{*}{ }_{j}$. Update the GSO. \{Replacement Step\}
if $i>1$ and $\left\|\mathbf{b}^{*}{ }_{i-1}\right\|^{2}>\left\|\mathbf{b}^{*}{ }_{i}\right\|^{2}$ then
Exchange \mathbf{b}_{i-1} and \mathbf{b}_{i}. Update the GSO. \{Swap Step $\}$
$i:=i-1$;
else
$i:=i+1 ;$
fi;
od;
od;

The "full" LLL algorithm includes some improvements that produce better reduction (in part guideable with a parameter $1 / 4<a<1$), update the Gram-Schmidt parameters implicitly, and never need to write out the $\mathbf{b}^{*}{ }_{i}$ explicitly. It takes $O\left(n^{4} \log A\right)$, with $\left.A=\max _{i} \| \mathbf{b}_{i}\right\}$, operations on scalars.

The LLL algorithm produes in polynomial time a vector whose length is bounded by a factor from the shortest possible.

Applications

A typical example of the powers of the LLL algorithm is the "subset sum" problem. We are given a set of positive integers, and want to express a particular number as combination (with coefficients 0 or 1) of these numbers if possible.

In general this problem is hard (NP-complete) and variations had been proposed as basis for public-key cryptosystems.

We want to rewrite the problem as a lattice problem: If n numbers $a_{1}, \ldots, a_{n} \in \mathbb{N}$ are given, form n vectors in $\mathbb{Q}^{n+1}:\left(1,0, \ldots, 0,-a_{1}\right),\left(0,1,0, \ldots, 0,-a_{2}\right),\left(0, \ldots, 1,0,-a_{n-1}\right)$ and $\left(0, \ldots, 0,1,-a_{n}\right)$. Also take the vector $(0, \ldots, 0,0, s)$, where s is the number you want to express.

Assuming the a_{i} and s are large, a short element in the lattice spanned by these vectors must have a 0 in the last component. This can only be achieved by summing up some of the a_{i} to s. The entries of 1 in the corresponding vectors indicate which numbers are added.

For example, suppose we want to express $s=1215$ as a combination of $\{366,385,392,401,422,437\}$. We first set up the vectors:

```
gap> nums:=[366,385,392,401,422,437];;
gap> mat:=IdentityMat(Length(nums)+1);;
gap> for i in [1..6] do mat[i][7]:=-nums[i];od;
gap> mat[7][7]:=1215;;
gap> Display(mat);
\begin{tabular}{cccccccc}
{\(\left[\begin{array}{lllll}{[ } & 1, & 0, & 0, & 0, \\
{[ } & 0, & 1, & 0, & 0, \\
{[ } & 0, & 0, & 1, & 0, \\
{[ } & 0, & 0, & 0, & 1, \\
{[ } & 0, & 0, & -366] \\
{[ } & 0, & 0, & 0, & 0, \\
{[ } & 0, & 0, & 0, & 0, \\
{[ } & 0, & 0, & 0, & 0, \\
\hline\end{array}\right], 0\),} & 0, & \(-401]\), \\
{\([\)}
\end{tabular}
```

Next we call the LLL for the standard inner product. We only care about the "basis" component:

```
gap> LLLReducedBasis(mat);
rec(basis:=[ [ 0, 0, 1, 1, 1, 0, 0 ], [ 0, 1, 1, 0, 0, 1, 1],
    [ 1, 0, 1, -1, 1, 1, -1 ], ...
```

The first vector (always the shortest) has a 0 in the last component and entries in position 3,4 and 5. Indeed the three numbers at these positions add up to 1215 .

Note that the second vector has a 1 in the last component, i.e. we combine to "almost" 1215 . If we want to eliminate such flukes (which easily could become short) we can either change the inner product to weight the last component more, or simply scale all the numbers up.

```
gap> for i in [1..7] do mat[i][7]:=mat[i][7]*1000;od;Display(mat);
[ [ 1, 0, 0, 0, 0, 0, -366000 ],...
gap> b:=LLLReducedBasis(mat);
rec(basis:=[ [ 0, 0, 1, 1, 1, 0, 0 ], [ 2, -1, -1, 1, 1, 1, 0 ],
    [ 1, -2, 2, -2, 1, 0, 0], [ 1, 1, 1, -2, 0, 2, 0 ],
```

In general, however, as the LLL algorithm is not guaranteed to find the shortest vectors (this could be done by an exhaustive search of combinations), it is possible that it produces combinations of s with coefficients different from 1.

Nevertheless, this "often good" performance makes the subset sum scheme infeasible for cryptographic purposes.

Subset-Anagrams

For another example of a combination-type problem, suppose we have a (long) list of words. We want to find combinations of different words, that use the same letters ${ }^{1}$. Again one can solve this by exhaustive search.

For another solution, form a $n \times 26$ matrix M, each row corresponding to one word. The entries in the row count how often the letter occurs in this word.

```
gap> Read("deptnames.g");
gap> deptnames{[1..3]};
[ "jeff achter", "henry adams", "adam afandi" ]
gap> List(CHARS_LALPHA,i->Number(deptnames[1],j->j=i));
[ 1,0,1,0,2,2,0,1,0,1,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0 ]
gap> nam:=List(deptnames,n->List(CHARS_LALPHA,i->Number(n,j->j=i)));;
```

Two different combinations of words then correspond to a (row) vector $\mathbf{x} \in\{-1,0,1\}^{n}$ such that $\mathbf{x} M=\mathbf{0}$. (The l's are one word, the -1 's another.)

We thus are searching for $-1 / 0 / 1$-solutions to a system of equations.
Many combinatorial problems can be phrased this way!
To find such solutions, we want to find the \mathbb{Z}-nullspace of M, i.e. the vectors $\mathbf{v} \in \mathbb{Z}^{n}$ such that $\mathbf{v} M=\mathbf{0}$. These vectors form a lattice. Chances are good, that a short vector in this lattice will be a $-1 / 0 / 1$ solution.

[^0]To find the \mathbb{Z}-nullspace, ordinary Gauß-elimination will not work, as it produces rational solution. Multiplying out all denominators might create only a multiple of the lattice.

Instead we will use the Smith normal form: Write $P M Q=D$ with $P \in \mathbb{Z}^{n \times n}, Q \in \mathbb{Z}^{26 \times 26}$ both invertible and $D \in \mathbb{Z}^{n \times 26}$ diagonal. Then find a \mathbb{Z}-basis for the \mathbb{Z}-nullspace of D. (This is very easy because of the diagonal form.) If $\mathbf{x} D=\mathbf{0}$ then $\mathbf{x} P M Q=\mathbf{0}$, thus $\mathbf{x} P \in N(M)$.

As P is invertible, it is easily seen that we will get a \mathbb{Z}-basis for $N(M)$ from a \mathbb{Z}-basis for $N(D)$.
To calculate this we use the online help, which tells us that the output to SmithNormalFormIntegerMatTransf contains a component normal which will be D and rowtrans which will be P. We also note that NullspaceMat finds a \mathbb{Z}-basis in this particular case, as D is diagonal.

```
gap> snf:=SmithNormalFormIntegerMatTransforms(nam);
gap> mat:=NullspaceMat(snf.normal);
gap> Set(Flat(mat));
[0, 1 ]
gap> mat:=mat*snf.rowtrans;;
gap> Length(Set(Flat(mat)));
2083
```

Now we perform LLL reduction on this basis. We are only intrested in those vectors in the solution, whose entries are $-1,0,1$. We sort the solution by to the number of entries.

```
gap> red:=LLLReducedBasis(mat,1);; # 1 should be 1-epsilon
gap> sol:=Filtered(red.basis,i->IsSubset([-1,0,1],Set(i)));;
gap> Sort(sol,function(a,b) return a*a<b*b;end);
```

Let us finally verify the first solution:

```
gap> sol[1];
[ 0, -1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 1,
[...]
gap> Filtered([1..106],i->sol[1][i]=-1);
[ 2, 13, 20, 21, 32, 35, 46, 47 ]
gap> deptnames{last};
[ "henry adams", "vance blankers", "michael capps", "renzo cavalieri",
    "bryan elder", "tegan emerson", "jianli gu", "derek handwerk" ]
gap> Collected(Flat(last));
[ [ ' ', 8 ], [ 'a', 12 ], [ 'b', 2 ], [ 'c', 4 ], [ 'd', 4 ], [ 'e', 14 ],
[...]
gap> Filtered([1..106],i->sol[1][i]=1);
[ 5, 8, 9, 19, 24, 36, 55, 86 ]
[ "javier alvarez", "dan bates", "ryan becker", "karleigh cameron",
    "edwin chong", "melissa erdmann", "paul kennedy", "rachel pries" ]
gap> Collected(Flat(last));
[ [ ' ', 8 ], [ 'a', 12 ], [ 'b', 2 ], [ 'c', 4 ], [ 'd', 4 ], [ 'e', 14 ],
[...]
```


[^0]: ${ }^{1}$ This was for example a weekly puzzle on NPR's "Weekend edition" on May 5, 2002: Find two countries, such that the letters in their names can be rearranged to spell two other countries; for example: MALI + QATAR $=I R A Q+M A L T A$

