60) Let \mathcal{C} be a perfect linear e-error correcting code over \mathbb{F}_{q}. Show that the weight enumerator of \mathcal{C} is uniquely determined by the code parameters.
61) Let $g(x)=1+x+x^{3}$ be a polynomial with coefficients in \mathbb{F}_{2}.
a) Show that $g(x)$ is a factor of $x^{7}-1$ in $\mathbb{F}_{2}[x]$.
b) The polynomial $g(x)$ is the generating polynomial for a cyclic code \mathcal{C}. Find a generating matrix for \mathcal{C} and a parity check matrix H for \mathcal{C} and show that \mathcal{C} is equivalent to a Hamming code.
62) Let $g(x)$ be the generating polynomial for a cyclic code \mathcal{C} of length n and $h(x)=x^{n}-1 / g(x)=$ $b_{0}+b_{1} x+\cdots+b_{l-1} x^{l-1}+x^{l}$. Show that the dual code \mathcal{C}^{\perp} is cyclic with generating polynomial $1 / b_{0}(1+$ $b_{l-1} x+\cdots+b_{1} x^{l-1}+b_{0} x^{l}$). (The factor $1 / b_{0}$ is included to make the highest nonzero coefficient be 1 .)
