
Combinatorics
Enumeration and Structure

MATH 501/2

Alexander Hulpke
Spring 2021

LATEX on May 7, 2021



Alexander Hulpke
Department of Mathematics
Colorado State University
1874 Campus Delivery
Fort Collins, CO, 80523

Title graphics:

Window in the Southern
Transept of the Cathedral in

Cologne (detail)
Gerhard Richter

�ese notes are accompanying my course MATH 501/2, Combinatorics, held Fall 2020 and
Spring 2021 at Colorado State University.

©2021 Alexander Hulpke. Copying for personal use is permitted.



Contents

Contents iii

I Introduction 1
I.1 What is Combinatorics? . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abstract Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Graph Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.3 OEIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II Basic Counting 5
II.1 Basic Counting of Sequences and Sets . . . . . . . . . . . . . . . . . 6
II.2 Bijections and Double Counting . . . . . . . . . . . . . . . . . . . . 8
II.3 Stirling’s Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
II.4 �e Twelvefold Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

�e twelvefold way theorem . . . . . . . . . . . . . . . . . . . . . . . 15

III Recurrence and Generating Functions 17
III.1 Power Series – A Review of Calculus . . . . . . . . . . . . . . . . . . 17

Operations on Generating Functions . . . . . . . . . . . . . . . . . . 20
III.2 Linear recursion with constant coe�cients . . . . . . . . . . . . . . 21

Another example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
III.3 Nested Recursions: Domino Tilings . . . . . . . . . . . . . . . . . . 24
III.4 Catalan Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
III.5 Index-dependent coe�cients and Exponential generating functions 28
III.6 �e product rule, revisited . . . . . . . . . . . . . . . . . . . . . . . . 31

Bell Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



iv CONTENTS

Stirling Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

IV Inclusion, Incidence, and Inversion 37
IV.1 �e Principle of Inclusion and Exclusion . . . . . . . . . . . . . . . 37
IV.2 Partially Ordered Sets and Lattices . . . . . . . . . . . . . . . . . . . 40

Linear extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Product of posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV.3 Distributive Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
IV.4 Chains, Antichains, and Extremal Set�eory . . . . . . . . . . . . . 47
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Chapter

I

Introduction

I.1 What is Combinatorics?

If one looks at university classes in Mathematics that were taught a hundred years
ago, we already �nd the basic pattern ofmany of the current classes. Single-variable
analysis already had most of it2s current shape. Algebra had started with the for-
malization of groups, rings and �elds, that just a few years later looked very close to
what is taught today. Much of the theory of di�erential equations was known, and
numerical methods were just lacking the availability of fast computers. But there
was little of combinatorics beyond basic counting formulas used for examples in
statistics. Combinatorics suddenly started to grow in the 1950s and 1960s , in part
motivated by the existence of computers, and arguably did not get a standard list
of topics until the 1980s or 1990s. It di�ers from many other areas of mathemat-
ics in that it was not driven by a small number of deep (o�en even today not fully
solved) problems, but by the observation that problems from seemingly di�erent
areas, actually follow similar patterns and can be studied using similar methods.
Its scope (in the broadest sense) is the study of the di�erent ways objects can be
put in relation to each other, including counting the number of possibilities.�is
course looks at combinatorics split into two main areas, roughly corresponding to
semesters: the �rst is enumerative combinatorics, the study of counting the dif-
ferent ways con�gurations can be set up.�e second is the study of properties of
combinatorial structures that consists of many objects subject to certain prescribed
conditions.

I.2 Prerequisites

�is being a graduate class we shall assume knowledge of some topics that have
been covered in undergraduate classes. In particular we shall use:

1



2 CHAPTER I. INTRODUCTION

Sets, Functions,Relations Weassume the reader is comfortablewith the concept
of sets and standard constructs such as Cartesian products. We denote the set of all
subsets of X by P(X), it is called the power set of X.
A relation on a set X is a subset of X × X, functions can be considered as a

particular class of relations.We thusmight consider a function f ∶X → Y as a subset
of X × Y .
Another important class of relations are equivalence relations. Via equivalence

classes they correspond to partitions of the set.

Induction �e technique of proof by induction is intimately related to the con-
cept of recursion. It is assumed, that the reader is comfortable with the various
variants (di�erent starting values, referring to multiple previous values, postulat-
ing a smallest counterexample) of �nite induction. We also might sometimes just
state that a proof follows by induction, if base case or inductive step are obvious or
standard.

Abstract Algebra

Abstract algebra is o�en useful in providing a formal framework for describing ob-
jects. We assume the reader is familiar with the standard concepts from an under-
graduate abstract algebra class – groups, permutations (we multiply permutations
from le� to right), cycle form, polynomial rings, �nite �elds, and linear algebra.

Graph Terminology

�is being a graduate class, the assumption is that the reader has encountered the
basic de�nitions of graph theory – such as: vertex, edge, degree, directed/undirected,
path, tree – already in an undergraduate class.

Calculus

It o�en comes as a surprise to students , that combinatorics – this epitome of dis-
crete mathematics 2 uses techniques from calculus. Some of it is the classical use
of approximations to estimate growth, but also the toolset for manipulating power
series. Still, there is no need to worry about messy approximations, convergence
tests, or bathtubs that are �lled while simultaneously draining.

I.3 OEIS

A problem that arises o�en in combinatorics is that we can easily describe small
examples, but that it is initially hard to see the underlying patterns. For example, we
might be able to count the total number of objects of small size, but will be unable to
count howmany there are of larger size. In investigating such situations, theOnline
Encyclopedia of Integer Sequences (OEIS, at oeis.org) is an invaluable tool that

oeis.org
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allows to look up number sequences that �t the particular pattern Given by a few
values , and for many of these gives a huge number of connections and references
. Sequences in this encyclopedia have a2storage number2 starting with the letter
”A”, and we will refer to these at times by an indicator box OEIS A002106 .

https://www.oeis.org/A002106




Chapter

II

Basic Counting

One of the basic tasks of combinatorics is to determine the cardinality of (�nite)
classes of objects. Beyond basic applicability of such a number – for example to
estimate probabilities – the actual process of counting may be of interest, as it gives
further insight into the problem:

• If we cannot count a class of objects, we cannot claim that we know it.

• �e process of enumeration might – for example by giving a bijection be-
tween classes of di�erent sets – uncover a relation between di�erent classes
of objects.

• �e process of counting might lend itself to become constructive, that is al-
low an actual construction of (or iteration through) all objects in the class.

�e class of objects might have a clear mathematical description – e.g. all sub-
sets of the numbers {1, . . . , 5}. In other situations the description itself needs to be
translated into proper mathematical language:

Definition II.1 (Derangements): Given n letters and n addressed envelopes, a de-
rangement is an assignment of letters to envelopes that no letter is in the correct
envelope. How many derangement of n exist?

(�is particular problem will be solved in section III.5)
We will start in this chapter by considering the enumeration of some basic con-

structs – sets and sequences. More interesting problems, such as the derangements
here, arise later if further conditions restrict to sub-classes, or if obvious descrip-
tions could have multiple sequences describe the same object.

5



6 CHAPTER II. BASIC COUNTING

II.1 Basic Counting of Sequences and Sets

I am the sea of permutation.
I live beyond interpretation.
I scramble all the names and the combinations.
I penetrate the walls of explanation.

Lay My Love
Brian Eno

�e number of elements of a set A, denoted by ∣A∣ (or sometimes as #A) and
called its cardinality, is de�ned1 as the unique n, such that there is a bijective func-
tion from A to {1, 2, . . . , n}.

�ere are three basic principles that underlie counting:

Disjoint Union If A = A1 ∪ A2 with A1 ∩ A2 = ∅, then ∣A∣ = ∣A1∣ + ∣A2∣.

Cartesian product ∣A× B∣ = ∣A∣ ⋅ ∣B∣.

Equivalence classes If we can represent each element of A in m di�erent ways by
elements of B, then ∣A∣ = ∣B∣ /m.

A sequence (or tuple) of length k is simply an element of the k-fold cartesian
product. Entries are chosen independently, that is if the �rst entry has a choices and
the second entry b, there are a ⋅ b possible choices for a length two sequence.�us,
if we consider sequences of length k, entries chosen from a set A of cardinality n,
there are nk such sequences.

�is allows for duplication of entries, but in some cases – arranging objects
in sequence – this is not desired. In this case we can still choose n entries in the
�rst position, but in the second position need to avoid the entry already chosen in
the �rst position, giving n − 1 options. (�e number of options is always the same,
the actual set of options of course depends on the choice in the �rst position.)�e
number of sequences of length k thus is (n)k = n ⋅ (n− 1) ⋅ (n−2) ⋅⋯ ⋅ (n− k+ 1) =

n!
(n−k)! , called

2 “n lower factorial k”.
�is could be continued up to a sequence of length n (a�er which all n element

choices have been exhausted). Such a sequence is called a permutation of A, there
are n! = (n)n = n ⋅ (n − 1) ⋅ ⋯ ⋅ 2 ⋅ 1 such permutations.
Next we consider sets of elements. While every duplicate-free sequence de-

scribes a set, sequences that have the same elements arranged in di�erent order
describe the same set. Every set of k elements from n thus will be described by k!
di�erent duplicate-free sequences. To enumerate sets, we therefore need to divide

1We only deal with the �nite case here, there are generalizations for in�nite sets
2Warning:�e notation (n)k has di�erent meaning in other areas of mathematics!
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by this factor, and get for the number of k-element sets from n the count given by
the binomial coe�cient

(n
k
) = (n)k

k!
= n!

(n − k)!k!

Note (using a convention of 0! = 1) we get that (n0) = (n
n
) = 1. It also can be conve-

nient to de�ne (n
k
) = 0 for k < 0 or k > n.

Binomial coe�cients also allow us to count the number of compositions of a
number n into k parts, that is to write n as a sum of exactly k positive integers with
ordering being relevant. For example 4 = 2 + 2 = 1 + 3 = 3 + 1 are the 3 possible
compositions of 4 into 2 parts.
To get a formula of the number of possibilities, write the maximum composi-

tion
n = 1 + 1 + 1 +⋯ + 1

which has n − 1 plus-signs. We obtain the possible compositions into k parts by
grouping summands together to only have k summands.�at is, we designate k− 1
plus signs from the given n−1 possible ones as giving us the separation.�e number
of possibilities thus is (n−1

k−1).
If we also want to allow summands of 0 when writing n as a sum of k terms, we

can simply assume that we temporarily add 1 to each summand.�is guarantees
that each summand is positive, but adds k to the sum. We thus count the number
of ways to express n + k as a sum of k summands which is by the previous formula
(n+k−1

k−1 ) = (n+k−1
n

).
Example: Check this for n = 4 and k = 2.

�is count is particular relevant as it also counts multisets, that is sets of n ele-
ments from k, in which we allow the same element to appear multiple times. Each
such set is described as a sum of k terms expressing n, the i-th term indicating how
o�en the i-th element is in the set.
Swapping the role of n and k, We denote by ((n

k
)) = (n+k−1

k
) the number of

k-element multisets chosen from n possibilities.

�e results of the previous paragraphs are summarized in the following theo-
rem:

Theorem II.2:�e number of ways to select k objects from a set of n is given by
the following table:

Repetition No Repetition
Order signi�cant nk (n)k
(sequences)

Order not signi�cant (n + k − 1
k

) = ((n
k
)) (n

k
)

(sets)
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Figure II.1: A 3 × 3 grid

Note II.3: Instead of using the word signi�cant some books talk about ordered or
unordered sequences. I �nd this confusing, as the use of ordered is opposite that of
the word sorted which has the same meaning in common language. We therefore
use the language of signi�cant.

II.2 Bijections and Double Counting

As long as there is no double counting, Section
3(a) adopts the principle of the recent cases
allowing recovery of both a complainants actual
losses and a misappropriator’s unjust bene�t. . .

Dra� of Uniform Trade Secrets Act
American Bar Association

In this section we consider two further important counting principles that can
be used to build on the basic constructs.
Instead of counting a set A of objects directly, it might be easiest to establish

a bijection to another set B, that is a function f ∶A → B which is one-to-one (also
called injective) and onto (also called surjective). Once such a function has been
established we know that ∣A∣ = ∣B∣ and if we know ∣B∣ we thus have counted ∣A∣.
As an example, consider the following problem:We have an n×n grid of points

with horizontal and vertical connections (depicted in �gure II.1 for 3×3) and want
to count the number of di�erent paths from the bottom le�, to the top right corner,
that only go right or up.
Each such path thus has exactly n−1 right steps, and n−1 up steps.We thus (this

already could be considered as one bijection) could count instead 0/1 sequences (0
is right, 1 is up) of length 2n − 2 that contain exactly n − 1 ones (and zeros). Denote
the set of such sequences by A.
To determine ∣A∣, we observe that each sequence is determined uniquely by the

positions of the ones and there are exactly n− 1 of them.�us let B the set of all n− 1
element subsets of {1, . . . , 2n − 2}.
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Wede�ne f ∶A→ B to assign to a sequence the positions of the ones, f ∶ a1 , . . . , a2n−2 ↦
{i ∣ a i = 1}.
As every sequence has exactly n − 1 ones, indeed f goes from A to B. As the

positions of the ones de�ne the sequence, f is injective. And as we clearly can con-
struct a sequence which has ones in exactly n − 1 given positions, f is surjective as
well.�us f is a bijection.
We know that ∣B∣ = (2n−2

n−1 ), this is also the cardinality of A.
Example: Check this for n = 2, n = 3.

�e second useful technique is to “double counting”, counting the same set in
two di�erent ways (which is a bijection from a set to itself). Both counts must give
the same result, which can o�en give rise to interesting identities.�e following
lemma is an example of this paradigm:

Lemma II.4 (Handshaking Lemma): At a convention (where not everyone greets
everyone else but no pair greets twice), the number of delegates who shake hands
an odd number of times is even.

Proof: we assumewithout loss of generality that the delegates are given by {1, . . . , n}.
Consider the set of handshakes

S = {(i , j) ∣ i and j shake hands.} .

We know that if (i , j) is in S, so is ( j, i).�is means that ∣S∣ is even, ∣S∣ = 2y where
y is the total number of handshakes occurring.
On the other hand, let x i be the number of pairs with i in the �rst position. We

thus get∑ x i = ∣S∣ = 2y. If a sum of numbers is even, theremust be an even number
of odd summands.
But x i is also the number of times that i shakes hands, proving the result. ◻

About binomial theorem I’m teeming with a lot o’ news,
With many cheerful facts about the square of the hypotenuse.

�e Pirates of Penzance
W.S. Gilbert

�e combinatorial interpretation of binomial coe�cients and double counting
allows us to easily prove some identities for binomial coe�cients (which typically
are proven by induction in undergraduate classes):

Proposition II.5: Let n, k be nonnegative integers with k ≤ n.�en:

a) (n
k
) = ( n

n − k
).

b) k(n
k
) = n(n − 1

k − 1).
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c) (n + 1
k

) = ( n

k − 1) + (n
k
) (Pascal’s triangle).

d)
n

∑
k=0

(n
k
) = 2n .

e)
n

∑
k=0

(n
k
)
2
= (2n

n
).

f) (1 + t)n =
n

∑
k=0

(n
k
)tk (Binomial�eorem).

Proof: a) Instead of selecting a subset of k elements we could select the n − k ele-
ments not in the set.
b) Suppose we want to count committees of k people (out of n) with a designated
chair. We can do so by either choosing �rst the (n

k
) committees and then for each

team the k possible chairs out of the committee members. Or we choose �rst the n
possible chairs and then the remaining k − 1 committee members out of the n − 1
remaining persons.
c) Suppose that I am part of a group that contains n+ 1 persons and we want to de-
termine subsets of this group that contain k people.�ese either include me (and
k − 1 further persons from the n others), or do not include me and thus k from the
n other people.
d) We count the total number of subsets of a set with n elements. Each subset can
be described by a 0/1 sequence of length n, indicating whether the i-th element is
in the set.
e) Suppose we have nmen and nwomen andwewant to select groups of n persons.
�is is the right hand side.�e le�hand side enumerates separately the optionswith
exactly k men, which is (n

k
)( n

n−k) = (n
k
)2 by a).

f) Clearly (1+ t)n is a polynomial of degree n.�e coe�cient for tk gives the num-
ber of possibilities to choose the t-summand when multiplying out the product

(1 + t)(1 + t) ⋅ ⋯ ⋅ (1 + t)

of n factors so that there are k such summands overall.�is is simply the number
of k-subsets, (n

k
). ◻

Example: Prove the theorem using induction. Compare the e�ort. Which method
gives you more insight?

II.3 Stirling’s Estimate

Since the factorial function is somewhat unhandy in estimates, it can be useful to
have an approximation in terms of elementary functions.�e most prominent of
such estimates if probably given by Stirling’s formula:
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Figure II.2: Plot of
√
2πn ( n

e
)n /n!

Theorem II.6:
n! ≈

√
2πn (n

e
)
n

(1 + O ( 1
n
)) . (II.7)

Here the factor 1 + O(1/n) means that the quotient of estimate and real value
is bounded by 1 ± 1/n. Figure II.2 shows a plot of the ratio of the estimate to n!.
Proof: Consider the natural3 logarithm of the factorial:

log(n!) = log 1 + log 2 +⋯ + log n

If we de�ne a step function L(x) = log(⌊x + 1/2⌋), we thus have that log(n!) is an
integral of L(x). We also know that

I(x) = ∫ x

0
log(t)dt = x log x − x .

We thus need to consider the integral over L(x) − log(x). To avoid divergence
issues, we consider this in two parts. Let

ak =
1
2
log k − ∫ k

k− 12
log xdx = ∫ k

k− 12
log(k/x)dx ,

and

bk = ∫ k+ 12

k
log xdx − 1

2
logk = ∫ l+ 12

k
log(x/k)dx .

�en

Sn = a1 − b1 + a2 − b2 +⋯ + an = log n! −
1
2
log n + I(n) − I( 1

2
).

3all logarithms in this book are natural, unless stated di�erently
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A substitution gives

ak = ∫
1
2

0
log 1
1 − (t/k)dt, bk = ∫

1
2

0
log(1 + t/k)dt,

from which we see that ak > bk > ak+1 > 0. By the Leibniz’ criterion thus Sn
converges to a value S and we have that

log n! − (n + 1
2
) log n + n → S − I( 1

2
).

Taking the exponential function we get that

n!→ eC
√
n (n

e
)
n

with C = ∑∞
k=1(ak − bk) − I( 12 ).

Using standard analysis techniques, one can show that eC =
√
2π, see [Fel67].

Alternatively for concrete calculations, we could simply approximate the value to
any accuracy desired. ◻

�e appearance of e might seem surprising, but the following example shows
that it arises naturally in this context:

Proposition II.8:�e number sn of all sequences (of arbitrary length) without
repetition that can be formed from n objects is ⌊e ⋅ n!⌋.
Proof: If we has a sequence of length k, there are (n

k
) choices of objects each in

k! possible arrangements, thus k!(n
k
) = n!

(n−k)! such sequences. Summing over all
values of n − k we get

sn =
n

∑
k=0

n!
k!

= n!
n

∑
k=0

1
k!
.

Using the Taylor series for ex we see that

e ⋅ n! − sn = 1
n + 1 +

1
(n + 1)(n + 2) +⋯

< 1
n + 1 +

1
(n + 1)2 +⋯

= 1
n
< 1.

◻

�is is an example (if we ignore language meaning) of the popular problem
how many words could be formed from the letters of a given word, if no letters are
duplicate.



II.4. THE TWELVEFOLDWAY 13

Example: If we allow duplicate letters the situation gets harder. For example, con-
sider words (ignoring meaning) made from the letters of the word COLORADO.
�e letter O occurs thrice, the other �ve letters only once. If a word contains atmost
oneO, the formula from above gives∑6k=0 6!k! = 720+720+360+120+30+5+1 = 1957
such words.
If the word contains two O, and k other letters there are (5

k
) options to select

these letters and (k + 2)!/2 possibility to arrange the letters (the denominator 2
making up for the fact that both O cannot be distinguished).�us we get

2!
2
+ 5 ⋅ 3!
2

+ 10 ⋅ 4!
2

+ 10 ⋅ 5!
2

+ 5 ⋅ 6!
2

+ 7!
2
= 1 + 15 + 120 + 600 + 1800 + 2520 = 5056

such words.
If the word contains three O, and k other letters we get a similar formula, but

with a cofactor (k + 3)!/6, that is

3!
6
+ 5 ⋅ 4!
6

+ 10 ⋅ 5!
6

+ 10 ⋅ 6!
6

+ 5 ⋅ 7!
6

+ 8!
6
= 1+ 20+ 200+ 1200+4200+6720 = 12341

possibilities, summing up to 19354 possibilities in total.
Lucky we do not live in MISSISSIPPI!

II.4 �e Twelvefold Way

A generalization of counting sets and sequences is given by considering functions
between �nite sets.We shall consider functions f ∶N → X with ∣N ∣ = n and ∣X∣ = x.
�ese functions could be arbitrary, injective, or surjective.
What does the concept of order (in)signi�cantmean in this context? If the order

is not signi�cant, we actually only care about the set of values of a function, but not
the values on particular elements. �at is, all the elements of N are equivalent,
we call them indistinguishable or unlabeled (since labels will force objects to be
di�erent). Otherwise we talk about distinguishable or unlabeled objects.
Formally, we are counting equivalence classes of functions, in which two func-

tions f , g∶N → X are called N-equivalent, if there is a bijection u∶N → N such
that f (u(a)) = g(a) for all a ∈ N .
Similarly, we de�ne an X-equivalence of function, calling s f and g equivalent,

if there is v∶X → X such that v( f (a)) = g(a) for all a ∈ N . If we say the elements
of X are indistinguishable, we count functions up to X-equivalence.
We can combine both equivalences to get even larger equivalence classes, which

are the case of elements of both N and X being indistinguishable.
(�e reader might feel this to be insu�ciently stringent, or wonder about the

case of di�erent classes of equivalent objects. We will treat such situations in Sec-
tion VII.6 under the framework of group actions.)

�is setup (N and X distinguishable or not and functions being injective, sur-
jective or neither) gives in total 3 ⋅ 2 ⋅ 2 = 12 possible classes of functions. �is
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set of counting problems is called the Twelvefold Way in [Sta12, Section 1.9] (and
attributed there to Gian-Carlo Rota).
Example: For each of the 12 categories, give an example of a concrete counting prob-
lem in common language. Say, we have n balls and x boxes (either of them might
be labeled), and we might require that no box has more than one ball, or that every
box contains at least one ball.
Say, we haveN = {1, 2} and X = {a, b, c}.�enwe have the following functions

N → X:

All functions: �ere are 9 functions, namely (giving functions as sequences of val-
ues): [a, a], [a, b], [a, c], [b, a], [b, b], [b, c], [c, a], [c, b], [c, c].

Injective functions: �ere are 6 functions, namely [a, b], [a, c], [b, a], [b, c], [c, a], [c, b].

Surjective functions: �ere are no such functions, but there are 6 functions from
{1, 2, 3} to {a, b}, namely: [a, a, b], [a, b, a], [a, b, b], [b, a, a], [b, a, b], [b, b, a].

Up to permutation of N Sowe consider only the sets of values, which gives 6 pos-
sibilities: {a, a}, {a, b}, {a, c}, {b, b}, {b, c}, {c, c}.

Injective, up to permutation of N �e values need to be di�erent, so 3 possibili-
ties: {a, b}, {a, c}, {b, c}.

Surjective, up to permutation of N �ere are no such functions, but there are 2
such functions from {1, 2, 3} to {a, b}, namely: [a, a, b], [a, b, b].

Up to permutations of X Since ∣N ∣ = 2, the question is justwhether the two values
are the same or not: [a, a], [a, b].

Injective, up to permutations of X Here [a, b] is the only such function.

Surjective, up to permutations of X Again, no such function, but from {1, 2, 3}
to {a, b} there are 3 such functions namely [a, a, b], [a, b, a], [b, a, a].

Up to permutations of N and X Again two possibilities, [a, a], [a, b]; but if N =
{1, 2, 3}, there are three possibilities, namely [a, a, a], [a, a, b], [a, b, c].

Injective, up to permutations of N and X Again, [a, b] is the only such function.

Surjective, up to permutations of N and X Again, no such function, but from {1, 2, 3}
to {a, b} there is one, namely [a, a, b].

To give expressions for each count, we introduce the following de�nitions. De-
termining closed formulae for these is not always easy, and will require further
work in subsequent chapters.
A partition of a set A is a collection {A i} of subsets (called parts or cells) ∅ /=

A i ⊂ A such that for all i:

• ⋃
i

A i = A
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• A i ∩ A j = ∅ for j /= i.

Note that a partition of a set gives an equivalence relation and that any equiva-
lence relation on a set de�nes a partition into equivalence classes.

Definition II.9: We denote the number of partitions of {1, . . . , n} into k (non-
empty) parts by S(n, k). It is called the Stirling number of the second kind4 OEIS A0082h7 .
�e total number of partitions of {1, . . . , n} is given by theBell number OEIS A000110

Bn =
n

∑
k=1

S(n, k).

Example:�ere are B3 = 5 partitions of the set {1, 2, 3}.
Again we might want to set S(n, k) = 0 unless 1 ≤ k ≤ n.
We will give a formula for S(n, k) in Lemma III.5 and study B(n) in sec-

tion III.6.

In some cases we shall care not which numbers are in which parts of a partition,
but only the size of the parts. We denote the number of partitions of n into k parts
by pk(n), the total number of partitions by p(n) OEIS A000041 .
Again we study the function p(n) later, however here we shall not achieve a

closed formula for the value.

�e twelvefold way theorem

We now extend the table of theorem II.2:

Theorem II.10: if N , X are �nite sets with ∣N ∣ = n and ∣X∣ = x, the number of
(equivalence classes of) functions f ∶N → X is given by the following table. (In the
�rst two columns, d/i indicates whether elements are considered distinguishable or
indistinguishable.�e boxed numbers refer to the explanations in the proof.):

N X f arbitrary f injective f surjective

d d 1 xn 2 (x)n 3 x!S(n, x)

i d 4 ((x
n
)) 5 (x

n
) 6 (n − 1

x − 1) = (( x

n − x
))

d i 7 x

∑
k=0

S(n, k) 8 1 if n ≤ x

0 if n > x
9 S(n, x)

i i 10 x

∑
k=0

pk(n) 11 1 if n ≤ x

0 if n > x
12 px(n)

4�ere also is a Stirling number of the �rst kind

https://www.oeis.org/A0082h7
https://www.oeis.org/A000110
https://www.oeis.org/A000041
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Proof: If N is distinguishable, we can simply write the elements of N in a row and
consider a function on N as a sequence of values. In 1), we thus have sequences
of length n with x possible values, in 2) such sequences without repetition, both
formulas we already know.
If such a sequence takes exactly x values, each value f (n) can be taken to in-

dicate the cell of a partition into x parts, into which n is placed. As we consider a
partition as a set of parts, it does not distinguish the elements of X, that shows that
the value in 9) has to be S(n, x). If we distinguish the elements of X we need to
account for the x! possible arrangements of cells, yielding the value in 3).
Similarly to 9), if we do not require f to be surjective, the number of di�erent

values of f gives us the number of parts. Up to x di�erent parts are possible, thus
we need to add the values of the Stirling numbers.
To get 12) from 9) and 10) from 7) we notice that making the elements of N

indistinguishable simply means that we only care about the sizes of the parts, not
which number is in which part.�is means that the Stirling number S(n, x) gets
replaced by the partition (shape) count px(n).
If we again start at 1) but now consider the elements of N as indistinguishable,

we go from sequences to sets. If f is injective we have ordinary sets, in the general
case multisets, and have already established the results of 4) and 5).
For 6), we interpret the x distinct values of f to separate the elements of N

into x parts.�is is a composition of n into x parts, for which the count has been
established.
In 8) and 11), �nally, injectivity demands that we assign all elements of n to dif-

ferent values which is only possible if n ≤ x. As we do not distinguish the elements
of X it does not matter what the actual values are, thus there is only one such func-
tion up to equivalence. ◻



Chapter

III

Recurrence and Generating
Functions

Finding a close formula for a combinatorial counting function can be hard. It o�en
is much easier to establish a recursion, based on a reduction of the problem. Such a
reduction o�en is the principal tool when constructing all objects in the respective
class.
An easy example of such a situation is given by the number of partitions of n,

given by the Bell number Bn :

Lemma III.1: For n ≥ 1 we have:

Bn =
n

∑
k=1

(n − 1
k − 1)Bn−k

Proof: Consider a partition of {1, . . . , n}. Being a partition, it must have 1 in one
cell. We group the partitions according to howmany points are in the cell contain-
ing 1. If there are k elements in this cell, there are (n−1

k−1) options for the other points
in this cell. And the rest of the partition is simply a partition of the remaining n− k
points. ◻

III.1 Power Series – A Review of Calculus

A powerful technique for working with recurrence relations is that of generating
functions.�e de�nition is easy, for a counting function f ∶Z≥0 → Q de�ned on
the nonnegative integers we de�ne the associated generating function as the power
series

F(t) =
∞
∑
n=0

fn t
n ∈ R[[t]]

17
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HereR[[t]] is the ring of formal power series in t, that is the set of all formal sums
∑∞

n=0 an t
n i with an ∈ R.

When writing down such objects, we ignore the question whether the

series converges, i.e. whether F can be interpreted as a function on a

subset of the real numbers.

Addition and multiplication are as one would expect: If F(t) = ∑n≥0 fn t
n and

G(t) = ∑n≥0 gn t
n we de�ne new power series F +G and F ⋅G by:

(F +G)(t) ∶= ∑
n≥0

( fn + gn)tn

(F ⋅G)(t) ∶= ∑
n≥0

( ∑
a+b=n

fa gb) tn .

With this arithmetic R[[t]] becomes a commutative ring. (�ere is no convergence
issue, as the sum over a + b = n is always �nite.)
We also de�ne two operators, called di�erentiation and integration on R[[t]]

by
d
dt

(∑
n≥0

an t
n) =∑

n≥1
(nan)tn−1

and

∫ (∑
n≥0

an t
n) = ∑

n≥0

an

n + 1 t
n+1 ,

Two power series are equal if and only if all coe�cients are equal, an identity
involving a power series as a variable is called a functional equation.

As a shorthand we de�ne the following names for particular power series:

exp(t) = ∑
n≥0

tn

n!

log(1 + t) = ∑
n≥1

(−1)n−1 tn
n

andnote1 that the usual functional identities exp(a+b) = exp(a) exp(b), log(ab) =
log(a) + log(b), log(exp(t)) = t and di�erential identities ddt exp(t) = exp(t),
d
dt log(t) = 1/t hold.

1All of this can either be proven directly for power series; alternatively, we choose t in the interval
of convergence, use results from Calculus, and obtain the result from the uniqueness of power series
representations.



III.1. POWER SERIES – A REVIEW OF CALCULUS 19

A telescoping argument shows that for r ∈ Rwe have that (1−rt) (∑n r
n tn) = 1,

that is we can use the geometric series identity

∑
n

rn tn = 1
1 − rt

to embed rational functions (whose denominators factor completely; this can be
taken as given if we allow for complex coe�cients) into the ring of power series.
For a real number r, we de�ne2

(r
n
) = r(r − 1)⋯(r − n + 1)

n!
tn

as well as
(1 + t)r = ∑

n≥0
(r
n
).

For obvious reasons we call this de�nition the binomial formula. Note that for inte-
gral r this agrees with the usual de�nition of exponents and binomial coe�cients,
so there is no con�ict with the traditional de�nition of exponents.
We also notice that for arbitrary r, s we have that (1 + t)r(1 + t)s = (1 + t)r+s

and ddt (1 + t)r = r(1 + t)r−1.

Up to this point, generating functions seem to be a formality for formalities
sake.�ey however come into their own with the following observations: Oper-
ations on the entries of a sequence, relations amongst its entries (such as recur-
sion), or a sequence having been built on top of other sequences o�en have natu-
ral analogues with generating functions. Recursive identities amongst a coe�cient
sequence then become functional equations or di�erential equations for the gen-
erating functions.
If these equations have solutions, known start values typically give uniqueness

of the solution, and (assuming it converges in an open interval), its power series
representation must be identical to the generating function. Methods from Anal-
ysis, such as Taylor’s theorem, then can be used to determine expressions for the
terms of the sequence.

Before describing this more formally, lets look at a toy example:
We de�ne a function recursively by setting f0 = 1 and fn+1 = 2 fn . (�is recur-

sion comes from the number of subsets of a set of cardinality n – �x one element
and distinguish between subsets containing this element and those that don’t.)�e
associated generating function is F(t) = ∑n≥0 fn t

n . We now observe that

2tF(t) = ∑
n≥0
2 fn tn+1 = ∑

n≥0
fn+1 t

n+1 = F(t) − 1.

2Unless r is an integer, this is a de�nition in the ring of formal power series.
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We solve this functional equation as

F(t) = 1
1 − 2t

and (geometric series!) obtain the power series representation

F(t) = ∑
n≥0
2n tn .

this allows us to conclude that fn = 2n , solving the recursion (and giving us the
combinatorial result we knew already that a set of cardinality n has 2n subsets.)

Operations on Generating Functions

Lets start with basic linearity. If fn and gn are sequences, associated to generating
functions F(t) andG(t), respectively, then λF(t)+G(t) is the generating function
associated to the sequence λ fn+gn .�e case λ = 1 is sometimes called the sum rule,
describing the case that f and g count the cardinality of disjoint sets and fn + gn
the cardinality of their unions.

Shi�ing Shi�ing the indices corresponds to multiplication by powers of t.

Di�erentiation If F(t) = ∑i≥0 f i t
i , the derivative of F(t) corresponds to the se-

quence sn = (n + 1) fn+1, thus allowing for variable coe�cients.�is can o�en be
used e�ectively together with shi�s. For example, starting with the sequence fn =
1, it corresponds (geometric series) to the generating function 1

1−t . Its derivative,
1

(1−t)2 thus corresponds to the sequence 1, 2, 3, 4, . . . and
t

(1−t)2 then to the sequence
0, 1, 2, 3, . . .. Taking a further derivative yields a sequence of squares 1, 4, 9, 16, . . .
at generating function 1+t

(1−t)3 . We shi� once more to get the sequence sn = n2, as-
sociated to the generating function t(1+t)

(1−t)3 .

Products If we de�ne a new sequence as sum of terms whose indices add up to
the desired value:

cn = f0gn + f1gn−1 + f2gn−2 +⋯ + fn g0

(this is sometimes called convolution) its generating function is F(t) ⋅G(t).�is is
called the product rule.
One particular case of this is the summation rule: Suppose we de�ne cn =

∑n
i=0 f i , we can interpret this as convolution with the constant sequence g i = 1,
whose generating function is 1

1−t .�e generating function for the summatory se-
quence thus is C(t) = F(t)

1−t .
Continuing the previous example, the sequence sn = ∑n

i=0 i
2 thus has the gen-

erating function S(t) = t(1+t)
(1−t)4 .
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We nowmake use of these tools by looking at general tools to �nd closed-form
expressions for recursively de�ned sequences:

III.2 Linear recursion with constant coe�cients

�en, at the age of forty, you sit,

theologians without Jehovah,

hairless and sick of altitude,

in weathered suits,

before an empty desk,

burned out, oh Fibonacci,

oh Kummer1, oh Gödel, oh Mandelbrot

in the purgatory of recursion.

1 also means: “grief ”

Dann, mit vierzig, sitzt ihr,
o�eologen ohne Jehova,
haarlos und höhenkrank
in verwitterten Anzügen
vor dem leeren Schreibtisch,
ausgebrannt, o Fibonacci,
o Kummer, o Gödel, o Mandelbrot,
im Fegefeuer der Rekursion.

Die Mathematiker
HansMagnus Enzensberger

Suppose that fn satis�es a recursion of the form

fn = a1 fn−1 + a2 fn−2 +⋯ + ak fn−k .

�at is, there is a �xed number of recursion terms and each term is just a scalar
multiple of a prior value (we shall see below that easy cases of index dependence
also can be treated this way). We also assume that k initial values f0 ,⋯, fk−1 have
been established.

�emost prominent case of this are clearly the Fibonacci numbers OEIS A000045
with k = 2, recursion fn = fn−1 + fn−2 and initial values f0 = f1 = 1. We shall use
these as an example.

Step 1: Get the functional equation Using the recursion, expand the coe�cient
fn in the generating function F(t) = ∑n fn t

n with terms of lower index. Note that
for n < k the recursion does not hold, you will need to look at the initial values to
see whether the given formula su�ces, or if you need to add explicit multiples of
powers of t to get equality.
Separate summands into di�erent sums, factor out powers of t to get fn com-

bined with tn .
Replace all expressions ∑ fn t

n back with the generating function F(t). �e
whole expression also must be equal to F(t), this is the functional equation.
Example: in the case of the Fibonacci numbers, the recursion is fn = fn−1 + fn−2 for

https://www.oeis.org/A000045
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n > 1.�us we get (using the initial values f0 = f1 = 1 that

∑
n≥0

fn t
n = ∑

n>1
( fn−1 tn + fn−2 t

n) + f1 t + f0

= ∑
n>1

fn−1 t
n +∑

n>1
fn−2 t

n + t + 1

= t∑
n>1

fn−1 t
n−1 + t2∑

n>1
fn−2 t

n−2 + t + 1

= t∑
n>0

fn t
n + t2∑

n≥0
fn t

n + t + 1

= t(∑
n≥0

fn t
n − f0) + t2∑

n≥0
fn t

n + t + 1

= t ⋅ F(t) − t ⋅ f0 + t2F(t) + t + 1 = t ⋅ F(t) + t2F(t) + 1.

�e functional equation is thus F(t) = t ⋅ F(t) + t2F(t) + 1.

Step 2: Partial Fractions We can solve the functional equation to express F(t)
as a rational function in t. (�is is possible, because the functional equation will
be a linear polynomial in F(t).)�en, using partial fractions (Calculus 2), we can
write this as a sum of terms of the form a i

(t − α i)e i
.

Example:We solve the functional equation to give us F(t) = 1
1 − t − t2

. For a partial

fraction decomposition, let α = −1+
√
5

2 , β = −1−
√
5

2 the roots of the equation 1 − t −
t2 = 0.�en

F(t) = 1
1 − t − t2

= a

t − α
+ b

t − β

We solve this as a = −1/
√
5, b = 1/

√
(5).

Step 3:Use knownpower series to express each summandas apower series �e
geometric series gives us that

a

t − α
= ∑

n≥0

−a
αn+1 t

n

If there are multiple roots, denominators could arise in powers. For this we notice
that

1
(t − α)2 = ∑n≥0

(n + 1)
αn+2 tn

and for integral c ≥ 1 that
1

(t − 1)c = −1
c ∑
n≥0

(c + n − 1
n

)tn

Using these formulae, we can write each summand of the partial fraction de-
composition as an in�nite series.



III.2. LINEAR RECURSIONWITH CONSTANT COEFFICIENTS 23

Example: In the example we get

F(t) = −1√
5
1

t − α
+ 1√

5
1

t − β

= −1√
5
∑
n≥0

−1
αn+1 t

n + 1√
5
∑
n≥0

−1
βn+1 t

n

Step4:Combine toone sum, and reado�coe�cients Wenow take this (unique!)
power series expression and read o� the coe�cients.�e coe�cient of tn will be
fn , which gives us an explicit formula.
Example: Continuing the calculation above, we get

F(t) = ∑
n≥0

( 1√
5 ⋅ αn+1

+ −1√
5 ⋅ βn+1

) tn

and thus a closed formula for the Fibonacci numbers:

fn = 1√
5 ⋅ αn+1

+ −1√
5 ⋅ βn+1

= 1
√
5 ⋅ (−1+

√
5

2 )
n+1 +

−1
√
5 ⋅ (−1−

√
5

2 )
n+1

= 1√
5
⎛
⎝
( 2√
5 − 1

)
n+1

+ ( 2√
5 + 1

)
n+1⎞

⎠

We notice that 2√
5 − 1

> 2√
5 + 1

> 0, thus asymptotically

fn+1/ fn =
2√
5 − 1

= ϕ ≈ 1.618

the value of the golden ratio.

Another example

We try another example. Take the (somewhat random) recursion given by

g0 = g1 = 1
gn = gn−1 + 2 ⋅ gn−2 + (−1)n , for n ≥ 2

We get for the generating function

G(t) = ∑
n

gn t
n =∑

n≥1
gn−1 t

n + 2∑
n≥2

gn−2 t
n +∑

n≥0
(−1)n tn + t

= tG(t) + 2t2G(t) + 1
1 + t

+ t.



24 CHAPTER III. RECURRENCE AND GENERATING FUNCTIONS

Figure III.1: A 2 × 10 domino tiling

(you should verify that the addition of t was all that was required to resolve the
initial value settings.)
We solve this functional equation as

G(t) = 1 + t + t2

(1 − 2t)(1 + t)2

and get the partial fraction decomposition

G(t) = −7
18(t − 1

2 )
− 1
9(t + 1) +

1
3(t + 1)2 .

We can read o� the power series representation

G(t) = 7
18∑n

2n+1 tn + 1
9∑n

(−1)n+1 tn + 1
3∑n

−1n(n + 1)tn

= ∑
n

(7
9
2n − 1

9
(−1)n + 1

3
(−1)n(n + 1)) tn

= ∑
n

(7
9
2n + ( 1

3
n + 2
9
) (−1)n) tn ,

solving the recursion as gn = 7
92

n + ( 13n +
2
9) (−1)

n .

III.3 Nested Recursions: Domino Tilings

�e Domino�eory had become conventional
wisdom and was rarely challenged.

Diplomacy
Henry Kissinger

We apply the method of generating functions to some counting problems.
Suppose we have tiles that have dimensions 1×2 (in your favorite units) and we

want to tile a corridor. Let fn the number of possible tilings of a corridor that has
dimensions 2 × n. We can start on the le� with a vertical domino (thus leaving to
the right of it a tiling of a corridor of length n − 1) or with two horizontal dominos
(leaving to the right of it a corridor of length n − 2). this gives us the recursion

dn = dn−1 + dn−2 , n > 1
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Figure III.2: A tiling pattern that has no vertical cut

Figure III.3: Variants for a 3 × n tiling

with d1 = 1 and d2 = 2 (and thus d0 = 1 to �t the recursion).�is is just again the
Fibonacci numbers we have already worked out.
If we assume that the tiles are not symmetric, there are actually 2 ways to place

a horizontal tile and 2 ways to place a vertical tile. We thus get a recursion with
di�erent coe�cients,

dn = 2dn−1 + 4dn−2 , n > 1

with d1 = 2, d2 = 8 (and thus d0 = 1).
If we expand the corridor to dimensions 3×n , the recursion seems to be prob-

lematic – it is possible to have patterns or arbitrary length that do not reduce to a
shorter length, see �gure III.2.
We thus instead look only at the right end of the tiling and persuade ourselves

(going back to the assumption of symmetric tiles) that every tiling has to end with
one of the patterns depicted in the top row of �gure III.3.
Removing these end stones either produces a tiling of length n−2, or a tiling of

length n in which the top (or bottom) right corner is missing. We thus introduce a
count en for tilings of length n with the top right corner missing, the count for the
bottom right corner will by symmetry be the same.�is gives us the recursion

dn = dn−2 + 2 ⋅ en−1
�e introduction of the count en forces us to also get a description for these.

Consider a tiling with the top right corner missing. Its right end must be a vertical
tile or two horizontal tiles and thus look as in the bottom row of �gure III.3.
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�is gives us the recursion

en = dn−1 + en−2

We use the initial values d0 = 1, d1 = 0, d2 = 3, e0 = 0, e1 = 1, and thus get the
following identities for the associate generating functions

D(t) = ∑
n

dn t
n =∑

n>1
(dn−2 + 2en−1) tn + d0 + d1 t

= t2∑
n>1

dn−2 t
n−2 + 2t∑

n>1
en−1 t

n−1 + 1

= t2∑
n≥0

dn t
n + 2t(∑

n≥0
en t

n − e0 t
0) + 1

= t2D(t) + 2tE(t) + 1

and

E(t) = ∑
n

en t
n =∑

n>1
(dn−1 + e(n − 2)) tn + e0 + e1 t

= t(D(t) − d0) + t2E(t) + t = tD(t) + t2E(t)

We solve this second equation as

E(t) = t

1 − t2
D(t)

and substitute into the �rst equation, obtaining the functional equation

D(t) = t2D(t) + 2t2

1 − t2
D(t) + 1

which we solve for
D(t) = 1 − t2

1 − 4t2 + t4

�is is a function in t2, indicating that dn = 0 for odd n (indeed, this must be, as
in this case 3 × n is odd and cannot be tiled). We thus can consider instead the
function

R(t) = 1 − t

1 − 4t + t2
=∑

n

rn t
n

with d2n = rn . Partial fraction decomposition, geometric series, and �nal collection
of coe�cients gives us the formula

d2n = rn =
(2 +

√
3)n

3 −
√
3

+ (2 −
√
3)n

3 +
√
3

and the sequence of rn given by OEIS A001835

1, 3, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403, . . .

https://www.oeis.org/A001835
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III.4 Catalan Numbers

�e induction I used was pretty tedious,

but I do not doubt that this result could

be obtained much easier. Concerning the

progression of the numbers 1, 2, 5, 14, 42,

132, etc. . . .

Die Induction aber, so ich gebraucht,
war ziemlich mühsam, doch zwei�e ich
nicht, dass diese Sach nicht sollte weit
leichter entwickelt werden können.
Ueber die Progression der Zahlen 1, 2,
5, 14, 42, 132, etc. . . .

Letter to Goldbach
September 4, 1751
Leonard Euler

Next, we look at an example of a recursion which is not just linear and we ef-
fectively use the product rule:

Definition III.2:�e n-thCatalan number3 Cn OEIS A000108 is de�ned4 as the
number of ways a sum of n+ 1 variables can be evaluated by inserting parentheses.

Example III.3: We have C0 = C1 = 1, C2 = 2: (a+b)+ c and a+(b+ c), and C3 = 5:

((a + b) + c) + d

(a + (b + c)) + d

a + ((b + c) + d)
a + (b + (c + d))
(a + b) + (c + d)

To get a recursion, we consider the “outermost” addition, assume thus comes
a�er k+1 of the variables.�is addition combines two proper parenthetical expres-
sions, the one on the le� on k+1 variables, the one on the right on (n+1)−(k+1) =
n − k variables. We thus get the recursion

Cn =
n−1
∑
k=0

CkCn−k−1 , if n > 0, C0 = 1.

in which we sum over the products of lower terms.
�is is basically the pattern of the product rule, just shi�ed by one.
We thus get the functional equation

C(t) = t ⋅ C(t)2 + 1.

(which is easiest seen bywriting out the expression for tC(t)2 and collecting terms).
�e factor t is due to the way we index and 1 is due to initial values.

3Named in honor of Eugène Charles Catalan (1814-1894) who �rst stated the standard formula.
�e naming a�er Catalan only stems from a 1968 book, see http://www.math.ucla.edu/~pak/
papers/cathist4.pdf. Catalan himself attributed them to Segner, thoughEuler’swork is even earlier.

4Careful, some books use a shi�ed index, starting at 1 only!

https://www.oeis.org/A000108
http://www.math.ucla.edu/~pak/papers/cathist4.pdf
http://www.math.ucla.edu/~pak/papers/cathist4.pdf
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�is is a quadratic equation in the variable C(t) and we thus have

C(t) = 1 −
√
1 − 4t
2t

,

where we choose the branch of the root, for which for t = 0 we get the desired value
of C0.

�e binomial series then gives us that

√
1 − 4t =∑

k≥0
(1/2
k

)(−4t)k = 1 +∑
k≥1

1
2k

(−1/2
k − 1)(−4t)

k .

We conclude that

1 −
√
1 − 4t
2t

= ∑
k≥1

1
k
(−1/2
k − 1)(−4t)

k−1

= ∑
n≥0

(2n
n
) tn

n + 1 ,

in other words:
Cn = (2n

n
) 1
n + 1 .

Catalan numbers have many other combinatorial interpretations, and we shall
encounter some in the exercises. Exercise 6.19 in [Sta99] (and its algebraic contin-
uation 6.25, as well as an online supplement) contain hundreds of combinatorial
interpretations.

III.5 Index-dependent coe�cients and Exponential generating
functions

A recursion does not necessarily have constant coe�cient, but might have a coe�-
cient that is a polynomial in n. In this situation we can use (formal) di�erentiation,
which will convert a term fn t

n into n fn tn−1.�e second derivative will give a term
n(n − 1) fn tn−2; �rst and second derivative thus allow us to construct a coe�cient
n2 fn and so on for higher order polynomials.

�e functional equation for the generating function then becomes a di�erential
equation, and we might hope that a solution for it can be found in the extensive
literature on di�erential equations.
Alternatively, (that is we use the special form of derivatives for a typical sum-

mand), such a situation o�en can be translated immediately to a generating func-
tion by using the power series

1
(1 − t)k+1 =∑n

(n + k

n
)tn .
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For an example of variable coe�cients, we take the case of counting derange-
ments OEIS A000166 , that is permutations that leave no point �xed. We denote
by dn the number of derangements on {1, . . . , n}.
To build a recursion formula, suppose that π is a derangement on {1, . . . , n}.

�en nπ = i < n. We now distinguish two cases, depending on how i is mapped by
n:
a) If iπ = n, then π swaps i and n and is a derangement of the remaining n−2 points,
thus there are dn−2 derangements that swap i and n. As there are n − 1 choices for
i, there are (n − 1)dn−2 derangements that swap n with a smaller point.
b) Suppose there is j /= i such that jπ = n. In this case we can “bend” π into another
permutation ψ, by setting

kψ = { kπ if k /= j

i if k = j
.

We notice that ψ is a derangement of the points {1, . . . , n − 1}.
Vice versa, if ψ is a derangement on {1, . . . , n− 1}, and we choose a point j < n,

we can de�ne π on {1, . . . , n} by

kπ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

kψ if k /= i , n
n if k = j

jψ if k = n

.

We again notice that π is a derangement, and that di�erent choices ofψ and i result
in di�erent π’s. Furthermore, the two constructions are mutually inverse, that is
every derangement that is not in class a) is obtained by this construction.

�ere are dn−1 possible derangements ψ and n − 1 choices for j, so there are
(n − 1)dn−1 derangements in this second class.
We thus obtain a recursion

dn = (n − 1) (dn−1 + dn−2)

and hand-calculate5 the initial values d0 = 1 and d1 = 0.
From this recursion we could now construct a di�erential equation for the

generating function of dn , but there is a problem: Because of the factor n in the
recursion, the values dn grow roughly like n!.�e resulting series thus will have
convergence radius 0, making it unlikely that a function satisfying this di�erential
equation can be found in the literature.
We therefore introduce the exponential generating function which is de�ned

simply by dividing the i-th coe�cient by a factor of i!, thus keeping coe�cient
growth bounded.

5�e reader might have an issue with the choice of d0 = 1, as it is unclear what a derangement on
no points is. By going backwards to the recursion (using d2 and d1 to calculate d0), it turns out that this
is the right number to make the recursion work in case d0 is referred to.

https://www.oeis.org/A000166
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In our example, we get

D(t) =∑
n

dn

n!
tn

and thus

d
dt

D(t) =∑
n≥1

n ⋅ dn
n!

tn−1 =∑
n≥1

dn

(n − 1)! t
n−1 = ∑

n≥0

dn+1

n!
tn .

We also have

t ⋅ D(t) = ∑
n≥0

dn
tn+1

n!
= ∑

n≥0
(n + 1)dn

tn+1

(n + 1)!

= ∑
n≥1

n ⋅ dn−1
tn

n!
= ∑

n≥0
n ⋅ dn−1

tn

n!

t ⋅ D′(t) = ∑
n≥0

n ⋅ dn
n!

tn

From this, the recursion (in the form dn+1 = n(dn + dn−1)) gives us:

t ⋅ D(t) + t ⋅ D′(t) = ∑
n≥0

(n ⋅ dn−1 + n ⋅ dn)
tn

n!

= ∑
n≥0

dn+1
tn

n!
= D′(t),

and thus the separable di�erential equation

D′(t)
D(t) = t

1 − t
.

with D(0) = d0 = 1.
Standard techniques from Calculus give us the solution

D(t) = e−t

1 − t
.

Looking up this function for Taylor coe�cients (respectively determining the for-
mula by induction) shows that

D(t) = ∑
n≥0

(
n

∑
i=0

(−1)i
i!

) tn

and thus (introducing a factor n! to make up for the denominator in the generating
function) that

dn = n!(
n

∑
i=0

(−1)i
i!

) .
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�is is simply n! multiplied with a Taylor approximation of e−1. Indeed, if we
consider the di�erence, the theory for alternating series gives us for n ≥ 1 that:

∣dn −
n!
e
∣ = n! ∣

∞
∑

i=n+1

(−1)i
i!

∣

< n! ∣ (−1)
n+1

(n + 1)! ∣ =
1

n + 1 ≤
1
2

We have proven:

Lemma III.4: dn is the integer closest to n!/e.
�at is asymptotically, if we put letters into envelopes, the probability is 1/e that

no letter is in the correct envelope.

III.6 �e product rule, revisited

Exponential generating functions have onemore trick up their sleeve, and arguably
this is their most important contribution. For this, lets return to the product rule.
It corresponds to the situation that the objects of a certain weight can be described
in terms of combining objects of lower weights (that sum up to the desired weight)
in all possible ways.

�is splitting-up however only considers the number of (sub)objects in each
part, not which particular ones are in each part. In other words, we consider the
constituent objects as indistinguishable.

Suppose now, however, that we are counting objects whose parts have identi-
fying labels. In the example of the Catalan numbers this would be for example, if
we cared not only about the parentheses placement, but also about the symbols we
add, that is (a + b) + c would be di�erent from (c + a) + b.
In such a situation, the recursion formula will have to account for each k,which

k elements are chosen to be in the “le� side”, with the rest being in the“right side”.
�at is, the recursion becomes:

dn =
n

∑
k=0

(n
k
)akbn−k .

We can write this as
dn

n!
=

n

∑
k=0

ak

k!
bn−k

(n − k)! ,

which is the formula for multiplication of the exponential generating functions!

Lets look at this in a pathetic example, the number of functions from N =
{1, . . . , n} to {1, . . . , r} (which we know already well as rn).



32 CHAPTER III. RECURRENCE AND GENERATING FUNCTIONS

Let an count the number of constant functions on an n-element set, that is
an = 1.�e associated exponential generating function thus is

A(t) =∑
n

tn

n!
= exp(t)

(which, incidentally, shows why these are called “exponential” generating func-
tions).
If we take an arbitrary function f on N , we can partition N into r (possibly

empty) sets N1 , . . . ,Nr , such that f is constant on N i and the N i are maximal with
this property.
We get all possible functions f by combining constant functions on the possi-

ble N i ’s for all possible partitions of N . Note that the ordering of the partitions is
signi�cant – they indicate the actual values.
We are thus exactly in the situation described, and get as exponential generating

function (start with r = 2, then use induction for larger r) the r-fold product of the
exponential generating functions for the number of constant functions:

D(t) = exp(t) ⋅ ⋯ exp(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r factors

= exp(rt)

�e coe�cient for tn in the power series for exp(rt) of course is simply rn

n! , that is
the counting function is rn , as expected.

Bell Numbers

∫
3√3

1
z
2
dz × cos 3π

9
= log( 3√e)

�e integral z-squared dz,
From one to the cube root of three,
Times the cosine,
Of three pi over nine
Equals log of the cube root of e.

Anon.

Another example of this approach wil allow up to give an exponential gener-
ating function for the Bell numbers (though not a closed form expression for its
coe�cients):
Recall that the Bell numbers Bn are de�ned as giving the total number of par-

titions of {1, . . . , n} and are (Lemma III.1) satisfying the recursion:

Bn =
n

∑
k=1

(n − 1
k − 1)Bn−k =

n−1
∑
k=0

(n − 1
k

)Bn−1−k
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In light of the product rule, we insert a factor 1 and write this (a�er reindexing) as

Bn+1 =
n

∑
k=0

(n
k
)1 ⋅ Bn−k

and thus

∑
t

Bn+1

n!
tn =∑

t

(
n

∑
k=0

1
k!
⋅ Bn−k

(n − k)!) tn

If we denote the exponential generating function of the Bn by F(t) = ∑n Bn t
n/n!,

the right hand side thus will give the product of the generating function of the
constant sequence an = 1 (which we just saw is exp(t)) with F(t).�is re�ects the
split that gave us the recursion – into a set of size k containing the number 1 (the
total number of such sets being 1 once the numbers are chosen), and a partition of
the remaining numbers.

�e le� hand side is the exponential generating function of Bn+1 which is just
the derivative of F(t), thus we have that

d
dt

F(t) =∑
n≥1

Bn t
n−1

(n − 1)! = ∑n≥0
Bn+1 t

n

n!
= exp(t)F(t).

�is is again a separable di�erential equation, its solution is

F(t) = c ⋅ exp(exp(t))

for some constant c. As F(0) = 1 we solve for c = exp(−1) and thus get the expo-
nential generating function

∑
n

Bn t
n

n!
= exp(exp(t) − 1).

�ere is no nice way to express the power series coe�cients of this function in
closed form, a Taylor approximation is (with denominators being deliberately kept
in the form of n! to allow reading o� the Bell numbers):

1 + t + 2t
2

2!
+ 5t

3

3!
+ 15t

4

4!
+ 52t

5

5!
+ 203t

6

6!
+ 877t

7

7!
+ 4140t

8

8!
+ 21147t

9

9!
+ 115975t

10

10!
.

One, somewhat surprising application of Bell numbers is to consider rhyme
schemes. Given a sequence of n lines, the lines which rhyme form the cells of a
partition of {1, . . . , n}. For example, the partition {{1, 2, 5}, {3, 4}} is the scheme
used by Limericks.
We can read o� that B5 = 52. �e classic 11th century Japanese novel Genji

monogatari (�e Tale ofGenji) has 54 chapters of which �rst and last are considered
“extra”.�e remaining 52 chapters are introduced each with a poem in one of the
52 possible rhyme schemes and a symbol illustrating the scheme.�ese symbols,
see �gure III.4, the Genji-mon, have been used extensively in Art. See https://
www.viewingjapaneseprints.net/texts/topics_faq/genjimon.html

https://www.viewingjapaneseprints.net/texts/topics_faq/genjimon.html
https://www.viewingjapaneseprints.net/texts/topics_faq/genjimon.html
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Figure III.4:�e Genji-mon

ja.wikipedia.org

Stirling Numbers

We apply the same idea to the Stirling numbers of the second kind, S(n, k) denot-
ing the number of partitions of n into k (non-empty) parts. According to II.10, part
3) there are k!S(n, k) order-signi�cant partitions of n into k parts.
Wedenote the associated exponential generating function (for order-signi�cant

partitions) by

Sk(t) =∑
n

k!S(n, k) t
n

n!
.

We also know that there is – apart from the empty set – exactly one partition into
one cell.�at is

S1(t) = t + t2

2!
+ t3

3!
+ ⋅ ⋅ ⋅ = exp(t) − 1

If we have a partition into k-parts, we can �x the �rst cell and then partition the
rest further.�us, for k > 1 we have that

Sk(t) = S1(t) ⋅ Sk−1(t),

which immediately gives that

Sk(t) = (exp(t) − 1)k

We deduce that the Stirling numbers of the second kind have the exponential gen-
erating function

∑
n

S(n, k) t
n

n!
= (exp(t) − 1)k

k!
.

ja.wikipedia.org
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Using the fact that Bn = ∑n
k=1 S(n, k), we thus get the exponential generating func-

tion for the Bell numbers as

∑
n

Bn

tn

n!
= ∑

k

∑
n

S(n, k) t
n

n!

= ∑
k

(exp(t) − 1)k
k!

= exp(exp(t) − 1)

in agreement with the above result.

We also can use the exponential generating function for the Stirling numbers
to deduce a coe�cient formula for them:

Lemma III.5:

S(n, k) = 1
k!

k

∑
i=1

(−1)k−i(k
i
)in .

Proof: We �rst note that – as 0n = 0 – the i-sum could start at 1 or 0 alternatively
without changing the result.

�en multiplying through with k!, we know by the binomial formula that

k!∑
n

S(n, k) t
n

n!
= (exp(t) − 1)k =

k

∑
i=0

(k
i
) exp(t)i(−1)k−i

=
k

∑
i=0

(k
i
) exp(i ⋅ t)(−1)k−i =

k

∑
i=0

(k
i
)(∑

n

(it)n
n!

)(−1)k−i

= ∑
n

(
k

∑
i=0

(k
i
)(−1)k−i in) tn

n!
.

and we read o� the coe�cients. ◻

Involutions

Finally, lets use this in a new situation:

Definition III.6: Apermutation π on {1, . . . , n} is called6 an involution OEIS A000085
if π2 = 1, that is (iπ)π = i for all i.

We want to determine the number sn of involutions on n points.
�e reduction we shall use is to consider the number of cycles of the involu-

tion, also counting 1-cycles. Let sr(n) the number of involutions that have exactly r
cycles. Clearly s0(0) = 1, s1(0) = 0, s1(1) = 1, s1(2) = 1 which gives the exponential
generating function S1(t) = t + t2

2 .
6Group theorists o�en exclude the identity, but it is convenient to allow it here.

https://www.oeis.org/A000085
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When considering an arbitrary involution, we can split o� a cycle, seemingly
leading to a formula

(t + t2

2
)
r

for Sr(t). However doing so distinguishes the cycles in the order they were split
o�, that is we need to divide by r! to avoid overcounting.�us

Sr(t) =
1
r!

(t + t2

2
)
r

and thus for the exponential generating function of the number of involutions a
sum over all possible r:

S(t) =
∞
∑
r=0

Sr(t) =∑
r

1
r!

(t + t2

2
)
r

= exp(t + t2

2
) = exp(t) exp( t

2

2
) .

We easily write down power series for the two factors

exp(t) = ∑
n

tn

n!

exp( t
2

2
) = ∑

n

t2n

2n ⋅ n!

and multiply out, yielding

S(t) = (∑
n

t2n

2n ⋅ n!) ⋅ (∑n
tn

n!
)

= ∑
m

⌊m/2⌋

∑
k=0

t2k tm−2k

2kk!(m − 2k)!

and thus (again introducing a factor of n! for making up for the exponential gen-
erating function)

sn =
⌊m/2⌋

∑
k=0

n!
2kk!(n − 2k)! .



Chapter

IV

Inclusion, Incidence, and
Inversion

It is calculus exam week and, as every time, a number of students were reported to
require alternate accommodations:

• 14 students are sick.
• 12 students are scheduled to play for the university Quiddich team at the
county tournament.

• 12 students are planning to go on the restaurant excursion for the food ap-
preciation class.

• 5 students on the Quiddich team are sick (having been hit by balls).
• 4 students are scheduled for the excursion and the tournament.
• 3 students of the food appreciation class are sick (with food poisoning), and
• 2 of these students also planned to go to the tournament, i.e. have all three
excuses.

�e course coordinator wonders how many alternate exams need to be provided.
Using a Venn diagram and some trial-and-error, it is not hard to come up with

the diagram in �gure IV.1, showing that there are 28 alternate exams to o�er.

IV.1 �e Principle of Inclusion and Exclusion

By the method of exclusion, I had arrived at
this result, for no other hypothesis would meet
the facts.

A Study in Scarlet
Arthur Conan Doyle

37
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2

2

3

1

58

7

Sick

Excursion

Quiddich

Figure IV.1: An example of Inclusion/Exclusion

�e Principle of Inclusion and Exclusion (PIE) formalizes this process for an
arbitrary number of sets:
Let X be a set and {A1 , . . . ,An} a family of subsets. For any subset I ⊂ {1, . . . , n}

we de�ne
AI =⋂

i∈I
A i ,

using that A∅ = X.�en

Lemma IV.1:�e number of elements that lie in none of the subsets A i is given by

∑
I⊂{1, . . . ,n}

(−1)∣I∣ ∣AI ∣ .

Proof: Take x ∈ X and consider the contribution of this element to the given sum.
If x /∈ A i for any i, it only is counted for I = ∅, that is contributes 1.
Otherwise let J = {1 ≤ a ≤ n ∣ x ∈ Aa} and let j = ∣J∣. We have that x ∈ AI if

and only if I ⊂ J.�us x contributes

∑
I⊂J

(−1)∣I∣ =
j

∑
i=0

( j
i
)(−1)i = (1 − 1) j = 0

◻

As a �rst application we determine the number of derangements on n points in
an di�erent way:
Let X = Sn be the set of all permutations of degree n, and let A i be the set of

all permutations π with iπ = i.�en Sn ∖⋃i A i is exactly the set of derangements,
there are (n

i
) possibilities to intersect i of the A i ’s, and the formula gives us:

d(n) =
n

∑
i=0

(−1)i(n
i
)(n − i)! = n!

n

∑
i=0

(−1)i
i!
.
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For a second example, we calculate the number of surjective mappings from an
n-set to a k-set (which we know already from II.10 to be k!S(n, k)):
Let X be the set of all mappings from {1, . . . , n} to {1, . . . , k}, then ∣X∣ = kn .

Let A i be the set of those mappings f , such that i is not in the image of f , so ∣A i ∣ =
(k−1)n . More generally, if I ⊂ {1, . . . k}we have that ∣AI ∣ = (k−∣I∣)n .�e surjective
mappings are exactly those in X outside any of the A i , thus the formula gives us
the count

k

∑
i=0

(−1)i(k
i
)(k − i)n ,

using again that there are (k
i
) possible sets I of cardinality i.

�e factor (−1)i in a formula o�en is a good indication that inclusion/exclusion
is to be used.

Lemma IV.2:

n

∑
i=0

(−1)i(n
i
)(m + n − i

k − i
) = { (m

k
) if m ≥ k,

0 if m < k.

Proof: To use PIE, the sets A i need to involve choosing from an n, set, and a�er
choosing i of these we must choose from a set of size m + n − i.
Consider a bucket �lled with n blue balls, labeled with 1, . . . , n, andm red balls.

Howmany selections of k balls only involve red balls? Clearly the answer is the right
hand side of the formula.
Let X be the set of all k-subsets of balls and A i those subsets that contain blue

ball number i, then PIE gives the le� side of the formula. ◻

We �nish this section with an application from number theory.�e Euler func-
tion φ(n) counts the number of integers 1 ≤ k ≤ n with gcd(k, n) = 1.
Suppose that n = ∏r

i=1 p
e i
i , X = {1, . . . , n} and A i the integers in X that are

multiples of p i .�en (inclusion/exclusion)

φ(n) = n −
r

∑
i=1

n

p i
+ ∑
1≤i , j≤r

n

p i p j

−⋯ = n∏(1 − 1
p i

) .

with the second identity obtained by multiplying out the product,
We also note – exercise ?? – that ∑

d∣n φ(d) = n. �at is, the sum over one

function over a nice index set is another (easier) function. We will put this into
larger context in later sections.
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a) b) c) d) e) f)

g) h) i) j) k) l)

Figure IV.2: Hasse Diagrams of Small Posets and Lattices

IV.2 Partially Ordered Sets and Lattices

�e doors are open; and the surfeited grooms
Do mock their charge with snores:
I have drugg’d their possets,
�at death and nature do contend about them

Macbeth, Act II, Scene II
William Shakespeare

A poset or partially ordered set is a set A with a relation R ⊂ A × A on the
elements of Awhich we will typically write as a ≤ b instead of (a, b) ∈ R, such that
for all a, b, c ∈ A:

(re�exive) a ≤ a.

(antisymmetric) a ≤ b and b ≤ a imply that a = b.

(transitive) a ≤ b and b ≤ c imply that a ≤ c.

�e elements of a poset thus are the elements of A, not those of the underlying
relation and is cardinality is that of A.
For example, A could be the set of subsets of a particular set, and ≤ with be the

“subset or equal” relation.
A convenient way do describe a poset for a �nite set A is by its Hasse-diagram.

Say that a covers b if a ≥ b, a /= b and there is no a /= c =/= b with a ≥ c ≥ b.�e
Hasse diagram of the poset is a graph in the plane which connects two vertices a
and b only if a covers b, and in this case the edge from b to a goes upwards.
Because of transitivity, we have that a ≤ b if and only if one can go up along

edges from a to reach b.
Figure IV.2 gives a number of examples of posets, given by their Hasse dia-

grams, including all posets on 3 elements.

An isomorphism of posets is a bijection that preserves the ≤ relation.
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Figure IV.3: Fruits, arranged by subjective taste and ease-of-use

R. Munroe, F*** Grapefruit, https://xkcd.com/388/, and [AU17], p.108

An element in a poset is called maximal if there is no larger (wrt. ≤) element,
minimal is de�ned in the same way. Posets might have multiple maximal and min-
imal elements.
For another cute example 1 consider in Figure IV.3, le�, the arrangement of

fruits according to convenience and taste, as given by2 https://xkcd.com/388/.
We can read of a partial order from this by declaring a fruit as “better” than

another, if it both more tasty and easier to consume.�e resulting Hasse diagram
is on the right side of Figure IV.3. It is easily seen that not every pair of fruits is
comparable this way, and that there is no universal “best” or “worst” fruit.

Linear extension

My scheme of Order gave me the most trouble

Autobiography
Benjamin Franklin

A partial order is called a total order, if for every pair a, b ∈ A of elements we
have that a ≤ b or b ≤ a.
While this is not part of our de�nition, we can always embed a partial order

into a total order.

1Taken from lecture notes [AU17]
2pardon the title of the cartoon

https://xkcd.com/388/
https://xkcd.com/388/


42 CHAPTER IV. INCLUSION, INCIDENCE, AND INVERSION

Proposition IV.3: Let R ⊂ X × X be a partial order on X.�en there exists a total
order (called a linear extension) T ⊂ X × X such that R ⊂ T .

To avoid set acrobatics we shall prove this only in the case of a �nite set X.
Note that in Computer science the process of �nding such an embedding is called
a topological sorting.
Proof: We proceed by induction over the number of pairs a, b that are incompara-
ble. In the base case we already have a total order.
Otherwise, let a, b such an incomparable pair. We set (arbitrarily) that a < b.

Now let
L = {x ∈ X ∣ x ≤R a},U = {x ∈ X ∣ b ≤R x}

We claim that S = R ∪ {(l , u) ∣ l ∈ L, u ∈ u} is a partial order. As (a, b) ∈ S it has
fewer incomparable pairs, this shows by induction that there exists a total order
T ⊃ S ⊃ R, proving the theorem.
Since R is re�exive, S is. For antisymmetry, suppose that for x /= y we have that

(x , y), (y, x) ∈ S. Since R is a partial order, not both can be in R. Suppose that

(x , y), (y, x) ∈ S ∖ R = {(l , u) ∣ l ∈ L, u ∈ u}.

�is implies that x ≤R a and b ≤R x, thus by transitivity b ≤R a, contradicting the
incomparability.
If (x , y) ∈ R, (y, x) ∈ S∖R, we have that b ≤R x ≤R y ≤R a, again contradicting

incomparability.
For transitivity, suppose that (x , y) ∈ S ∖ R and (y, z) ∈ S.�en (y, z) ∈ R, as

otherwise b ≤R y ≤R a. But then b ≤R y ≤R z, implying that (x , z) ∈ S.�e other
case is analog. ◻

�is theorem implies that we can always label the elements of a countable poset
with positive integers, such that the poset ordering implies the integer ordering.
Such an embedding is in general not unique, see�eorem IV.16.

�e case of a totally ordered subset gets a special name:

Definition IV.4: A chain in a poset P is a subset of P such that any two elements
of it are comparable. (�at is, restricted to the chain the order is total.)

Lattices

Definition IV.5: Let A be a poset and a, b ∈ A.

• A greatest lower bound of a and b is an element c ≤ a, b which is maximal in
the set of elements with this property.

• A least upper bound of a and b is an element c ≥ a, b which is minimal in the
set of elements with this property.
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A is a lattice if any pair a, b ∈ A have a unique greatest lower bound, called the
meet and denoted by a∧ b; as well as unique least upper bound, called the join and
denoted by a ∨ b.

Amongst the Hasse diagrams in �gure IV.2, e,j,k,l) are lattices, while the others
are not. Lattices always have unique maximal and minimal elements, sometimes
denoted by 0 (minimal) and 1 (maximal).
Other examples of lattices are:

1. Given a set X, let A = P(X) = {Y ⊆ X} the power set of X with ≤ de�ned
by inclusion. Meet is the intersection, join the union of subsets.

2. Given an integer n, let A be the set of divisors of n with ≤ given by “divides”.
Meet and join are gcd, respectively lcm.

3. For an algebraic structure S, let A be the set of all substructures (e.g. group
and subgroups) of S and ≤ given by inclusion. Meet is the intersection, join
the substructure spanned by the two constituents.

4. For particular algebraic structures there might be classes of substructures
that are closed under meet and join, e.g. normal subgroups.�ese then form
a (sub)lattice.

Using meet and join as binary operations, we can axiomatize the structure of a
lattice:

Proposition IV.6: Let X be a set with two binary operations ∧ and ∨ and two
distinguished elements 0, 1 ∈ X.�en (X ,∧,∨, 0, 1) is a lattice if and only if the
following axioms are satis�es for all x , y, z ∈ X:

Associativity: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z;

Commutativity: x ∧ y = y ∧ x and x ∨ y = y ∨ x;

Idempotence: x ∧ x = x and x ∨ x = x;

Inclusion: (x ∨ y) ∧ x = x = (x ∧ y) ∨ x;

Maximality: x ∧ 0 = 0 and x ∨ 1 = 1.

Proof:�e veri�cation that these axioms hold for a lattice is le� as exercise to the
reader.
Vice versa, assume that these axiomshold.Weneed to produce a poset structure

and thus de�ne that x ≤ y i� x ∧ y = x. Using commutativity and inclusion this
implies the dual property that x ∨ y = (x ∧ y) ∨ y = y.
To show that ≤ is a partial order, idempotence shows re�exivity. If x ≤ y and

y ≤ x then x = x ∧ y = y∧ x = y and thus antisymmetry. Finally suppose that x ≤ y

and y ≤ z, that is x = x ∧ y and y = y ∧ z.�en

x ∧ z = (x ∧ y) ∧ z = x ∧ (y ∧ z) = x ∧ y = x
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and thus x ≤ z. Associativity gives us that x ∧ y ≤ x , y if also z ≤ x , y then

z ∧ (x ∧ y) = (z ∧ x) ∧ y = z ∧ y = z

and thus z ≤ x ∧ y, thus x ∧ y is the unique greatest lower bound.�e least upper
bound is proven in the same way and the last axiom shows that 0 is the unique
minimal and 1 the unique maximal element. ◻

Definition IV.7: An element x of a lattice L is join-irreducible (JI) if x /= 0 and if
x = y ∨ z implies that x = y or x = z.

For example, �gure IV.4 shows a lattice in which the black vertices are JI, the
others not.
Example: If we take the lattice of subsets of a set, the join-irreducibles are the 1-
element sets. If we take divisors of n, the join-irreducibles are prime powers.
When representing elements of a �nite lattices, it is possible to do so by storing

the JI elements once and representing every element based on the JI elements that
are below. �is is used for example in one of the algorithms for calculating the
subgroups of a group.

Product of posets

�e cartesian product provides a way to construct new posets (or lattices) from old
ones: Suppose that X ,Y are posets with orderings ≤X , ≤Y , we de�ne a partial order
on X × Y by setting

(x1 , y1) ≤ (x2 , y2) if and only if x1 ≤X x2 and y1 ≤Y≤ y2 .

Proposition IV.8:�is is a partial ordering, so X × Y is a poset. If furthermore
both X and Y are lattices, then so is X × Y .

�e proof of this is exercise ??.
�is allows us to describe two familiar lattices as constructed from smaller

pieces (with a proof also delegated to the exercises):

Proposition IV.9: a) Let ∣A∣ = n andP(A) the power-set lattice (that is the subsets
of A, sorted by inclusion).�en P(A) is (isomorphic to) the direct product of n
copies of the two element lattice {0, 1}.
b) For an integer n =∏r

i=1 p
e i
i > 1 written as a product of powers of distinct primes,

letD(n) be the lattice of divisors of n.�enD(n) ≅ D(pe11 ) ×⋯ ×D(perr ).



IV.3. DISTRIBUTIVE LATTICES 45

Figure IV.4: Order-ideal lattice for the “N” poset.

IV.3 Distributive Lattices

A lattice L is distributive, if for any x , y, z ∈ L one (and thus also the other) of the
two following laws hold:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Example:�ese laws clearly hold for the lattice of subsets of a set or the lattice of
divisors of an integer n.
Lattices of substructures of algebraic structures are typically not distributive,

the easiest example (diagram l) in �gure IV.2) is the lattice of subgroups of C2 ×C2
which also is the lattice of subspaces of F22 .

If P = (X , ≤) is a poset, a subset Y ≤ X is an order ideal, if for any y ∈ Y and
z ∈ X we have that z ≤ y implies z ∈ Y .
Lemma IV.10:�e set of order ideals is closed under union and intersection.

Proof: Let A, B be order ideals and y ∈ A ∪ B and z ≤ y.�en y ∈ A or y ∈ B. In
the �rst case we have that z ∈ A, in the second case that z ∈ B, and thus always
z ∈ A∪ B.�e same argument also works for intersections. ◻

�is implies:

Lemma IV.11:�e set of order ideals of P, denoted by J(P) is a lattice under inter-
section and union.

As a sublattice of the lattice of subsets, J(P) is clearly distributive.
For example, if P is the poset on 4 elements with a Hasse diagram given by the

letter N (�gure IV.2, g) then �gure IV.4 describes the lattice J(P).
In fact, any �nite distributive lattice can be obtained this way
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Theorem IV.12 (Fundamental�eorem for FiniteDistributive Lattices, Birkhoff):
Let L be a �nite distributive lattice.�en there is a unique (up to isomorphism) �-
nite poset P, such that L ≅ J(P).
To prove this theorem we use the following de�nition:

Definition IV.13: For any element x of the poset P, let ↓ x = {y ∣ y ≤ x} be the
principal order ideal generated by x.

Lemma IV.14: An order ideal of a �nite poset P is join irreducible in J(P) if and
only it is principal.

Proof: First consider a principal order ideal ↓ x and suppose that ↓ x = b ∨ c with
b and c being order ideals.�en x ∈ b or x ∈ c, which by the order ideal property
implies that ↓ x ⊂ b or ≤ x ⊂ c.
Vice versa, suppose that a is a join irreducible order ideal and assume that

a is not principal. �en for any x ∈ a, ↓ x is a proper subset of a. But clearly
a = ⋃x∈a ↓ x. ◻

Corollary IV.15: Given a �nite poset P, the set of join-irreducibles of J(P), con-
sidered as a subposet of J(P), is isomorphic to P.
Proof: Consider the map that maps x to ↓ x. It maps P bijective to the set of join-
irreducibles, and clearly preserves inclusion. ◻

We now can prove theorem IV.12
Proof: Given a distributive lattice L, let X be the set of join-irreducible elements of
L and P be the subposet of L formed by them. By corollary IV.15, this is the only
option for P up to isomorphism, which will show uniqueness.
Let ϕ∶ L → J(P) be de�ned by ϕ(a) = {x ∈ X ∣ x ≤ a}, that is it assigns to every

element of L the JI elements below it. (Note that indeed ϕ(a) is an order ideal.).
We want to show that ϕ is an isomorphism of lattices.
Step1: Clearly we have that a = ⋁x∈ϕ(a) x for any a ∈ L (using the join over the

empty set equal to 0).�us ϕ is injective.
Step 2: To show that ϕ is surjective, let Y ∈ J(P) be an order ideal of P, and let

a = ⋁y∈Y y. We aim to show that ϕ(a) = Y : Clearly every y ∈ Y also has y ≤ a, so
Y ⊂ ϕ(a). Next take a join irreducible x ∈ ϕ(a), that is x ≤ a.�en x ≤ ⋁y∈Y y and
thus

x = x ∧
⎛
⎝⋁y∈Y

y
⎞
⎠
= ⋁

y∈Y
(x ∧ y)

by the distributive law. Because x is JI, we must have that x = x ∧ y for some y ∈ Y ,
implying that x ≤ y. But asY is an order ideal this implies that x ∈ Y .�us ϕ(a) ⊂ Y

and thus equality, showing that ϕ is surjective.
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Step 3: We �nally need to show that ϕ maps the lattice operations: Let x ∈ X.
�en x ≤ a ∧ b if and only if x ≤ a and x ≤ b.�us ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b).
For the join, take x ∈ ϕ(a) ∪ ϕ(b).�en x ∈ ϕ(a), implying x ≤ a, or (same

argument) x ≤ b; therefore x ≤ a ∨ b. Vice versa, suppose that x ∈ ϕ(a ∨ b), so
x ≤ a ∨ b and thus

x = x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b).

Because x is JI that implies x = x ∧ a, respectively x = x ∧ b.
In the �rst case this gives x ≤ a and thus x ∈ ϕ(a); the second case similarly

gives x ∈ ϕ(b). ◻

We close with a further use of the order ideal lattice:

Theorem IV.16: Let P be a poset of sizem.�e number of di�erent linear orderings
of P is equal to the number of di�erent chains of (maximal) length m in J(P).
Proof: Exercise. ◻

IV.4 Chains, Antichains, and Extremal Set�eory

Man is born free;
and everywhere he is in chains

�e Social Contract
Jean-Jacques Rousseau

We start with a de�nition dual to that of a chain:

Definition IV.17: An antichain in a poset is a subset, such that any two (di�erent)
elements are incomparable.

We shall consider partitions of (the elements of) a poset into a collection of
chains (or of antichains).
Clearly a chain C and antichain A can intersect in at most one element.�is

gives the following duality:

Lemma IV.18: Let P be a poset.
a) If P has a chain of size r, then it cannot be partitioned in fewer than r antichains.
b) If P has an antichain of size r, then it cannot be partitioned in fewer than r chains.

A stronger version of this goes usually under the name of Dilworth’s theo-
rem3.

3proven earlier by Gallai and Milgram



48 CHAPTER IV. INCLUSION, INCIDENCE, AND INVERSION

Theorem IV.19 (Dilworth, 1950):�e minimum number m of chains in a par-
tition of a �nite poset P is equal to the maximum number M of elements in an
antichain.

Proof:�e previous lemma shows thatm ≥ M, so we only need to show that we can
partition P intoM chains. We use induction on ∣P∣, in the base case ∣P∣ = 1 nothing
needs to be shown.
Consider a chain C in P of maximal size. If every antichain in P ∖ C contains

at most M − 1 elements, we apply induction and partition P ∖ C into M − 1 chains
and are done.

�us assume now that {a1 , . . . , aM} was an antichain in P ∖ C. Let

S− = {x ∈ P ∣ x ≤ a i for some i}
S+ = {x ∈ P ∣ x ≥ a i for some i}

�en S− ∪ S+ = P, as there otherwise would be an element we could add to the
antichain and increase its size.
As C is of maximal size, the largest element of C cannot be in S−, and thus

we can apply induction to S−. As there is an antichain of cardinality M in S−, we
partition S− intoM disjoint chains.
Similarly we partition S+ into M disjoint chains. But each a i is maximal ele-

ment of exactly one chain in S− and minimal element of exactly one chain of S+.
We can combine these chains at the a i ’s and thus partition P intoM chains. ◻

Corollary IV.20: If P is a poset with nm + 1 elements, it has a chain of size n + 1
or an antichain of size m + 1.
Proof: Suppose not, then every antichain has at most m elements and by Dil-
worth’s theorem we can partition P intom chains of size ≤ n each, so ∣P∣ ≤ mn. ◻

Corollary IV.21 (Erdős-Szekeres, 1935): Every sequence of nm + 1 distinct in-
tegers contains an increasing subsequence of length at least n + 1, or a decreasing
subsequence of at length least m + 1.
Proof: Suppose the sequence is a1 , . . . , aN with N = nm + 1. We construct a poset
on N elements x1 , . . . , xN by de�ning x i ≤ x j if and only if i ≤ j and a i ≤ a j . (Verify
that it is a partial order!) ◻

�e theorems of this section in fact belong into a bigger context that has its own
chapter, chapter V, devoted to.

A similar argument applies in the following two famous theorems:
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Theorem IV.22 (Sperner, 1928): Let N = {1, . . . , n} and A1 , . . .Am ⊂ N , such that
A i /⊂ A j if i /= j.�en m ≤ ( n

⌊n/2⌋).

Proof: Consider the poset of subsets of N and letA = {A1 , . . . ,Am}.�enA is an
antichain.
Amaximal chain C in this poset will consist of sets that iteratively add one new

point, so there are n! maximal chains, and k!(n − k)! maximal chains that involve
a particular k-subset of N .
We now count the pairs (A, C) such that A ∈ A and C is a maximal chain with

A ∈ C. As a chain can contain at most one element of an antichain this is at most
n!.
On the other hand, denoting by ak the number of sets A i with ∣A i ∣ = k, we

know there are

n! ≥
n

∑
k=0

k!(n − k)!ak = n!
⎛
⎝

n

∑
k=0

ak

(n
k
)
⎞
⎠

such pairs. As (n
k
) is maximal for k = ⌊n/2⌋ we get

( n

⌊n/2⌋) ≥ ( n

⌊n/2⌋)
n

∑
k=0

ak

(n
k
)
≥

n

∑
k=0

ak = m.

◻

We note that equality is achieved ifA is the set of all ⌊n/2⌋-subsets of N .

Theorem IV.23 (Erdős-Ko-Rado, 1961): LetA = {A1 , . . . ,Am} a collection of m
distinct k-subsets of N = {1, . . . , n}, where k ≤ n/2, such that any two subsets have
nonempty intersection.�en m ≤ (n−1

k−1).
Proof: Consider “cyclic k-sequences” F = {F1 , . . . , Fn} with Fi = {i , i + 1, . . . , i +
k − 1}, taken “modulo n” (that is each number should be ((x − 1) mod n) + 1).
Note that A ∩ F ≤ k, since if some Fi equals A j , then any only other Fl ∈ A

must intersect Fi , so we only need to consider (again considering indices modulo
n) Fl for i − k + 1 ≤ l ≤ i + k − 1. But Fl will not intersect Fl+k , allowing at most for
a set of k subsequent Fi ’s to be inA.
As this holds for an arbitrary A, the result remains true a�er applying any ar-

bitrary permutation π to the numbers in F .�us

z ∶= ∑
π∈Sn

∣A ∩F π ∣ ≤ k ⋅ n!

We now calculate the sum z by �xing A j ∈ A, Fi ∈ F and observe that there are
k!(n − k)! permutations π such that Fπ

i = A j .�us z = m ⋅ n ⋅ k!(n − k)!, proving
the theorem. ◻
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IV.5 Incidence Algebras and Möbius Functions

A common tool in mathematics is to consider instead of a set S the set of functions
de�ned on S. To use this paradigm for (�nite) posets, de�ne an interval on a poset
P as a set of elements z such that x ≤ z ≤ y for a given pair x ≤ y, and denote by
Int(P) the set of all intervals.
For a �eld K, we shall consider the set of functions on the intervals:

I(P) = I(P,K) = { f ∶ Int(P)→ K}

and call it the incidence algebra of P.�is set of functions is obviously a K-vector
space under pointwise operations. We shall denote intervals by their end points
x , y and thus write f (x , y) ∈ I(P).
We also de�ne a multiplication on I(P) by de�ning, for f , g ∈ I(P) a function

f g by
( f g)(x , y) = ∑

x≤z≤y
f (x , z)g(z, y)

In exercise ??wewill show that with this de�nition I(P) becomes an associative
K-algebra4 with a one, given by

δ(x , y) = { 1 x = y

0 x /= y
.

We could consider I(P) as the set of formal K-linear combinations of intervals
[x , y] and a product de�ned by

[x , y][a, b] = { [x , b] a = y

0 a /= y
,

and extended bilinearily.
If P is �nite, we can, by theorem IV.3, arrange the elements of P as x1 , . . . , xn

where x i ≤ x j implies that i ≤ j.�en I(P) is, by exercise ?? isomorphic to the
algebra of upper triangular matricesM = (m i , j) where m i , j = 0 if x i /≤ x j .

Lemma IV.24: Let f ∈ I(P).�en f has a (two-sided) inverse if and only if f (x , x) /=
0 for all x ∈ P.
Proof:�e property f g = δ is equivalent to:

f (x , x)g(x , x) = 1 for all x ∈ P,

(implying the necessity of f (x , x) /= 0) and

g(x , y) = − f (x , x)−1 ∑
x<z≤y

f (x , z)g(z, y).

4An algebra is a structure that is both a vector space and a ring, such that vector space and ring
operations interact as one would expect.�e prototype is the set of matrices over a �eld.



IV.5. INCIDENCE ALGEBRAS ANDMÖBIUS FUNCTIONS 51

If f (x , x) /= 0 the second formula will de�ne the values f −1 uniquely, depending
only on the interval [x , y]. Reverting the roles of f and g shows the existence of a
le� inverse and standard algebra shows that both have to be equal. ◻

�e zeta function of P is the characteristic function of the underlying relation,
that is ζ(x , y) = 1 if and only if x ≤ y (and 0 otherwise).

�is implies that

ζ2(x , y) = ∑
x≤z≤y

ζ(x , z)ζ(z, y) = ∑
x≤z≤y

1 = ∣{z ∣ z ≤ z ≤ y}∣ .

By Lemma IV.24, ζ is invertible.�e inverse µ = ζ−1 is called theMöbius func-

tion of the lattice P.�e identities

µ(x , x) = 1 (IV.25)
µ(x , y) = − ∑

x≤z<y
µ(x , z) (IV.26)

follow from µζ = δ and allow for a recursive computation of values of µ and imply
that µ is integer-valued.

For illustration, we shall compute the Möbius function for a number of com-
mon posets.

Lemma IV.27: Let P be the total order on the numbers {1, . . . , n}. �en for any
x , y ∈ P we have:

µ(x , y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if x = y

−1 if x + 1 = y

0 otherwise
Proof: �e case of x = y is trivial. If x + 1 = y, the sum in IV.26 has only one
summand, and the result follows.�us assume that x ≤ y but y /∈ {x , x + 1}.�en

µ(x , y) = −µ(x , x) − µ(x , x + 1) − ∑
x+2≤z<y

µ(x , z) = − ∑
x+2≤z<y

µ(x , z)

and the result follows by induction on y − x. ◻

Lemma IV.28: If P, Q are posets, the Möbius function on P × Q satis�es

µ((x1 , y1), (x2 , y2)) = µP(x1 , x2)µQ(y1 , y2)

Proof: It is su�cient to verify that the right hand side of the equation satis�es IV.26.
◻

Together with�eorem IV.9 and Lemma IV.27 we get
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Corollary IV.29: a) For X ,Y ∈ P(A), we have that µ(X ,Y) = −1∣Y ∣−∣X∣ if X ⊆ Y ,
and 0 otherwise.
b) If x , y are divisors of n, then inD(n) we have that µ(x , y) = (−1)d if y/x is the
product of d di�erent primes, and 0 otherwise.

Part b) explains the name: µ(1, n) is the value of the classical number theoretic
Möbius function.
Part a) connects us back to section IV.1: �e Möbius function gives the co-

e�cients for inclusion/exclusion over an arbitrary poset. We will investigate and
clarify this further in the rest of this section.

Möbius inversion

�e property of being inverse of the incidence function can be used to invert sum-
mation formulas with the aid of the Möbius function:

Theorem IV.30 (Möbius inversion formula): Let P be a �nite poset, and f , g∶ P →
K, where K is a �eld.�en

g(t) =∑
s≤t

f (s) for all t ∈ P

is equivalent to
f (t) =∑

s≤t
g(s)µ(s, t) for all t ∈ P.

Proof: Let KP be the K-vector space of functions P → K.�e incidence algebra
I(P) acts linearly on this vector space by

( f ξ)(t) =∑
s≤t

f (s)ξ(s, t).

�e two equations thus become

g = f ζ , respectively f = gµ,

and their equivalence follows from the fact that µ is the inverse of ζ . ◻
�e classical Möbius inversion formula from Number�eory follows as a special
case of this.
If we consider the linear poset {1, . . . , n} with total ordering, Lemma IV.27

gives us that (assuming f (0) = g(0))

g(n) =
n

∑
i=0

f (i)

is (unsurprisingly) equivalent to

f (n) = g(n) − g(n − 1),
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the �nite di�erence analog of the fundamental theorem of Calculus!

Going back to the start of the chapter, consider n subsets A i of a set X. We take
the the poset P({1, . . . , n}) and de�ne, for I ⊂ {1, . . . , n}

f (I) = −1∣I∣ ∣X ∖⋃
i∈I

A i ∣

g(I) = ∣⋂
i∈I

A i ∣ .

�en g(I) = ∑J⊂I f (J) by Inclusion/Exclusion over the complements X ∖ A i ,
while

f (I) =∑
J⊂I

g(J)µ(J , I) =∑
J

−1∣I∣−∣J∣
RRRRRRRRRRR
⋂
j∈J

A j

RRRRRRRRRRR
= −1∣I∣ ∣X ∖⋃A i ∣

is the ordinary inclusion/exclusion formula.





Chapter

V

Connections

Mathematicians are like Frenchmen.

When you talk to them, they translate

it into their own language,

and then it is something quite di�erent.

Die Mathematiker sind eine Art Franzosen;
redet man zu ihnen, so übersetzen sie es
in ihre Sprache, und dann ist es
alsobald ganz etwas anders.

Maximen und Re�exionen:
Über Natur und Naturwissenscha�
JohannWolfgang von Goethe

With so many joints and connections, leaks
were plentiful. As the magazine�e Builder

remarked, in 1856: “�e fate of a theater is to be
burned. It seems simply a question of time.”

Connections
James Burke

In this chapter we will look at connections – both in an applied sense of model-
ing situations of connected objects, in the abstract sense of connecting mathemat-
ical theorems that initially seem to be unrelated, and in connecting concepts that
might seem to be hopelessly abstract to practical applications. One of the joys of
mathematics is to discover such connections and see the unity of the discipline.

�is practical relevance of the results places much of this chapter also in close
contact to the realm of (discrete) optimization.

We shall investigate a gaggle of theorems (which each in their area are funda-
mental), but which turn out to be equivalent in the sense that they are all equivalent

55
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in the sense that we deduce each theorem from any other. Furthermore this kind of
derivation is o�en easier than to derive the theorem from scratch.�e description
owes much to [Rei84]
Many theorems in this chapter are formulated in the language of graphs: We

typically denote a graph by Γ = (V , E)with verticesV and edges E being 2-element
sets of vertices. A digraph is a graphwith directed edges (that is we consider edges as
elements of V ×V instead of 2-element subsets of V ). In a digraph, we would allow
distinct edges (x , y) and (y, x). Weighted edges means we have a weight function
w∶ E → R.

Our start will be Dilworth’s�eorem IV.19 that we have proven already:

�e minimum number m of chains in a partition of a �nite poset P is
equal to the maximum numberM of elements in an antichain.

V.1 Halls’ Marriage�eorem

He was, methinks, an understanding

fellow who said, ’twas a happy marriage

betwixt a blind wife and a deaf husband.

Celuy là s’y entendoit, ce me semble, qui
dict qu’un bon mariage se dressoit d’une
femme aveugle avec un mary sourd.

Essais, Livre III
Michel deMontaigne

Consider a family of subsets A1 , . . . ,An ⊆ X. A system of distinct representatives

(SDR) for these sets is an n-tuple of distinct elements x1 , . . . , xn such that x i ∈ A i .
Example: SDRs do not have to exist, for example consider A1 = A2 = {1}.
We de�ne, for a subset J ⊆ {1, . . . , n} of indices, a set

A(J) =⋃
j∈J

A j .

We immediately see a reason for the above example failing: For an SDR to exist, by
necessity ∣A(J)∣ ≥ ∣J∣ for any such subset J, since there are otherwise not su�ciently
many elements available to pick distinct representatives.�e following�eorem1
shows this condition is not only necessary, but also su�cient.

TheoremV.1 (Halls’ Marriage�eorem):�e family {A1 , . . . ,An} of �nite sets has
a system of distinct representatives if and only if

∣A(J)∣ ≥ ∣J∣ for all J ⊆ {1, . . . , n}. (V.2)

1Proven by the British Mathematician Philip Hall and extended by the unrelated American Math-
ematician Marshall Hall for the in�nite case.�us the apostrophe placement in the section title.
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�e name “Marriage�eorem” comes from the following interpretation: Sup-
pose we have a set ofmmen and n women.We let A i be the set of men that women
i would consider for a potential marriage2.�en every women can marry a suit-
able man if and only if every group of k women together considers at least k men
as suitable.
Proof:[Dilworth⇒Hall] As the necessity of the condition is trivial, we show suf-
�ciency:
Given sets A i satisfying condition (V.2), Let Y = {y1 , . . . , yn} be n symbols

representing the sets. We create a poset P in the following way:�e elements of P
is the disjoint union X ∪ Y .�e only relations are that x ≤ y i i� x ∈ A i .
Clearly X is an antichain in P. Suppose S is another arbitrary antichain and let

J = {1 ≤ j ≤ n ∣ y j ∈ S}.�e antichain criterion imposes that A(J) ∩ S = ∅, so

∣S∣ ≤ ∣J∣ + (∣X∣ − ∣A(J)∣) ≤ ∣X∣

because of (V.2).�at means X is a maximal antichain, and by Dilworth’s the-
orem, P can be partitioned into ∣X∣ chains. As a chain cannot contain more than
one point from X or more than one point from Y , the pigeonhole principle implies
that each chain contains exactly one point from X and at most one point from Y .
Suppose that x i ∈ X is the element that is together with y i ∈ Y in a chain.�en
x i ≤ y i , and thus x i ∈ A i , so {x1 , . . . , xn} is a SDR. ◻

As an example of the use of this theorem we consider the following theorem
due to G. Birkhoff. A matrixM ∈ Zn×n

≥0 with nonnegative entries is called doubly
statistic if every row and every column ofM has the same row/column sum.

Corollary V.3: A doubly statistic matrixM = (m i j) with row/column sum l can
be written as the sum of l permutation matrices.

Proof: We de�ne sets A i , corresponding to the row indices by A i = { j ∣ m i j > 0}.
For any k-tuple K of indices, the sum of the corresponding rows of M is kl . As
every column of M has column sum l , this means that these k rows must have
nonzero entries in at least k columns, that is ∣⋃i∈K A i ∣ ≥ k.�us V.2 is satis�ed and
there is a SDR. We set p i , j = 1 if j is the chosen representative for A i (and p i , j = 0
otherwise).�en P = (p i , j) is a permutation matrix and M − P is doubly statistic
with sum l − 1.�e statement follows by induction on l . ◻

2�e theorem goes back to times of more restrictive social mores.�e concerned reader might
want to consider k applicants for n jobs and A i being the set of candidates that satisfy the conditions
for job i.
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V.2 Kőnig’s�eorems – Matchings

Eventually everything connects - people, ideas,
objects. . . the quality of the connections is the
key to quality per se.

Charles Eames

Let A be an m × n matrix with 0/1 entries. A line of A is a row or column. A
set of lines covers A, if every nonzero entry of A lies on at least one of the lines.
Nonzero entries are called independent if no two lie on a common line.�e term
rank of A is the maximum number of independent entries of A.

�e following theorem is reminiscent of the properties of a basis in linear alge-
bra:

TheoremV.4 (Kőnig-Egerváry):�eminimumnumber of lines coveringAequals
the term rank of A.

Example: Let

A =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
1 1 0 0
0 1 1 1

⎞
⎟⎟⎟
⎠

�en A can be covered with 3 lines, and has an independent set of cardinality 3.
Proof:[Hall⇒Kőnig-Egerváry] Given A ∈ {0, 1}m×n , let p be the term rank of
A and q the minimum number of lines covering A. We have to show that p = q.
We �rst show that p ≤ q: A cover of l lines can cover at most l independent 1’s

(no line covers more than one) but we can cover all ones with q lines, so p ≤ q.
To see that p ≥ q, without loss of generality permute the rows and columns of

A such that a minimal cover involves the �rst r rows and the last s columns of the
matrix. We aim to �nd an independent set that has r entries in the �rst r rows and
in columns 1, . . . , n − s, and s entries in the last s columns in rows r + 1, . . . ,m:
For a row index 1 ≤ i ≤ r let N i = {1 ≤ j ≤ n − s ∣ A i , j = 1}. �en the

union of any k of these N i ’s contains at least k column indices – otherwise we
could replace these k rows with < k columns in a minimal cover. By Hall’s theorem
we thus have an SDR {x1 , . . . , xr}. By de�nition x i ∈ N i implies that A i ,x i = 1. Let
S = {(i , x i) ∣ i = 1, . . . , r}. Since the x i are distinct, this is an independent set.
A dual argument for the last s columns gives an independent set T of positions

in the last s columns and rows r+ 1, . . . , n. Since no position in S shares row or col-
umn index with any position in T , S ∪ T also is an independent set, of cardinality
r + s = q. ◻

We reformulate this theorem in the language of graphs. A graph is called bipar-
tite, if its vertex V set can be written as a disjoint union V = V1 ∪ V2, so that no
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Figure V.1: A bipartite graph with maximummatching andminimum vertex cover.

vertex in Vi has a neighbor in Vi (but only neighbors in V3−i). A vertex cover in a
graph is a set of vertices that every edge is incident to at least one vertex in the cov-
er. Amatching in a graph is a set of edges such that no two edges are incident to the
same vertex. Amatching is called maximal, if no matching with a larger number of
edges exists.
We assume that the graphs we consider here have no isolated vertices.

TheoremV.5 (Kőnig): In a bipartite graph without isolated vertices, the number of
edges in a maximummatching equals the number of vertices in a minimum vertex
cover.

Example: Figure V.1 shows a bipartite graph with a maximum matching (bold).
Proof:[Kőnig-Egerváry⇒Kőnig] LetW ,U ⊂ V be the two parts of the biparti-
tion of vertices. Suppose ∣W ∣ = m, ∣U ∣ = n. We describe the adjacency in an m × n

matrix A with 0/1 entries, A i , j = 1 i� w i is adjacent to u j . (Note that the examples
for this and the previous theorem are illustrating such a situation.)
A matching in the graph corresponds to an independent set — edges sharing

no common vertices. A vertex cover — vertices such that every edge is incident —
correspond to a line cover of the matrix.�e result follows immediately from the
Kőnig-Egerváry theorem. ◻

Matchings in bipartite graphs can be interpreted as creating assignments be-
tween tasks and operators, between customers and producers, between men and
women, etc., and thus clearly have practical implications (Compare the Marriage
�eorem interpretation of Hall’s theorem!)
Due to this practical relevance, there is obvious interest in an algorithm for

�nding maximum matchings in a bipartite graph, the Assignment problem. �e
�rst algorithm published uses Kőnig’s theorem as a criterion whether an existing
matching can be improved. Due to the origin of the theorem authors, it has been
named the Hungarian Method. (It turns out that this method had been discovered
before independently by Jacobi [Jac90].)

LetM ⊂ E be a (not necessarily maximal) matching in a graph Γ = (V , E). We
call an edgematched if it is inM, and free otherwise. Similarly, vertices incident to
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v1

v2

v
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v2
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v
w
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Case 1: Case 2:

Figure V.2:�e two reduction in Corollary V.6.

matched edges are called matched, vertices not incident to any matched edge are
free.
An augmenting path forM is a path whose end points are free and whose edges

are alternatingly matched and free.�is means all vertices but the end points are
matched.
If the cardinality of M is that of a vertex cover C, no augmenting paths can

exist: Every edge ofM will be incident with exactly one vertex in C, leaving one of
the two free edges at the end of the path without cover. Otherwise there must be
an augmenting path:

Corollary V.6: If ∣M∣ < ∣C∣ for a vertex cover C, there either is a vertex cover of
smaller size, or there is an augmenting path forM.

Proof: We prove the statement by induction over the number of vertices ∣V ∣, the
base case being trivial.
Case 1: Assume that two vertices v ,w ∈ C are connected by an edge inM.�en

both v and w must be incident to other edges, as we otherwise could drop one of
them from C and obtain a strictly smaller matching.
Furthermore one such edge {v , v1}must be to a vertex v1 /∈ C (as we otherwise

could drop v from the vertex cover). Clearly {v , v1} is free. We similarly �nd a
free edge {w ,w1} to a vertex w1 /∈ C. If both v1 and w1 are free, then v1 , v ,w ,w1
is an augmenting path. Otherwise at least one vertex, WLOG v1, is matched thus
incident to an edge {v1 , v2} ∈ M. As we assumed that v1 /∈ C this implies that v2 ∈ C,
as the graph is bipartite we know that v2 /= w. Now consider the smaller graph Γ′
obtained from Γ by deleting v and v1 (and the adjacent edges) and adding an edge
{v2 ,w} if it did not yet exist.�en M′ = (M − {{v ,w}, {v1 , v2}}) ∪ {{v2 ,w} is
a matching in Γ′ and C′ = C − {v} a vertex cover in Γ′ (see Figure V.2, le�). By
induction, we can either obtain a strictly smaller vertex cover D for Γ′ (in which
case D ∪ {v} or D ∪ {v1} is a strictly smaller cover for Γ), or an augmenting path
for Γ′. If this path uses the new matching edge {v2 ,w}, we replace this edge by the
edge sequence {v2 , v1}, {v1 , v}, {v ,w} and obtain an augmenting path in Γ.�is
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completes case 1.

In Case 2, we now may assume that no two vertices of the cover are connected
by an edge in the matching, as ∣M∣ ≤ ∣C∣ there must be an unmatched vertex v ∈ C.
If v is adjacent to any other unmatched vertex this is an augmented path of

length 1.
Otherwise v is adjacent to a matched vertexw /∈ C (if all neighbors are in C, we

could remove v from C). By a matched edge,w is adjacent to another vertex x, and
to cover that edge we must have x ∈ C. We furthermore may assume that w was
chosen so that x is also incident to an edge not in the matching, as we otherwise
could replace all x’s with the respective w’s in the cover and remove v from C,
reducing the cover size.
Now consider the graph Γ′, obtained by removing the vertices v andw and their

incident edges and setM′ = M ∖ {{x ,w}} and C′ = C ∖ {v} (Figure V.2, right).
�en C′ is a vertex cover of Γ′ (all edges that v covered are gone). Also M′ is a

matching with ∣M′∣ < ∣C′∣. By induction, either Γ′ has a smaller cover D (in which
case D ∪ {v} is a smaller cover for Γ), or there is an augmenting path. If this path
imvolves x, we extend it by xwv and thus obtain an augmenting path for Γ. ◻

�e existence of an augmenting path allows us to replaceM with a largermatch-
ing by replacing thematched edges of an augmenting path inM with the free edges
in the path.
To �nd amaximalmatching thus simply start with somematching and searches

for augmenting paths.

It is not hard to generalize this approach to (complete) bipartite graphs with
weighted edges to obtain a (perfect: all vertices are matched) matching of maximal
weight (pro�t):
Given an arbitrary matching with weighted edges, replace an edge {a, b} with

(assume: integral) weightw by a set of edges {a, b1}, {b1 , a2}, {a2 , b2}, . . . , {aw , b}
with newly introduced vertices a i , b i that are not connected in any other way. Se-
lecting the edge {a, b} in the original graph thus now allows selection of w edges.
�us the maximum weight of a matching in the original graph corresponds to the
cardinality of a maximum matching in the new graph.

Stable Matchings

. . . to Alvin E. Roth and Lloyd S. Shapley “for
the theory of stable allocations and the practice
of market design”.

Citation for the Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel

2012
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Also of practical interest is the concept of a stablematching (or stablemarriage).
Imagine a matching in a bipartite graph represents an assignment of students to
college places. Every student has a personal preference ranking of colleges, every
college (place – assume for simplicity that every college just has one student) has a
personal ranking of students. A matching is instable (otherwise: stable), if there is
a student s and a college c such that s ranks c higher than their current college, and
c ranks s higher than their current student.
A priori it is unclear that stable matchings exist, the following algorithm not

only proves that but also gives a way of producing one:

Algorithm V.7 (Deferred Acceptance, Gale, Shapley): Every student has a
temporarily assigned college, colleges may have a temporarily assigned stu-
dent. Once a college has been assigned a student, it will replace it only by one
it ranks higher. A student may be moved down from higher ranked to lower
ranked colleges.

For bookkeeping, students carry a rejected label that will change status as
the algorithm goes on, and also and carry for each college an indicator whether
they have been rejected by this college.

1. [Initialize] Label every student as rejected

2. [Complete] If no student is rejected, terminate.

3. [Student Choice] Every student marked as rejected applies to the college
she ranks highest amongst those who have not yet rejected her.

4. [College Choice] Every college tentatively picks from the students who
chose it the one it ranks highest (and removes that students rejection
status). It rejects all other students who have selected it,even if they had
been picked tentatively before.

5. Go back to step 2.

Proof:�e only way the process terminates is if no student is rejected, that is they
were tentatively accepted by a college and this college has no student applying it
would rank higher. All colleges which the student ranks higher have rejected her
because they were able to accept a student they rank higher, so the matching is
stable.
In every round, students select from colleges and are either tentatively accept-

ed, or are le� with colleges of lower preference. As there is a �nite set of students
and preferences, this process must terminate. ◻

�is algorithm is used for example in the US tomatch graduating medical doc-
tors to hospital training positions, www.nrmp.org. It also was instrumental for the
award of the 2012 Nobel prize in Economics to Shapley and Roth.

www.nrmp.org
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V.3 Menger’s theorem

Live in fragments no longer. Only connect, and
the beast and the monk, robbed of the isolation
that is life to either, will die.

Howards End
E. M. Forster

Kőnig’s aim in proving the�eoremV.5was as a tool towards a proof for amore
general theorem by Menger that deals with connections in a graph (and gets us in
statement and proof back close to Dilworth’s theorem), but whose proof, when
�rst published, turned out to not work in the case of bipartite graphs.
Let u,w be nonadjacent vertices in a graph Γ. A uw-vertex path in Γ is a path

from u to w. A collection of uw-vertex paths is called independent, if the paths are
pairwise disjoint except for u and w. A set S of vertices, excluding u and w, is uw-
vertex separating, if every uw pathmust contain a vertex of S. Clearly theminimum
cardinality of a uw vertex separating set must be at least as large as that of a number
of uw independent paths. It turns out that they are equal:

Theorem V.8 (Menger): Let u,w be nonadjacent vertices in a graph. �en the
maximum number of independent uw vertex paths equals the minimum cardinal-
ity of a uw vertex separating set.

As Kőnig’s proof is comparatively long, we will instead give a direct proof due
to G. Dirac. Note the similarity to the proof of Dilworth’s theorem!
Proof: Letm be the minimum cardinality of a separating set, andM the maximum
number of independent paths. We have seen that m ≥ M.
Assume that the theorem is false and Γ = (V , E) be a graph with a minimum

number of edges for which the theorem fails, that is we have two nonadjacent ver-
tices u and w and fewer than m independent vertex paths.
If e is an edge not incident to u or w, we can remove e and obtain a smaller

graph ∆ for which the theorem holds. Since Γ, and thus ∆ has at most m − 1 uw-
independent paths this means that in ∆ there is an uw-separating set T of size
m − 1. If we add one of the vertices incident to e to this set T , we obtain a set S
of cardinality m which is uw separating – any path connecting in Γ but not in ∆
clearly would have to use the edge e. We thus may assume that S contains a vertex
not adjacent to u or w.
Next, we note that there is no path usw with s ∈ S of length 2 – if there was we

could remove s and have a graph with fewer edges and m − 1 separating vertices
and less than m − 1 independent paths, contradicting the minimality of Γ.
For the �nal contradiction, denote by Pu the set of vertex paths between u and

exactly one vertex in S and Pw ditto for w.�e paths in Pu and Pw have only ver-
tices of S in common (otherwise we could circumvent S, contradicting that it is
separating).
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Figure V.3: A graph and its line graph

We claim that all vertices of S are adjacent to u, or that all vertices in S are
adjacent to w.�is will contradict the choice of S and prove the theorem:
Consider the graph consisting of Pu , w and edges sw for s ∈ S. If w is not ad-

jacent to all vertices in s, this graph has fewer edges than G, so by assumption has
m independent paths from u to w. If we leave out the sw-step from these paths we
obtain a set Ru of m independent paths from u to the m elements of S. Similarly,
we get a set of independent paths Rw fromw to the elements of S. Combining these
paths at the elements of s yieldsm independent paths from u tow, contradiction.◻

A dual version of the theorem holds for disjoint paths:

Theorem V.9 (Menger’s theorem, edge version):�e maximum number of edge-
disjoint paths from u to w equals the minimum number of edges, whose removal
would put u and v into disjoint components.

�e proof of the theorem is by the ordinary version, applied to the line graph
L(Γ) of Γ.�e vertices of L(Γ) are the edges of Γ, two vertices are adjacent if the
edges in Γ are incident to the same vertex. See �gure V.3 for an example.

Menger’s theoremalso generalizes in the obviousway to directed graphs, though
we shall not give a statement or proof here.

V.4 Max-�ow/Min-cut

And he thought of himself �oating on his back
down a river, or striking out from one island to
another, and he felt that that was really the life
for a Tigger.

�e house at Pooh corner
A. A. Milne

A network is a digraph (V , E)with weighted edges with two distinguished ver-
tices, the source s and the target t.We assume that the weights (which we call capac-
ities) c∶ E → R≥0 are nonnegative. (Below we shall assume that weights are in fact
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Figure V.4: A network

rational – clearly we can approximate real weights to arbitrary precision. We shall
investigate the issue of irrational capacities in the exercises.) An example is given
in Figure V.4. For a (directed) edge e = (a, b)we denote by ι(e) = a the initial, and
by τ(e) = b the terminal vertex of this edge.

�e readermight want to consider this as a network of roads withweights being
the maximal capacity. (It is possible to have di�erent capacities in di�erent direc-
tions on the same road.) We want to transport vehicles from s to t (and implicitly
ask how many we can transport through the network).
Note that we are looking for a steady state in a steady-state transport situation;

that is we do not want to transport once, but forever, and ask for the transport
capacity per time unit.
A �ow is a function f de�ned on the edges (indicating the number of units we

transport along that edge) such that

• 0 ≤ f (e) ≤ c(e)∀e ∈ E (do not exceed capacity).

• ∑ι(e)=v f (e) = ∑τ(e)=v f (e)∀v ∈ V ∖ {s, t} (No intermediate vertex can
bu�er capacity or create new �ow.�is is Kirchhoff’s law in Physics.)

�e value of a �ow is the net transport out of the source:

val( f ) = ∑
ι(e)=s

f (e) − ∑
τ(e)=s

f (e).

�is de�nition might seem asymmetric in focusing on the source, however Lem-
ma V.10 will show that this is a somewhat arbitrary choice.

�e question we ask thus is for the maximal value of a �ow.�e main tool for
this is to consider the �ow passing “by a point” in the network:
A cut C ⊂ V in a network is a set of vertices such that s ∈ C, t /∈ C. We do not

require the cut to be connected, though in practice it usually will be.
We note that the value of any �ow is equal to the net �ow out of a cut. (�is

implies that the value of a �ow also is equal to the net transport into the target):
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Lemma V.10: Let C be a cut. We denote the edges crossing the cut by

Co = {e ∈ E ∣ ι(e) ∈ C , τ(e) /∈ C} ,
C i = {e ∈ E ∣ τ(e) ∈ C , ι(e) /∈ C} .

�en for any �ow f we have that

val( f ) = ∑
e∈Co

f (e) − ∑
e∈C i

f (e).

Proof: We prove the statement by induction on the number of vertices in C. For
∣C∣ = 1 we have that C = {s} and the statement is the de�nition of the value of a
�ow.
Now suppose that ∣C∣ > 1, let s /= v ∈ C and D = C ∖ {v}. By induction, the

statement holds for D.
We now consider the following disjoint sets of edges:

Po = {e ∈ E ∣ ι(e) ∈ D, τ(e) /∈ C} ,
P i = {e ∈ E ∣ τ(e) ∈ D, ι(e) /∈ C} ,
Qo = {e ∈ E ∣ ι(e) ∈ D, τ(e) = v} ,
Q i = {e ∈ E ∣ τ(e) ∈ D, ι(e) = v} ,
Ro = {e ∈ E ∣ ι(e) = v , τ(e) /∈ C} ,
R i = {e ∈ E ∣ τ(e) = v , ι(e) /∈ C} .

Any edge that starts at v must be in Q i or in Ro , any edge ending at v must be in
Qo or in R i . Kirchho�s law thus gives us that

∑
e∈Q i

f (e) + ∑
e∈Ro

f (e) = ∑
e∈Q o

f (e) + ∑
e∈R i

f (e).

It is easily seen that Co = Po ∪ R0, C i = P i ∪ R i and that Do = Po ∪ Qo and
D i = P i ∪ Q i .�erefore, using the previous expression to replace a di�erence of
Q-sums by a di�erence of R-sums:

val( f ) = ∑
e∈Do

f (e) − ∑
e∈D i

f (e)

= ∑
e∈Po

f (e) − ∑
e∈P i

f (e) + ∑
e∈Q o

f (e) − ∑
e∈Q i

f (e)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∑e∈Ro f (e)−∑e∈Ri

f (e)

= ∑
e∈Co

f (e) − ∑
e∈C i

f (e).

�e claim follows by induction. ◻
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We de�ne the capacity of a cut as the sum of the capacity of the edges leaving
the cut:

cap(C) = ∑
e∈Co

c(e).

LemmaV.10 thus implies that the value of any�owmust be bounded by the capacity
of any cut and thus (unsurprisingly) the maximal �ow value is bounded by the
minimum cut capacity – a chain is only as strong as its weakest link.
Similar to the dualities we considered before, equality is attained:

Theorem V.11 (Max-Flow Min-Cut, integer version): Suppose the capacity func-
tion c in integer valued.�en the maximum value of a �ow in a network is equal
to the minimum capacity of a cut. Furthermore, there is a maximum �ow f that is
integer valued.

Note V.12: If the capacity function is rational valued, we can simply scale with the
lcm of the denominators and obtain an integer valued capacity function. In the case
of irrational capacities, the theorem holds by a boring approximation argument.

Proof:[Menger⇒Max-�ow] Given a directed network, replace every arc with in-
tegral weight c by c disjoint3 directed edges.
Clearly, if one edge of a c-fold multi-edge set is in a minimum separating set,

the other c − 1 edges have to be.
�us the cardinality of aminimum edge-separating set is aminimum cut, while

k independent paths give a �ow of k. By the edge version of Menger’s theorem,
the minimum cardinality of an edge-separating set equals the maximum number
of independent edge paths, proving the theorem. ◻

�e algorithm of Ford and Fulkerson �nds a maximal �ow for a given net-
work. It start with a valid �ow (say f (e) = 0 for all edges) and then improves this
�ow if possible, using the following main step:

AlgorithmV.13 (increase �ow): Given a flow f , return a flow with higher value,
or show that no such flow exists.

1. Let A ∶= {s}. (A is a cut of vertices that can be supplied at higher rate
from the source). I ∶= {}. (I is a set of edges that are not yet at capacity.)
R ∶= {}. (R is a set of edges whose flow should be reduced.)

2. If t ∈ A, go to step 6.

3. If there is an edge e ∈ Ao with f (e) < c(e), set A ∶= A∪{τ(e)}, I ∶= I∪{e}.
Go to step 2.

4. If there is an edge e ∈ Ai with f (e) > 0 (This is flow into A which we
could reduce), set A ∶= A∪ {ι(e)}, R ∶= R ∪ {e}. Go to step 2.

3Or edges→ ○→ with intermediate vertices to ensure disjointness
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5. If neither of these two properties hold, terminate with a message that
the flow is maximal.

6. By tracing back how t got added to A, we construct an (undirected) path
(the augmenting path) P = (e1 , e2 , . . .) from s to t. Let

d = min(min
e∈P∩I

(c(e) − f (e)), min
e∈P∩R

f (e)) .

Increase the flow on P ∩ I by d, reduce the flow on P ∩ R by d. (This
satisfies Kirchhoffs law.) Return the larger flow.

Proof: We shall show termination in the case of integral capacities: Every time we
adjust a �ow, we may assume that the �ow on one edge increases by an integral
value.�is can only happen a �nite number of times.
Once the algorithm ends in step 5, we have a cut A such that ∑e∈Ai f (e) = 0,

∑e∈Ao f (e) = ∑e∈Ao c(e), thus val( f ) = cap(A) and the �ow must be maximal by
�eorem V.11. ◻

Example: We illustrate the algorithm in the example from above. Figure V.5, a)
shows some �ow (in blue).�e total �ow is 24.
We start building the list of under-supplied vertices and mark edges on which

to increase, respectively reduce the �ow:

Vertices Increase Reduce
s
B sB
A AB
D AD
t DT

We �nd an augmenting path sBADt (red in Figure b) and note that we can increase
the �ow by 2 (the limiting factor being edge sB) to a total of 26.
Starting again, we obtain (Figure c) the augmenting path sCFBAEt, on which

we can increase the �ow by 2 again, resulting is a �ow of 28.
Finally we build the under-supplied cities as C,F,B and then cannot increase the

set.�us (Figure d), shaded) {s,C , F , B} is a cut whose capacity of 28 is reached,
proving that we have a maximal �ow.

Note V.14: As given, the algorithm is not necessarily in polynomial time, as there
might be a huge number of small incremental steps. Take the network in FigureV.6.
Starting with a �ow of 0, we choose the augmenting path sABt on which we can
increase the �ow by 1. Next, we take the augmenting path sBAt, reducing the �ow
on AB to 0 again and have a total �ow of 2. We can iterate this, increasing the �ow
by 1 each step until we get the maximum �ow of 200.
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Figure V.6: Example for bad augmenting paths

Polynomial time in this algorithm however can be achieved by a more careful
choice of the augmenting path (e.g. a shortest path, Edmonds-Karp algorithm),
that analysis however is beyond the scope of these notes.

Note V.15: To close the circle, observe that the Max-�ow/Min-cut theorem im-
plies Dilworth’s theorem: Given a poset, we model it as a directed network with
�ow from bottom to top and arc capacity one.�us all theorems mentioned in this
section (and in fact a few more we have not mentioned) are in a sense mutually
equivalent and form the fundamental theorem of discrete optimization.
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Braess’ Paradox

On Earth Day this year, New York City’s
Transportation Commissioner decided to close
42d Street, which as every New Yorker knows is
always congested. ”Many predicted it would be
doomsday,” said the Commissioner [...] But to
everyone’s surprise [...] Tra�c �ow actually
improved when 42d Street was closed.

New York Times, 12/25/1990, p.38
Gina Kolata

From the time of Say and Ricardo the classical
economists have taught that supply creates its
own demand

�e General�eory of Employment, Interest,
and Money

JohnMaynard Keynes

O�en the question of maximal �ow turns up not just for an existing network,
but already at the stage of network design, aiming to maximize �ow. Braess’ para-
dox shows that this can be very nonintuitive.
While we shall give a theoretical example, concrete instances of this e�ect have

been observed in the real world in several cities (New York; Stuttgart, Germany;
Winnipeg, Canada;. . . ) when roads had been temporarily blocked because of build-
ing work, or a�er new roads were built.�e interested reader might observe obvi-
ous implications to society and politics.

Suppose we have four cities, A, B, C, D with connecting roads as shown in
�gure V.7, le�.�e reader may observe that this con�guration is similar to the one
in Note V.14.
Cities A and B as well as C and D are connected by a minor road which easily

clogs up.�e driving time thus depends strongly on the number of cars, it is

tAB = tCD = 10x .

with x the number of drivers in thousands. An obstacle blocks direct connections
from B to C.

High capacity roads have been build to connect A and C, as well as B and D.
While overall time is longer, the impact for extra cars is less, time with x thousand
drivers on the road is

tAC = tBD = 50 + x .
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A B C D A B C D

Figure V.7: Braess’ paradox: Before and a�er a new road is built.

Assume 6000 drivers want to travel from A toD. A symmetry argument shows that
half (3000) travel via B and half via C.�eir individual travel time is 10 ⋅3+50+3 =
83. It is not hard to show that this is a stable equilibrium, i.e. no traveler can gain
by changing their route. Furthermore, the system will settle in this equilibrium
by itself, as long we assume drivers want to minimize their travel time and when
starting their journey have perfect knowledge of how many cars are on each road.

A�er time, a new connection is built from B to C through the obstacle (right
image). (For simplicity of the argument we shall assume that it is one-way, but that
is not crucial for the paradox.) It has high capacity and is short, so travel time on
this route is

tBC = 10 + x .

Assuming perfect information, drivers will move towards a distribution in which
travel time along all possible routes is equal. In the example this is 2000 drivers
using ABD, 2000 drivers ACD and 2000 drivers using ABCD. (�is means that
4000 drivers are traveling AB and CD, respectively, 2000 travel BC.)�eir travel
times are (again, one can show that this is a stable equilibrium)

tABD = 10 ⋅ 4 + 10 + 2 + 10 ⋅ 4 = 92 = 10 ⋅ 4 + 50 + 2tABD = tACD ,

which is more than before.





Chapter

VI

Partitions, Tableaux and
Permutations

Some of the hardest, but also most intriguing, counting problems are those of par-
titions.

VI.1 Partitions and their Diagrams

An order-irrelevant partition (from now on simply: partition) of n into k parts is
an expression

n = x1 + x2 +⋯ + xk , x1 ≥ x2 ≥ ⋯⋯xk ≥ 1

with all x i being integers. We will typically denote partitions by small Greek letters
and write λ ⊢ n to mean that λ is a partition of n.
As in II.4, we denote by pk(n) the number of partitions of n into k parts and by

p(n) the total number of partitions of n (into anynumber of parts). OEIS A000041
For example

4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1,
so p(4) = 5 and

7 = 5 + 1 + 1 = 4 + 2 + 1 = 3 + 3 + 1 = 3 + 2 + 2,

giving p3(7) = 4. Instead of writing a sum, we might give a count of the part sizes,
that is instead of 7 = 3 + 2 + 2 we would write 3122.
A convenient way to depict a partition is graphically by what is called a Young

diagram (boxes) or Ferrers’ diagram (dots): Each part is depicted by a row of dots
or of empty squares, in descending1 order. Figure VI.1 gives two versions of the
diagram for the partition 312211:.

1this is the convention in English speaking countries.�e French build instead from the bottom
up.

73

https://www.oeis.org/A000041
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● ● ●
● ●
● ●
●

Figure VI.1:�e Ferrers and Young diagram for 312211

�e conjugate λ∗ of a partition λ is the partition with the “transposed” diagram,
for example if λ = 312211, then λ∗ = 413111. Clearly λ∗∗ = λ.

VI.2 Some partition counts

�e number pk(n) is clearly equal to the number of ways to write n−k = y1+⋯+yk
with y1 ≥ ⋯ ≥ yk ≥ 0. If exactly s of these integers y i are nonzero, there will be
ps(n − k) of this type.�is gives the recursion

pk(n) =
k

∑
s=1

ps(n − k)

which, together with the initial values pk(n) = 0 for n < k and pk(k) = 1 gives us
a way to determine pk(n) recursively.
We start by giving a generating function for the partition function p(n):

Proposition VI.1:
∑
n

p(n)tn =∏
i≥1

(1 − t i)−1

Proof: Expanding the right hand side, and using that (1− t i)−1 = (1+ t i + t2i +⋯),
we get

∏
i

(1 − t i)−1 = (1 + t + t2 +⋯)(1 + t2 + t4 +⋯)⋯

In this product, tn is obtained as a product of tx1 from the �rst factor, t2x2 from the
second, and so on, such that 1x12x2⋯ ⊢ n. Vice versa, every partition of n gives a
di�erent way to form tn , that is p(n) is the coe�cient of tn . ◻
�is in�nite product does not have a nice closed form, but we will use it below in
Corollary VI.6 to obtain a recursion formula for p(n).
If we consider pk(n) for a �xed k, we only need to consider a partial product

in the expansion.�is can be used to calculate the value directly:

Lemma VI.2: p3(n) is the integer closest to n2

12 .

Proof: Let a(n) = p3(n + 3) the number of solutions of n = x1 + x2 + x3 with
x1 ≥ x2 ≥ x3 ≥ 0. We set y3 = x3, y2 = x2 − x3 and y1 = x1 − x2 and thus get that
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a(n) is the number of solutions of n = y1 + 2y2 + 3y3. As in the previous proof, we
get a generating function

∑
n

a(n)tn = (1 − t)−1(1 − t2)−1(1 − t3)−1 .

A partial fraction decomposition gives us

∑
n

a(n)tn = 1
6
(1 − t)−3 + 1

4
(1 − t)−2 + 17

72
(1 − t)−1

+ 1
8
(1 + t)−1 + 1

9
(1 − ζ t)−1 + 1

9
(1 − ζ2 t)−1

with ζ a primitive 3-rd root of unity. Using the series expression

(1 − t)−a−1 =∑
j

(a + j

j
)t j ,

collecting and telescoping, we get

a(n) = 1
12

(n + 3)2 − 7
72

+ (−1)n
8

+ 1
9
(ζn + ζ2n).

We write this in the form

∣a(n) − 1
12

(n + 3)2∣ ≤ 7
72

+ 1
8
+ 2
9
< 1
2

giving the desired result. ◻
More generally, we have the following approximation:

Proposition VI.3: For �xed k, we have that

pk(n) ∼
nk−1

k!(k − 1)! (n →∞).

Proof: Suppose that n = x1 + ⋯ + xk with x1 ≥ ⋯ ≥ xk ≥ 1. If we permute the
variables x i , we get (not necessarily di�erent) compositions of n into k parts and
each composition can be obtained by a permutation of a partition. By Section II.1
there are (n−1

k−1) such compositions, giving us

k!pk(n) ≥ (n − 1
k − 1).

We now set y i = x i + (k − i) for 1 ≤ i ≤ k.�en the y i are all di�erent, as

x i + k − i = y i = y j = x j + k − j
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implies that x i + j = x j + i. Assuming WLOG that i < j we have that x i ≤ x j ,
contradiction. Clearly y1 ≥ y2 ≥ ⋯yk .

�e summation formula over i gives (a�er an index swap) that y1 + ⋯ + yk =
n + k(k−1)

2 is a partition of n + k(k−1)
2 . As the parts are di�erent, every permutation

gives a di�erent composition, but we do not necessarily obtain all compositions
this way.�us

k!pk(n) ≤ (n +
k(k−1)
2 − 1

k − 1 ).

Combining the two inequalities, and dividing by k! gives (with ak = k(k−1)
2 only

dependent on k)

(n − 1)(n − 2)⋯(n − k + 1)
k!(k − 1)! ≤ pk(n) ≤

(n + ak − 1)⋯(n + ak − k + 1)
k!(k − 1)! .

As k (and thus ak) are both �xed, both numerators approach nk−1 if n →∞. ◻

VI.3 Pentagonal Numbers

Our chief weapon is surprise...
surprise and fear...
fear and surprise...
Our two weapons are fear and surprise...
and ruthless e�ciency...

�e Spanish Inquisition
Monty Python

For reasons we shall see soon, we divert in a surprising way.
A number is pentagonal if it is of the form k(3k − 1)/2 or generalized pentag-

onal OEIS A001318 if it is of the form k(3k + 1)/2 for some positive integer k.
Alternatively, one can simply use k(3k − 1)/2 for arbitrary integers k.�e �rst few
pentagonal numbers for positive index are 1(3 ⋅ 1 − 1)/2 = 1, 2(3 ⋅ 2 − 1)/2 = 5,
3(3 ⋅ 3 − 1)/2 = 12, 4(3 ⋅ 4 − 1)/2 = 22 as depicted in Figure VI.2, respectively
0(3 ⋅0−1)/2 = 0, −1(3 ⋅(−1)−1)/2 = 2, −2(3 ⋅(−2)−1)/2 = 7, −3(3 ⋅(−3)−1)/2 = 15
for other indices.

�e pentagonal numbers give the following extraordinary2 theorem.

Theorem VI.4 (Euler’s Pentagonal Numbers�eorem): a) If n is not a pentagonal
number, the number of partitions of n into an even and an odd number of distinct
parts are equal.

2as in the title: une loi tout extraordinaire, [Eul15]

https://www.oeis.org/A001318
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Figure VI.2:�e �rst few pentagonal numbers: 1,5,12,22

b) If n = k(3k − 1)/2 for k ∈ Z even, then the number of partitions of n into an
even number of distinct parts is one more than the number of partitions into an
odd number of distinct parts.
c) If n = k(3k − 1)/2 for k ∈ Z odd, then the number of partitions of n into an
even number of distinct parts is one less than the number of partitions into an odd
number of distinct parts.

Example:�ere are 2 partitions of 6 into an even number of distinct parts and 2 into
an odd number of distinct parts.�ere are 3 partitions of 7 into an even number of
distinct parts, and 2 into an oddnumber of distinct parts.�ere are 7 partitions of 12
into even parts, and 8 into odd parts. Proof:�e proof will consist of constructing
a bijection between partitions with an even number of distinct parts and partitions
with an odd number of distinct parts. In the case that n is pentagonal this will have
leave out exactly one partition.
For a partition λ ⊢ n into di�erent parts, we consider two subsets of the cells,

as depicted in Figure VI.3:
�e base is the bottom row of cells (the shortest row), the slope is the cells start-

ing at the end of the top row and descending straight down-le� as far as possible
(this might be only of length 1).

Figure VI.3: Base (dashed) and Slope of two partitions

Base and slope might intersect in one cell, we call those cells of the base that
are not in the slope the pure base; similarly the pure slope are those slope cells that
are not also in the base.
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We now divide the partitions of n with distinct parts into three classes:

Class 1 are those partitions for which the pure base contains more cells than the
slope.

Class 2 are those partitions for which the pure slope is at least as long as the base.
Class 3 are all remaining partitions3.

For a partition λ in Class 1, we create a new partition µ by removing the slope
(possibly including the base point) and placing these cells in a new row at the bot-
tom of the diagram. As the pure base is larger than the slope this results in a parti-
tion into di�erent parts. Furthermore, the slope of µ is at least as long as the slope
of λ (which is the base of µ) if base and slope of µ are distinct; if they intersect the
slope of µ is strictly larger.�is means µ is in Class 2.
Vice versa, if µ is in Class 2, we remove the base (possibly including the low-

est point of the slope) and attach it from top right as new slope.�is results in a
partition λ into di�erent parts which lies in Class 1.
For example, the le� partition in Figure VI.3 is in Class 2 and will be trans-

formed into the partition on the right side in Class 1, and vice versa.
It is easily seen that these two operations are mutually inverse, that is Class 1

and Class 2 contain the same number of partitions. Furthermore the operations
change the number of parts by exactly one.�at means that in Class 1 ∪ Class 2,
there are exactly as many partitions with an even number of parts, as with an odd
number of parts.
Finally consider Class 3: A partition in this class must have base and slope in-

tersecting, and the base contains the same number of cells, or exactly one more,
than the slope, see Figure VI.4.

Figure VI.4: Possibilities for partitions in Class 3

�is means that, if there are k parts, it consists of a k × k rectangle and a
1, 2, . . . , k triangle that might or might not overlap. In the �rst case there are k2 +
k(k − 1)/2 = k(3k − 1)/2 parts, respectively k2 + k(k + 1)/2 = k(3k + 1)/2 =
(−k)(3(−k) − 1)/2 parts. For a given n only one of these two options is possible,
and it implies that n is a pentagonal number.�is proves the theorem. ◻

3Classi�cations become easy if we allow an “all the rest” category
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To simplify notationwewriteω(k) = k(3k−1)/2 for k ∈ Z to state the following
consequence for the inverse of the generating function of partitions.

Corollary VI.5:

∏
n≥1

(1 − tn) =
∞
∑

k=−∞
(−1)k tω(k) = 1 +∑

k>0
(−1)k (tω(k) + tω(−k)) .

Proof:�e second equality simply relies on the now familiar two ways to describe
generalized pentagonal numbers.
Let even(n) be the number of partitions of n into an even number of dis-

tinct parts, odd(n) similarly for an odd number of parts. By the Pentagonal Num-
bers�eorem, the right hand side of the equation is the generating function for
even(n) − odd(n). We aim to show that this is true also for the le� hand side:

�e coe�cient for tn will be made up by contributions from terms of the form
tn i , all distinct, such that n = n1 +⋯+ n l .�is partition contributes (−1)l .�at is,
every partition into an even number of distinct parts contributes 1, every partition
into an odd number of distinct parts contributes −1, which was to be shown. ◻

�is now permits us to formulate a recurrence formula for p(n):
Corollary VI.6:

p(n) = ∑
k>0

(−1)k−1 (p(n − ω(k)) + p(n − ω(−k)))

= p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) + p(n − 12) +⋯

Proof: We know that∑n p(n)tn =∏(1 − tn)−1, and therefore

(∑
n

p(n)tn) ⋅ (1 +∑
k>0

(−1)k (tω(k) + tω(−k))) = 1.

We now consider the coe�cient of tn is this product (which is zero for n > 0).�is
gives

0 = p(n) +∑
k>0

(−1)k (p(n − ω(k)) + p(n − ω(−k))) .

By using that p(n) = 0 for n < 0 and substituting values for the pentagonal numbers
we get the explicit recursion. ◻
�is formula can be used for example to calculate values for p(n) e�ectively, or to
estimate the growth of the function p(n).
While it might not seems so we have by now wandered deep into Number the-

ory. In this area we get for example Ramanujan’s famous congruence identities

p(5n + 4) ≡ 0 (mod 5)
p(7n + 5) ≡ 0 (mod 7)
p(11n + 6) ≡ 0 (mod 11)
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that recently have been generalized by Ono and collaborators.
Euler’s theoremand its consequence are a special case of the Jacobi triple product

identity
∞
∏
n=1

(1 − q2n)(1 + q2n−1 t)(1 + q2n−1 t−1) =
∞
∑

r=−∞
qr
2
tr

which has applications in the theory of theta-functions – the territory of Number
�eory – and Physics.

VI.4 Tableaux

It’s like the story of the drawing on the

blackboard, remember?

C’est comme pour l’histoire du dessin
sur le tableau noir, tu te rappelles?

Histoires inédites du Petit Nicolas,
Tome 1

René Goscinny

Drawing a partition as Young diagram with boxes allows us to place numbers
in them.

1 3 4 8 12
2 6 9 11
5 7
10

Definition VI.7: Let λ ⊢ n. A (standard) Young tableau4 is a Young diagram of
shape λ into whose boxes the numbers 1, . . . , n have been entered, so that every
row and every column is (strictly) increasing.

Beyond their intrinsic combinatorial interest, tableaux are a crucial tool for
studying permutations, and for the representation theory of symmetric groups.
An obvious question with a surprising answer is to count the number fλ of

Young tableaux of shape λ. In the case that λ = n2 as partition of 2n, we observe,
exercise ??, that fλ = Cn+1, the counts fλ thus can be considered as generalizing
Catalan numbers.
Our aim is to derive the famous hook formula (�eorem VI.13) for fλ . While

this formula is inherently combinatorial, the proof we shall give is mainly algebra-
ic – indeed, until surprisingly recently [GNW79, Zei84] no purely combinatorial
proof was known.
We start with a recursively de�ned function f onm-tuples of natural numbers

(for arbitrarym). (As it will turn out that this function is fλ , we use the same letter
f .)

4French: “(black)board”. Plural: tableaux
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1. f (n1 , . . . , nm) = 0, unless n1 ≥ n2 ≥ ⋯ ≥ 0.

2. f (n1 , . . . , nm , 0) = f (n1 , . . . , nm).

3. f (n1 , . . . , nm) = f (n1 − 1, n2 , . . . , nm) + f (n1 , n2 − 1, . . . , nm) +⋯
+ f (n1 , n2 , . . . , nm − 1), if n1 ≥ n2 ≥ ⋯nm ≥ 0.

4. f (n) = 1 if n ≥ 0.

Properties i) and iv) are base cases, property ii) allows for an arbitrary number of
arguments, Property iii) �nally gives a recursive formula that de�ned the values of
f in terms of smaller arguments; thus f is uniquely de�ned.

Lemma VI.8: If λ = (n1 , . . . , nm), then fλ = f (n1 , . . . , nm) is the number of Young
tableaux of shape λ.

Proof: Conditions i), ii) and iv) are obviously satis�ed by fλ . For condition iii), take
a tableau of shape (n1 , . . . , nm) and consider the location of n. It needs to be at
the end of a row (say row j) and the bottom of a column, and if we remove that
entry, we obtain a valid tableau with n − 1 entries and of shape (n1 , . . . , n i−1 , n i −
1, n i+1 , . . . , nm). (Note that some of the terms could be zero if n i − 1 < n i+1.) ◻

Next we shall need an identity in the polynomial ring in variables x1 , . . . , xm , y.

Definition VI.9:�e root of the discriminant of x1 , . . . , xn is de�ned as

∆(x1 , . . . , xn) ∶= ∏
1≤i< j≤m

(x i − x j)

�e eagle-eyed reader will recognize the right hand side as a Vandermonde
determinant. �e next, auxiliary lemma is simply an identity about a particular
multivariate polynomial.

Lemma VI.10: De�ne a polynomial g ∈ Q[x1 , . . . , xm , y] as

g(x1 , . . . , xm ; y) ∶= x1∆(x1 + y, x2 , . . . , xm)
+ x2∆(x1 , x2 + y, . . . , xm) +⋯ + xm∆(x1 , x2 , . . . , xm + y).

�en
g(x1 , . . . , xm ; y) = (x1 +⋯ + xm + (m

2
)y)∆(x1 , . . . , xm).

Proof: Clearly g is a homogeneous (everymonomial in g has the same total degree)
polynomial of degree 1 + deg ∆(x1 , . . . , xm). If we interchange x i and x j , then g

changes its sign, thus, if we set x i = x j the polynomial evaluates to 0.�us (consider
g as univariate in x i with all other variables part of a rational function �eld) x i − x j

divides g. Hence ∆(x1 , . . . , xm) divides g.
We now concentrate instead on the variable y.�e degree of g as a polynomial

in y is at most one, and for y = 0 the statement is obvious. We therefore only need
to show that the coe�cient of y in g is (m2 )∆.
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If we expand g, the terms in y are x i y

x i−x j
∆(x1 , . . . , xm) and − x j y

x i−x j
∆(x1 , . . . , xm)

for pairs i , j with 1 ≤ i < j ≤ m.�ese two terms add up to y∆, thus the (m2 ) pairs
(i < j) yield in sum (m2 )∆(x1 , . . . , xm). ◻

Using the de�ning recurrences, we can now verify an (otherwise unmotivated)
formula for fλ :

Lemma VI.11: If λ = (n1 , . . . , nm), then

fλ =
∆(n1 +m − 1, n2 +m − 2, . . . , nm)n!
(n1 +m − 1)!(n2 +m − 2)!⋯nm!

.

In fact this formula satis�es properties i-iv) as long as n1+m−1 ≥ n2+m−2 ≥ ⋯nm .

Proof: We shall show that the right hand side satis�es conditions i)-iv). To make
the recursion in iii) work we need to include the case that n i+1 = n i + 1, but in that
case n i+1 +m − i + 1 = n i + 1 +m − i + 1 = n i +m − i, that is two arguments of ∆
become equal and the right hand side evaluates to 0.
With this, properties i) and iv) become trivially true.
Concerning property ii), if we replace m by m + 1 and have nm+1 = 0, the de-

nominator changes by a factor (n1 +m + 1 + 1)⋯(nm + 1) which is the same factor
by which the numerator changes.
Concerning property iii), this is the statement of VI.10 for x i = n i +m − i and

y = −1. ◻

�e Hook Formula

�us, although the term “hooker” did not
originate during the Civil War, it certainly
became popular [. . . ] in tribute to the
proclivities of General Joseph Hooker [. . . ]

Studies in Etymology and Etiology
David Gould

Amuch nicer way to describe the values of fλ is given by the following concept:

Definition VI.12: Given a cell in a Young diagram, its hook consists of the cell
itself as well as the cells to the right in the same row, and those in the same column
below.�e hook length is the number of cells in the hook.

TheoremVI.13 (Hook formula, Frame, de Robinson, Thrall (1954)):�e num-
ber of tableaux of shape λ ⊢ n is given by n!, divided by the product of all hook
lengths.
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Example: Consider λ = 614221.�e numbers in the diagram for λ indicate hook
lengths:

9 8 6 5 2 1
6 5 3 2 ●
5 4 2 1 ●
2 1 ●

�us
fλ =

16!
13 ⋅ 24 ⋅ 3 ⋅ 4 ⋅ 53 ⋅ 62 ⋅ 8 ⋅ 9 =

20922789888000
62208000

= 336336.

Proof: Suppose that λ = (n1m . . . , nm) ⊢ n.�en the hook length in the top le�
corner is n1 + m − 1.�e hook length of the second cell is n1 + m − 2, and so on,
seemingly down to hook length 1 in the last cell. As in the example above, certain
lengths are skipped.�is happens if a lower row is shorter than the top row.�is is
indicated by the ●-dots in the above diagram.
We are thus skipping (n1 +m− 1)−(nm), in the column a�er the last row ends,

(n1 +m − 1) − (nm−1 + 1) a�er the second last row ends and so on.
Going to the second row, we get hook lengths n2 + m − 2, n2 + m − 3, and so

on, but excluding (n2 +m − 2) − (nm) for the last row, (n2 +m − 2) − (nm−1 + 1)
for the second last row, etc.
Combining this, we get as product of the hook lengths a fraction with numera-

tor (n i+m−i)! for the i-th row, and the denominator combining the canceled terms
to ∆(n1+m−1, n2+m−2, . . . , nm), proving the theoremwith use of LemmaVI.11.◻

We close this section with the remark that the numbers fλ are also the degrees
of the irreducible (ordinary) representations of the symmetric group. Proving this
requires a substantial amount of abstract algebra and cannot be done here..
A consequence is the nice identity that∑λ⊢n f 2λ = n!, which we will also prove

below in VI.39

VI.5 Symmetric Functions

Reality favors symmetries and slight

anachronisms
A la realidad le gustan las simetŕıas y
los leves anacronismos

El Sur
Jorge Luis Borges

For a commutative ring R, consider the ring A = R[x1 , . . . , xN] of polynomials
in N variables5

5�is is the posh way of de�ning this set of polynomials.�e reader will be perfectly well suited if
she simply sets R = Q and considers A as the set of rational polynomials in n variables.
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For writing polynomials, it will be convenient to introduce the following no-
tation. A composition (see II.1) α = (n1 , n2 ,⋯, nk) of a number M is a sequence
of numbers such that M = n1 + ⋯ + nk . We also write α i = n i to denote the i-th
part of a composition α. We can consider partitions of M to be a special case of
compositions. We shall use a vector notation for monomials, writing

xα ∶= xn1
1 xn2

2 ⋯xnk
k ,

this way an arbitrary polynomial may be written as∑α cαxα .

Definition VI.14: A polynomial f ∈ A is a symmetric function, if it stays the same
a�er any permutation of the arguments: f (x1 , . . . xn) = f (x1π , . . . , xnπ) for π ∈ Sn .
Some literature instead talks about symmetric polynomials, meaning the same

property.
�e set of symmetric functions clearly forms a subring of A, we denote this

subring by Λ.

Note VI.15: One could, in the spirit of chapter VII consider this as an action of Sn
on the polynomial ring and ask what happens if we restrict to a subgroup.�is is
the topic of Invariant�eory – a beautiful subject but not the one we study here.

As a permutation of the indices leaves the degree of each term invariant we
can consider a symmetric function as a sum of homogeneous (that is each term
has the same total degree) parts. It therefore is su�cient to consider homogeneous
symmetric functions of degree n, say.
As a vector space, we can consider Λ = Λ0⊕Λ1⊕⋯ as a direct sum of subspaces

Λ i consisting of homogeneous symmetric functions of degree i.
�e following de�nition describes some particular classes of symmetric func-

tions:

Definition VI.16: Let n > 0 and λ = n1 + n2 +⋯ + nk ⊢ n.

a) �eMonomial Symmetric Function mλ is the sum∑α xα where α runs over
all distinct permutations of (the entries of) λ.

b) �e Elementary Symmetric Function em is the sum over all products of m
(distinct) indeterminates, that is em = m1m . We de�ne eλ = en1 ⋅ en2⋯enk

.

c) �eComplete Homogeneous Symmetric Function hm is the sumover all prod-
ucts of m (possibly repeated) indeterminates: hn = ∑λ⊢n mλ . We de�ne
hλ = hn1 ⋅ hn2⋯hnk

.

d) �e Power Sum Function pm is the sum xm1 + xm2 + ⋯ + xmN over the m-th
power of all N indeterminates. We de�ne pλ = pn1 ⋅ pn2⋯pnk

.

It is easily seen that all of these functions are indeed symmetric.
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Example: Suppose that N = 3 and λ = 2 + 1.�en

mλ = x21 x2 + x22x1 + x21 x3 + x23x1 + x22x3 + x23x2 ,
eλ = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3),
pλ = (x21 + x22 + x23)(x1 + x2 + x3),
hλ = eλ + pλ

Note VI.17: It can be convenient to consider N arbitrary large or even in�nite –
the identities amongst symmetric functions still hold.

Each of these classes of symmetric functions allows to generate all:

TheoremVI.18: Suppose that N ≥ n and f a homogeneous symmetric function of
degree n in x1 , . . . , xN .�en

a) f = ∑λ⊢n cλmλ for suitable coe�cients cλ .

b) f = ∑λ⊢n cλeλ for suitable coe�cients cλ .

c) f = ∑λ⊢n cλhλ for suitable coe�cients cλ .

d) f = ∑λ⊢n cλpλ for suitable coe�cients cλ .

In each case the coe�cients cλ are unique, furthermore in cases a,b,c), if f has
integral coe�cients, then all cλ are integral.

CorollaryVI.19: Any symmetric function f (x1 , . . . , xN) can bewritten as a poly-
nomial g(z1 , . . . , zN), where z stands for one of the symbols e,h, p.

NoteVI.20: For algebraists we remark that one can show that the ring of symmet-
ric polynomials in N variables has transcendence degree N and that the {e i}, the
{h i} and the {p i} each form a transcendence basis of this ring.

Proof:[of�eoremVI.18, part a)] If f = ∑α cαxα is homogeneous of degree n, then
f = ∑λ⊢n cλmλ . ◻

Corollary VI.21:�e set {mλ}λ⊢n is a vector space basis of Λn , thus dim(Λn) =
p(n).

We shall see below that each of the other sets, {eλ}, {hλ}, {pλ}, also forms a
basis.
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VI.6 Base Changes

�e proof we shall give for the remaining parts of�eorem VI.18 will be based on
linear algebra:We shall consider the coe�cients of expressing one set of symmetric
functions in terms of another set, and obtain a combinatorial interpretation of these
coe�cients. From this we shall deduce that the matrix of coe�cients is invertible
(and possibly has an integral inverse).�is implies that the other sets also form a
basis and thus the remaining parts of the theorem.
As we will argue with matrices, it involves an arrangement of basis vectors, we

thus need to de�ne an ordering on partitions:

Definition VI.22: Let λ = (λ1 , λ2 , . . . , λk) and Let µ = (µ1 , µ2 , . . . , µ l) be parti-
tions of n. We assume WLOG that k = l by allowing cells of size 0.
We say that µ ≤ λ in the natural order, (also called dominance order or ma-

jorization order) if µ /= λ and for any i ≥ 1 we have that

µ1 + µ2 +⋯ + µ i ≤ λ1 + λ2 +⋯ + λ i .

Following�eorem IV.3, this partial order has a total order as a linear extension,
one such total order is given in exercise ??.

Definition VI.23: Let A = (a i j) a matrix. We consider row sums r i = ∑ j a i j and
column sums c j = ∑i a i j and call row(A) = (r1 , r2 , . . .) the row sum vector, respec-
tively col(A) = (c1 , c2 , . . .) the column sum vector.

Since the mλ form a basis there are integral coe�cientsMλµ , such that

eλ = ∑
µ⊢n

Mλµmµ .

In factMλµ is simply the coe�cient of xµ in eλ .

Lemma VI.24:Mλµ equals the number of (0, 1)-matrices (that is, matrices whose
entries are either 0 or 1) A = (a i j) satisfying row(A) = λ and col(A) = µ.

Proof: Let λ = (λ1 , λ2 , . . .). Any term of eλ is a product of a term of eλ1 , eλ2 , etc.
and any term of eλ i

is the product of λ i di�erent variables. We shall describe any
term using a matrix. Let

X =
⎛
⎜
⎝

x1 x2 x3 ⋯
x1 x2 x3 ⋯
⋮ ⋮

⎞
⎟
⎠

�en each monomial xα of eλ is the product of λ1 entries from the �rst row, λ2
entries from the second row and so on. We describe the selection of the factors by
a (0, 1)-matrix Awith 1 indicating the selected factors.

�e products contributing to a particular monomial xα correspond exactly to
the matrices with row sums λ and column sums α.�e statement follows. ◻
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We denote byM = (Mλµ) the matrix of these coe�cients.
As the transpose of a matrix exchanges rows and columns we get

Corollary VI.25:�e matrixM is symmetric, that isMλµ = Mµλ .

We now establish the fact that the matrix M is, for a suitable arrangement of
the partitions, triangular with diagonal entries 1.�is shows6 that detM = 1, that
isM is invertible over Z.�is in turn implies�eorem VI.18, b).

Proposition VI.26: Let λ, µ ⊢ n.�en Mλµ = 0, unless µ ≤ λ∗. Also Mλλ∗ = 1.
�us, if the λ are arranged in (a linear extension of) the natural ordering, and the
µ according to ordering of its duals, thenM is upper triangular with diagonal 1.

Proof: Suppose that Mλµ /= 0, so by Lemma VI.24 there is a (0, 1)-matrix A with
row(A) = λ and col(A) = µ. Let A∗ be the matrix with row(A∗) = λ and the 1’s
le� justi�ed, that is A∗i j = 1 if and only if 1 ≤ j ≤ λ i . By de�nition of the dual, we
have that col(A∗) = λ∗. On the other hand, for any j the number of 1’s in the �rst j
columns of A is not less that the number of 1’s in the �rst j columns of A, so in the
natural order of partitions we have that

λ∗ = col(A∗) ≥ col(A) = µ.

To see that Mλλ∗ = 1 we observe that A∗ is the onlymatrix with row(A∗) = λ and
col(A∗) = λ∗. ◻

NoteVI.27:�is approach of proving that the eλ form a basis — expressing the eλ

in terms of the mµ , giving a combinatorial interpretation of the coe�cients in this
expression, and deducing from there that the coe�cient matrix must be invertible
— could also be applied to the other two bases, hλ and pλ . We shall instead give
other proofs, in part because they illustrate further aspects of symmetric functions.

For the reader who feels that we have moved far away from enumerating com-
binatorial structures, we close this section with the following observation (whose
proof is le� as exercise ??):
Suppose we have n balls in total, of which λ i balls are labeled with the number

i. We also have boxes 1, 2,. . . .�en Mλµ is the number of ways to place the balls
into the boxes such that box j contains exactly µ j balls, but no box contains more
than one ball with the same label.

Complete Homogeneous Symmetric Functions

For the complete homogeneous symmetric functions hλ we get the following ana-
log to Lemma VI.24:

6A consequence of the Cayley-Hamilton theorem is that the inverse of a matrix A is a polynomial
in Awith denominators being divisors of det(A).
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Lemma VI.28: De�ne Nλµ as the coe�cient of xµ in hλ , that is

hλ = ∑
µ⊢n

Nλµmµ .

�en Nλµ equals the number of N0-matrices A = (a i j) satisfying row(A) = λ and
col(A) = µ.

Proof: Exercise ??

We now establish a duality between the e-polynomials and the h-polynomials.

Definition VI.29: We de�ne a map ω∶Λn → Λn by setting

ω∶ e i → h i

eλ → hλ

and extending linearly.

As the {eλ}λ⊢n for a basis of Λn this de�nes ω uniquely and shows that ω is a
linear map. Since the e i are also algebraically independent (a fact we shall take as
given), ω is also an algebra endomorphism, that is it preserves products.

Proposition VI.30:�e endomorphism ω is an involution, that is ω2 is the iden-
tity. In particular ω(hn) = en and ω(hλ) = eλ .

We note that�eorem VI.18, c) is an immediate consequence of this proposition.
Proof: We go in the ring Λ[[t]] of formal power series over Λ and set

E(t) ∶= ∑
n≥0

en t
n ,

H(t) ∶= ∑
n≥0

hn t
n .

We have that

E(t) =
N

∏
r=1

(1 + xr t),

H(t) = ∏
r

(1 + xr t + x2r t
2 +⋯) =

N

∏
r=1

(1 − xr t)−1 ,

as can be seen by expanding the products on the right hand side.�is implies that
H(t)E(−t) = 1. Comparing coe�cients of tn on both sides yields

0 =
n

∑
i=0

(−1)i e ihn−i , n ≥ 1.
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We now apply ω, use ω(e i) = h i , and re-index and thus get

0 =
n

∑
i=0

(−1)ih iω(hn−i) and 0 =
n

∑
i=0

(−1)ihn−iω(h i)

We consider this as a linear system of equations with the ω(h i) as variables.�e
coe�cient matrix of this system is lower triangular with diagonal entries h0 = 1,
thus has full rank.�e solution therefore must be unique, but we know already
that the e i form a solution, proving the theorem. ◻

We �nally come to the power sum functions pλ . De�ne

P(t) ∶=∑
n≥1

pn t
n−1

Proposition VI.31: ddt H(t) = P(t)H(t) and ddt E(t) = P(−t)E(t).

Proof:

P(t) = ∑
r≥1

pr t
r−1 =∑

r≥1

N

∑
i=1

x ri t
r−1

=
N

∑
i=1

x i

1 − x i t
= d
dt

N

∑
i=1
log(1 − x i t)−1

= d
dt
log(

N

∏
i=1

(1 − x i t)−1 .)

�e result for H follows by logarithmic di�erentiation.�e argument for E is ana-
log. ◻

By considering the coe�cients of the power series, we can write this result in
the form nhn = ∑n

r=1 prhn−r .�is allows us to express the h i in terms of the p i ,
albeit at the cost of introducing denominators. For example, h2 = 1

2 (p
2
1 + p2).

�erefore the pλ generate as vector space and we get�eorem VI.18 d); albeit
not necessarily with integral coe�cients.

We close this section with the mention of another basis of symmetric polyno-
mials which is of signi�cant practical relevance, but more complicated to de�ne.
Given a partition λ = (λ1 , λ2 , . . .), de�ne

snumλ(x1 , . . . , xn) = det
⎛
⎜⎜⎜⎜
⎝

xλ1+n−1
1 xλ1+n−1

2 ⋯ xλ1+n−1
n

xλ2+n−2
1 xλ2+n−2

2 ⋯ xλ2+n−2
n

⋮ ⋮ ⋱ ⋮
xλn

1 xλn

2 ⋯ xλn
n

⎞
⎟⎟⎟⎟
⎠
.
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By the properties of the determinant, snum is invariant under all even permuta-
tions of the variables, but is not symmetric. It thus must be divisible by the Vander-
monde determinant∏i< j(x i − x j), and the quotient

sλ(x1 , . . . , xn) =
snumλ(x1 , . . . , xn)
∏i< j(x i − x j)

is symmetric. We call the set of sλ the Schur polynomials.�ey form another basis
of Λn , but we will not prove this here.
Amongst the many interesting properties of Schur functions, one can show,

for example, that in the expression sλ = ∑µ Kλµmµ , the coe�cient Kλµ (called
a Kostka Number) is given by the number of semistandard tableaux (that is, we
allow duplicate entry and enforce strict increase in columns, but allow equality or
increase in rows) of shape λ. Also the base change matrix from {pλ} to {sλ} is the
character table of the symmetric group Sn .

VI.7 �e Robinson-Schensted-Knuth Correspondence

From ghoulies and ghosties
And long-leggedy beasties
And things that go bump in the night,
Good Lord, deliver us!

Scottish Prayer
Traditional

We now investigate a miraculous connection between permutations and pairs
of tableaux. For this we relax the de�nition of a standard tableau to not requires
entries from {1, . . . , n}, but allow larger entries (thus skipping some smaller num-
bers). It also will be convenient to consider permutations as sequences of images.

�e fundamental tool s an insert routine that takes a tableau and a number and
inserts the number in the tableau, adding one cell andmoving some entries, so that
the tableau property is preserved.

NoteVI.32:�ewebpagehttps://integral-domain.org/lwilliams/Applets/
index.php by L. Williams has a number of calculators for the algorithms in this
chapter.

�e routine proceeds by inserting the entry a in the �rst row. Let x be the small-
est entry in this row for which x ≥ a. If no such element exists, add a (in a new cell)
at the end of the row. Otherwise a “bumps out” x and takes its place in this row.
�en x is inserted into by the same process into the second row, possibly bumping
out another number which then is inserted into the third row and so on.
Example: Suppose we want to insert 8 into the tableau

https://integral-domain.org/lwilliams/Applets/index.php
https://integral-domain.org/lwilliams/Applets/index.php
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1 3 5 9 12 16
2 6 10 15
4 13 14
11
17

�e smallest entry of the �rst row larger than 8 is 9, which gets bumped out,
resulting in the row 1, 3, 5, 8, 12, 16 and entry 9 being inserted into the second row.

�ere 10 is the smallest entry larger than 9 and gets bumped out, resulting in
row 2, 6, 9, 15.
Inserting 10 into row three bumps out 13. Finally 13 is added at the end of row

four, obtaining the tableau

1 3 5 8 12 16
2 6 9 15
4 10 14
11 13
17

To be able to prove statements, we now describe this process in a formal way
for a tableau T = (Ti j). For convenience we assume that the tableau is bordered by
0’s to the top and le�, and by∞ to the bottom and right, so that Ti j is de�ned for
all i , j ≥ 0.
We also de�ne a relation ≺ on entries of T by

a ≺ b if and only if a < b or a = b = 0 or a = b =∞,

with this the property of being a tableau is given by the following characterization

Ti j = 0 if and only if i = 0 or j = 0; (VI.33)
Ti j ≺ Ti( j+1) and Ti j ≺ T(i+1) j , for all i , j ≥ 0. (VI.34)

We write x /∈ T if x =∞ or x /= Ti j for all i , j ≥ 0.
AlgorithmVI.35 (Insert): Let T = (Ti , j) a tableau and x /∈ T a positive integer.
This algorithm transforms T into another tableau that contains x in addition
to the elements of T and adds one cell in a position (s, t) determined by the
algorithm.

1. [Input x.] Set i ∶= 1, x1 ∶= x, and j smallest such that T1 j =∞.

2. [Find x i+1.] (At this point T(i−1) j < x i < Ti j and x i /∈ T.) If x i < Ti( j−1)
then decrease j and repeat the step. Otherwise set x i+1 ∶= Ti j and r i ∶= j.

3. [Replace by x i .] (Now Ti( j−1) < x i < x i+1 = Ti j ≺ Ti( j+1), T(i−1) j < x i <
x i+1 = Ti j ≺ T(i+1) j, and r i = j.) Set Ti j ∶= x i .
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4. [At end?] (Now Ti( j−1) < Ti j = x i < x i+1 ≺ Ti( j+1), T(i−1) j < Ti j = x i <
x i+1 ≺ T(i+1) j, r i = j, and x i+1 /i nT.) If x i+1 /=∞ then increase i by 1 and
return to step 2.

5. return s ∶= i, t ∶= j and terminate. (At this point Tst /= ∞ and T(s+1)t =
Ts(t+1) =∞.)

Proof:�e parenthetical remarks in the algorithm ensure that T remains a tableau
at each step. ◻
�e algorithm implicitly de�nes a “bumping sequence”

x = x1 < x2 < ⋯ < xs < xs+1 =∞,

as well as column indices
r1 ≥ r2 ≥ ⋯ ≥ rs = t.

We now consider a slight generalization of permutations, namely two-line ar-
rays of integers A=

( q1 q2 ⋯ qn
p1 p2 ⋯ pn

) (VI.36)

such that q1 < q2⋯ < qn and that all p i are di�erent. Permutations thus are the
special case of q i = i and {p1 , p2 , . . . , pn} = {1, . . . , n}.

�e following algorithm takes such an array and produces a set of two tableaux
of the same shape

Algorithm VI.37 (Robinson-Schensted-Knuth): Given a two-line array of the
form (VI.36), the following algorithm produces two tableaux P, Q of the same
shape with entries from the p i , respectively the q i :

1. Initialize P and Q to the empty tableau. Let i ∶= 1.

2. Insert p i into P, obtaining a position (s, t).

3. Place q i into a new cell at position (s, t) in Q.

4. Increment i. If i ≤ n go to step 2. Otherwise terminate and return P and
Q.

Proof:�e proof of Algorithm VI.35 shows that P is a tableau. Furthermore, the
position s, t returned is always a valid position to add a cell to the Young diagram.
As the entries of q i are increasing this shows that Q always is a tableau as well. ◻
We abbreviate this process as RSK and note that if the array is permutation both P
and Q are standard tableaux with entries 1, . . . , n.
Example:We illustrate theRSKprocesswith the example of the array( 1 3 5 7 9

5 2 3 6 4 ).

Insert 5 and 1 P = 5 , Q = 1
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Insert 2 and 3 P =
2
5 , Q =

1
3

Insert 3 and 5 P =
2 3
5 , Q =

1 5
3

Insert 6 and 7 P =
2 3 6
5 , Q =

1 5 7
3

Insert 4 and 9 P =
2 3 4
5 6 , Q =

1 5 7
3 9

Amazingly this process is a proper bijection

TheoremVI.38 (RSKCorrespondence):�ere is a bijection between the set of per-
mutations of {1, . . . n} and the set of ordered pairs (P,Q) of tableaux of the same
shape, formed from {1, . . . , n}. Under this bijection, if g corresponds to the part
(P,Q), then g−1 corresponds to (Q , P).

Example:�e permutation (1, 3, 2, 5, 4, 6) ∈ S7 has an arraywith second row3, 5, 2, 6, 4, 1
and gives the tableaux

P =

1 4 6 7
2 5
3 , Q =

1 2 4 7
3 5
6 .

Before proving this theorem we notice a number of consequences concerning
the number fλ of tableaux:

Corollary VI.39:
∑
λ⊢n

f 2λ = n!

Example: For n = 4 there are 5 partitions and respective tableau counts of f14 = 1,
f1221 = 3, f22 = 2, f1131 = 3, f41 = 1. Also 12 + 32 + 22 + 32 + 12 = 24 = 4!.

Corollary VI.40:�e number of involutions (permutations that are self-inverse,
see III.6 for another formula) is given by∑λ⊢n fλ .

Proof: A permutation g is an involution if and only if g = g−1.�at means that
involutions correspond to pairs with P = Q. ◻

Example: S4 has one identity, three elements of shape (1, 2)(3, 4) and (42) = 6 ele-
ments of shape (1, 2), thus 10 = 1 + 3 + 2 + 3 + 1 involutions.
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Proof of the RSK correspondence

�e unusual nature of these coincidences
might lead us to suspect that some sort
of witchcra� is operating behind the scenes.

�e Art of Computer Programming,
Section 5.1.4: Tableaux.
Donald E. Knuth

�e �rst part of the proof is to observe that Algorithm VI.35 can be reversed:
We say that a cell of a tableau is “at the edge”, if there is no cell to the right or

below.�e insertion algorithm adds a cell which is on the edge of the new tableau.

Now suppose we have a tableau into which an element x has been inserted,
resulting in a new cell at the border of the resulting tableau P, say at coordinates
(s, t). If we are in row s = 1, the entry of the cell is simply the element x.
Otherwise the entry xs must have been bumped out of the previous row. It was

bumped out by an element xs−1 and xs was the smallest number in the row that
was larger than xs−1.�at is, we can identify xs−1 in P as the largest number in row
s − 1 that is smaller than xs . We thus can simply put xs back into its old position
and now have to deal with xs−1. If s − 1 = 1 it was the element x inserted into the
tableau, otherwise we repeat the process for s − 2 and so on.
We can consider this process as an “uninsert” algorithm that takes an (arbitrary)

tableau P, a position (s, t) and returns a tableau P′ missing a cell in position s, t)
as well as an element x. (It is easily see that at all steps the tableau properties are
maintained.)

�e description of the uninsert process also ensures that, a�er uninserting, we
could obtain P back by inserting x into P′ – insert and uninsert aremutual inverses.
Proof:(of�eorem VI.38, part 1) To establish a bijection, we describe an inverse
process to Algorithm VI.37: Given two tableaux P, Q, we produce a two-line array
A.

1. Let A be the empty two-line array.

2. Identify the position (s, t) of the largest entry q of Q. ((s,t) must be at the

edge of Q.) Remove that entry q from Q.

3. Apply the uninsert process to P for position (s, t), resulting in the removal
of an element x.(and reducing P to a tableau as the same shape as the reduced

Q.)

4. Add the column (q
x
) at the front of A.

5. Unless P and Q are empty, go back to step 2.
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�e result of this process is a two-line array A with the �rst row consisting of the
numbers 1, 2 . . . , n in canonical order, and the second row containing each of these
numbers exactly once, that is a permutation.
It is easily seen that this process and the RSK algorithm are mutually inverse,

thus establishing the bijection. ◻

To prove the second part, inversion corresponding to swap of the tableaux, we
need further analysis of the RSK process:
If we consider the �rst row of the P-tableau, the construction process inserts

somenumbers, and bumps someout.Once a number has been bumped itwill never
a�ect row 1 again.
Furthermore, the lower rows of P and Q simply are tableaux corresponding

to the “bumped” two-line arrays, that is two-line arrays that consist of the entries
bumped out of the �rst row and the associated q-entries. (�is bumped array is the
reason why we do not require the �rst row to be the canonical sequence 1, 2, . . . .)
In the example of the permutation ( 1 3 5 7 9

5 2 3 6 4 ) used above, we inserted
2, 3, 4 in the top row and bumped 5 and 6, resulting in the two-line array Abump =

( 3 9
5 6 ) describing the second row and below.

�is shows that the RSK algorithm can be split into two parts – constructing
the �rst row only, and constructing the bumped two-line array. We consider both
parts:

Construction of the �rst row To study the construction of the �rst row – re-
member that every entry of P is inserted �rst into this to row – we de�ne:

DefinitionVI.41: Consider a two-line array as given in (VI.36). A column (q i , p i)
of this array is in class t, if a�er inserting p1 , . . . , p i into an empty tableau, p i is in
column t of the tableau.

Example: Looking at the example above, (3, 2) and (1, 5) are in class 1; (5, 3) is in
class 2; and (7, 6) and (9, 4) are in class 3. We can easily characterize the class of a
column:

Lemma VI.42:�e column (q i , p i) belongs to class t if and only if t is the length
of the longest increasing subsequence p i1 < p i2 < . . . < p i t = p i ending at p i .

Proof: For p i to be in class t, that is inserted into column t, there must be t − 1
elements in the �rst row that are smaller.�ese elements must be p j ’s for j < i

showing that these p j ’s together with p i give an increasing subsequence of length
t. We thus need to show the converse and will do so by induction on the length t
of the longest increasing subsequence ending at p i :
For t = 1, p i is the smallest element and clearly will be inserted in column 1.

Now assume that t > 1 and that the theorem holds for class t − 1. Let p j the prede-
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cessor of p i in an increasing subsequence of length j.�en by induction p j belongs
to class t − 1, that is p j was inserted into the t − 1-st column.�at means that at the
point of inserting p i , the entry in this position is not larger than p j , implying that
p i must be inserted in column t or higher. But if it was higher there would be an
increasing subsequence of length > t, contradiction. ◻

Corollary VI.43:�e length of row 1 of the tableau is the length of a longest in-
creasing subsequence of {p i}.

Classes and bumped tableaux We observe that the tableaux resulting from the
RSK process are completely determined by the columns of the two-line array and
their classes, regardless of the order in which these columns are given:
First observe, that if (q i1 , p i1), . . . , (q ik , pik) form the set of columns in one

particular class, the way the insertion process and bumping works means that we
can assume without loss of generality that the indices have been arranged so that
q i1 < q i2 < ⋯ < q ik and simultaneously p i1 > p i2 > ⋯ > p ik .
If we consider the �rst rowof tableau P, the entry in column tmust be the p-part

of a column (q, p) in class t. Because of bumping, it will be the (smallest) value p ik .
Similarly the corresponding entry in Q must be the q-part of such a column, but it
is the q-part used when the entry is created for the �rst time, that is the minimal
entry q i1 .�is describes the �rst row of P and Q fully.
For the further rows consider the bumped tableaux. To describe these it is suf-

�cient to see what becomes of columns within class t (as entries from di�erent
classes never bump one another).�e entry p i1 gets bumped by p i2 which comes
with q-part q i2 , resulting in a column (q i2 , p i1). Similarly p i2 gets paired with q i3
and so on, giving the (partial) two-line array arising from class t as

Abump = ( q i2 q i3 ⋯q ik
p i1 p i2 ⋯p ik−1

) . (VI.44)

We then proceed from the bumped array anew to obtain new classes and from these
the second rows of P and Q and so on.

With this observation, we are now able to prove the second part of the theo-
rem, concerning the swap of P and Q. As the two tableaux are constructed by very
di�erent methods, this is a most surprising symmetry.
Proof:(of�eorem VI.38, part 1) On the level of two-line arrays, inversion means
to swap the two rows and sort the columns according to the entries in the �rst row.
Denote this array by

A− = ( p′1 p′2 ⋯p′n
q′1 q′2 ⋯q′n

) . (VI.45)
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Ifwe ignore the arrangement of columns, LemmaVI.42 states that a column (q i , p i)
is in class t if and only if t is the maximal size of an index set {i1 , . . . , it} such that

q i1 < q i2 < ⋯ < q i t and
p i1 < p i2 < ⋯ < p i t .

�is means that (q, p) is of class t in (VI.36), if and only if (p, q) is of class t in
(VI.45).

�at implies that the RSK algorithm applied to A− produces tableaux whose
�rst rows are exactly swapped from the tableaux produced for the original two-line
array A.
Furthermore, following the formula (VI.44) for the bumped array – within one

class, remove the smallest p and the smallest q entries and “shi� the entries togeth-
er” – we have that A−bump is obtained from A−bump by swapping the two rows and
sorting according to the �rst row.
Applying the same argument again thus gives us that the second rows etc. also

are swapped, as was to be proven. ◻

�ere is much more to the RSK construction. For example reverting the per-
mutation (as a sequence of numbers) results in a transposition of P (but a some-
whatmore complicated transformation ofQ namely the transpose of a transformed
tableau.)

VI.8 Sliding

Another surprising connection of tableaux arises if we consider semistandard tableaux
– allowing duplicate entries and allowing row entries to be equal, while insisting on
strict increase within columns.We also generalize fromYoung diagrams to skew di-

agrams, these are diagrams λ∖µ with µ a smaller diagram that �ts into the diagram
for λ, and λ∖ µ consisting of the boxes of λ that do not lie in µ. A skew tableau then
is a skew diagram �lled according to the rules of semistandard tableaux. For exam-
ple, for λ = (5, 4, 4, 3, 2) and µ = (4, 3, 1), Figure VI.5 shows a) the skew diagram
λ ∖ µ, and b) a skew tableau of that shape.

a) b)

2
4

1 3 5
2 3 6
3 4 c)

2
3 4

1 5
2 3 6
3 4

Figure VI.5: A skew diagram, a skew tableau of that shape, and a slide
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d)

2
3 4

1 5
2 3 6
3 4 e)

2
3 4

1 5
2 3 6
3 4 f)

2
1 3 4
3 5

2 4 6
3

g)

2
1 3 4

2 3 5
3 4 6 h)

2
1 3 3 4
2 4 5
3 6 i)

2
1 3 3 4
2 4 5
3 6

j)

2 4
1 3 3
2 4 5
3 6 k)

2 3 4
1 3 5
2 4
3 6 l)

1 2 3 4
2 3 5
3 4
6

Figure VI.6: Further sliding moves

A box of λ ∖ µ that was deleted is called an inside corner, if the boxes to the
right and to the bottom of it are both not in µ (and maybe not even in λ). In the
example, the boxes in positions 1/4, 2/3, and in position 3/1, are inside corners.
We now describe a process that will transform a skew tableau into a semistan-

dard tableau through a process, due toM. Schützenberger, that goes by the name
of Sliding or Jeu de Taquin7. Consider the labeled boxes of the skew tableau as tiles
that can move. Starts by selecting an inside corner.

�e basic step now takes a selected, empty, box and slides in (thus the name)
the box on the right, or below, depending on which holds the smaller number. (If
both numbers are the same, the box below is chosen.) A�erwards the position, from
which the box slid, is selected.
In the example, let’s select the inside corner at position 2/3.�e box below, with

3 has the smaller number, and thus slides up, resulting in the tableau in Figure VI.5
c).
We now repeat the process for the newly selected box, sliding in 5 from the

right,resulting in Figure VI.6, d). If, as in this example, the selected box has no
further boxes to the right or below, we simply delete it from the tableau e) and
select a new inside corner, if any exists.�e process repeats, until the tableau is not
skew any longer.
In the example we select inside corner 2/2 and slide up (in turn) 1,3,4 (f). Next,

select 3/1 and slide up (g) 2 and 3. We then select 2/1 and slide in 1, 3 (from below!),
4, 6 (h). From now on there always is only one inner corner le�. We slide in 2 (i).
�en we slide in 2, 4 (j); then 2, 3, 5 (k); and �nally 1, 2, 3, 6 (l).

7�e French name for the 15-puzzle.
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Note VI.46: Convince yourself that a�er each sliding step, rows remain (when ig-
noring empty boxes) weakly increasing, and columns strictly increasing.�is pro-
cess thus results in a semistandard tableau.

In the description of the process, we had a choice of inside corners. Somewhat
surprisingly, this choice does not a�ect the result:

TheoremVI.47:�e resulting semistandard tableau does not depend on the choice
of inside corners.

We thus call the resulting tableau the recti�cation of the original skew tableau
(denoted by rect(S)).
Using this process, wenowde�ne amultiplication on tableaux:Given two tableaux

S andT , we de�ne the product S⋅T as the recti�cation of the skew tableau T
S

obtained by placing S and T , connected at a corner.
For example, we have that

1 2 4
3 5

⋅ 6 8
7

= rect(
6 8
7

1 2 4
3 5

) = 1 2 4 6 8
3 5 7

Surprisingly, this product also can be obtained from the insertion process:

Theorem VI.48:�e product S ⋅ T can also be obtained by inserting the elements
of T, bottom row to top row, subsequently into S.

Finally, maybe the biggest surprise, and with no obvious reason, we have the
main structural statement:

Theorem VI.49:�is multiplication of tableaux is associative.

VI.9 �e plactic monoid

�e tool to show these three statements will be algebraic (a�er all, associativity is an
algebraic property). We associate to every tableau T a row word (or simply “word”)
w(T), which is the sequence of numbers in the tableau, read le� to right, bottom

row to top row. For example, the tableau T =
1 2 4
3 5 has word w(T) = 35124

(considered as a sequence of symbols.
Conversely, if T is a semistandard tableau, the �rst entry of row imust be small-

er than the last entry of row i + 1. Given the word w(T), we thus can recognize the
places of row changes, as the places where the entries in the word become strictly
smaller. Not every word corresponds to a semistandard tableau, for example 4231
would force a violation of the tableau shape. However each word corresponds to
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(multiple) skew tableaux. A few examples for 4231 are

1
2 3
4 ,

1
2 3
4 ,

1
2 3

4 ,

1
3

2
4 .

Formally, we have an alphabet A = {1, 2, 3, . . . , k} (or even in�nite) and con-
sider the set A∗ of words (= sequences) in A, including the empty word. With con-
catenation as product it has the structure of amonoid, i.e. the multiplication is as-
sociative and there is an identity element. It is in fact a free monoid.

�e words of (proper) tableaux form a subset of A∗. (Such a subset is called
a formal language, and the elements of A are called letters8.) We want to under-
stand this subset and in particular understand how the sliding process produces
words in this subset. We will do so by describing transformation rules for words
that represent the bumping and sliding processes.
We �rst look at the situation of�eorem VI.48 and consider the insertion of

element q into tableau S, resulting in tableau T . If q is larger than every element in
the �rst row of S, then w(T) = w(S) ⋅ q. Otherwise the �rst row of S has the form
a ⋅ p ⋅ b with p being bumped out by q.�is means that every factor if a is smaller
than q, and every factor of pb at least as large as q.
A�er insertion, the �rst row of T will have the form a ⋅ q ⋅ b, and with p being

inserted into the second row we can consider this as a word transformation

apbq → paqb

We want to describe this transformation in terms of simpler rules. First among
these is that we pull q past letters in b which are larger, as long as the letter before
is also larger than q. We write these rules as

yzx ↦ yxz, for letters x < y ≤ z. (VI.50)

�is set of rules will (iteratively) transform apbq into apqb. Next we move p past
the letters in a, which all are smaller than p. �is is not a reversal of the rules
(VI.50), since the letter following p is smaller than p itself. (In the �rst instance
apqb we might have q = p, but then apqb = aqpb trivially.)�is gives rules:

xzy ↦ zxy, for letters x ≤ y < z. (VI.51)

�e set of these rules now transform apbq into paqb, which is a word tail that
represents the insertion of p into the second row of the tableau.
One can now consider the equivalence relation on words (transitive closure)

de�ned by the relations of type (VI.50) and (VI.51).�ese equivalence classes form
amonoid, the factor of the free monoid A∗ by these relations. It is called the plactic
monoid.

8though in our case they are numbers
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• Slide moves do not change the equivalence class of skew tableau words.

• �ere is exactly one semistandard tableau word in each equivalence class.

�e multiplication we de�ned thus is the multiplication in the plactic monoid,
whose elements are in bijection to semistandard tableaux.





Chapter

VII

Symmetry

Tyger Tyger, burning bright,
In the forests of the night;
What immortal hand or eye,
Could frame thy fearful symmetry?

�e Tyger
William Blake

�e use of symmetries is one of the tools of science that crosses into many
disciplines. So far we have only touched upon this, in a rather perfunctory way,
by considering objects as identical or non-identical, or by counting labeled versus
non-labeled objects. In this chapter we shall go into more detail. In combinatorics,
there are at least three uses of symmetry:

• We might want to consider objects only up to symmetry, thereby reducing
the total number of objects. For example when considering bracelets made
from 10 green and one golden pearl, we want to consider this is one bracelet,
rather than 11 possible positions of the golden pearl.We will look at counting
up to symmetry in Section VII.5.

• Symmetries can be used to classify what is sometimes a huge number of ob-
jects into equivalence classes. For example, relabeling points in a permuta-
tion preserves the cycle structure.

• Finally, in a related way, we might want to use symmetries as a proxy for ob-
jects being interesting. When combining parts, there might be a huge num-
ber of possible objects. For example there are

645490122795799841856164638490742749440 OEIS A000088
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Figure VII.1: Two graphs with di�erent symmetries

di�erent graphs on 20 vertices. But, be it graphs or other objects, it turns out
that many of them are just stuck together from smaller objects and do not
amount to more than the sum of their parts. On the other hand symmetries
that do not keep the parts �xed o�en indicate something interesting. Fig-
ure VII.1 shows two graphs with 7 vertices and 12 edges. Clearly the graph
on the right (which has 5 nontrivial symmetries) is more interesting than the
le� one (with only trivial symmetries).

Of the formal setting inmathematics for symmetries is a group. Instead of going
all abstract, we will consider �rst, what we want symmetries to be, and then get the
formal axioms as an a�erthought. So, what are symmetries? If we have an object
(which can be a set of smaller objects), a symmetry is amap from the object to itself,
may be mixing up the constituent parts, that preserves some structural properties.

VII.1 Automorphisms and Group Actions

Nothing will make me believe that a man who
arranged all the rest of that room with that
exaggerated symmetry le� that one feature of it
lopsided.

�e Worst Crime in the World
G. K. Chesterton

We call such a map an automorphism, from the Greek autos for self and mor-
phe for shape.�ere always is at least one such map, namely the identity which
doesn’t do anything. In an abuse of notation we shall write 1 for the identity map.
By preserving the larger collection, the maps have to be bijective, and thus a�ord
an inverse. Finally we can compose these maps, that is apply one a�er the other.
As always, composition of maps is associative. we thus get the formal axioms of
a group, though this axiomatic theory shall be of little concern to us. Following
conventions introduced in [Wie64], we denote groups by upper case letters, group
elements by lower case letters, and objects the group acts on by Greek letters. If
the objects we act on have numbered parts or are themselves numbered, it can be
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convenient to represent maps as permutations. Indeed, if we act on a set of objects
with numbered parts, permutations of these numbers yield automorphisms.
Formally, we can distinguish maps and the permutations induced by them, in

this case an action of a group G on n numbered objects yields a group homomor-
phism G → Sn , assigning to every map the permutation induced by it.

We shall write the image of a point ω under a map g as ωg .�at is our groups
act on the right.�at way the image of ω under the product of g with h is simply
gh. Similarly permutationsmultiply as (1, 2, 3) ⋅(2, 3) = (1, 3). (While this is clearly
the natural way for languages that are written from le� to right, the reader who had
abstract algebra might notice that in some classes the convention used is an action
from the le�, which then requires the introduction of a special product operation
for composition of maps.)
In some situations we might want to consider what maps do to parts, collec-

tions, or structures derived from the original objects. For this, it is most convenient
to not consider new maps, but a new action of the original maps.�e rules for this
are simply that the identity must act trivially, and that products act from le� to
right, that is

ω1 = ω ∀ω ∈ Ω, and ω(gh) = (ωg)h ∀ω ∈ Ω∀g , h ∈ G

Such an action, given by a group G, a domain Ω, and a map Ω ×G → Ω, (ω, g)↦
ωg , is called a group action. Group actions are the basic objects we shall consider.

Examples

Before delving into further details of the theory, lets consider a few examples.
�e set of all permutations of n points form a group, called the symmetric group

Sn . It acts on the points {1, . . . n}, but we also can have it act on other structures
that involve these numbers, for example all subsets of size k, sequences of length k,
or partitions with k cells.
If we consider a bracelet with 6 pearls as depicted on the le� in Figure VII.2,

then automorphisms are given for example by a rotation along the bracelet (which
we shall denote by the permutation (1, 2, 3, 4, 5, 6)), or by �ips along the dashed
re�ection axes. For example, the �ip along the axis going between 1 and 2 is given
by the permutation (1, 2)(3, 6)(4, 5). Together with the trivial rotation this gives
1+5+6 = 12 symmetries. We also observe that there are 6 positions where 1 can go,
and then 2 positionswhere 2 goeswithwhich an automorphism is fully determined.
�e whole symmetry group thus has order 12. (For those who had abstract algebra,
it is the dihedral group of order 12.)
Next consider symmetries of a cube that are physically possible without dis-

assembling, that is only rotations and no re�ections. (However in other cases one
might make another choice, indeed when talking about automorphisms one needs
to decide what exactly is to be preserved.) Besides the identity there are 3 rotations
each for the three pairs of opposite faces, 2 rotations for each of the 4 diagonal axes,
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Figure VII.2: A circle graph and the Petersen graph

as well as 1 rotation on axes that go through themiddle points of 6 pairs of opposite
faces, for a total of 1+9+8+6 = 24 symmetries. (Again, the images of neighboring
faces gives us at most 6 ⋅ 4 = 24 possibilities, thus we found all.)

�e set of automorphisms of an object X is called its automorphism group and
denoted by Aut(X). (As noted that might depend on what structure is to be pre-
served.�e automorphism group of the 6 faces would be S6 if we did not want to
preserve the cube structure.)

It is not always that easy to determine the number of automorphisms (also
called the order of the automorphism group). Take the graph on the right side of
Figure VII.2 (which is called the Petersen-graph). An automorphism of a graph is a
permutation of the vertices that preserves adjacency. By checking this property, it is
easy to verify that the permutation (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) is an automorphism,
as is (with a bit more e�ort) (3, 7)(4, 10), (8, 9). But is is not trivial to show that
there are 120 automorphisms in total, and that any automorphism can be formed as
a suitable product of the two permutations given.Wewill look at this in Exercise ??.

For an example with a larger set of objects, consider the order-signi�cant par-
titions of n into k parts and Sk acting by permuting the parts.

Finally, we consider the set of all possible graphs on three vertices, labeled with
1, 2, 3, as depicted in Figure VII.3.�ere are (32) = 3 possible edges and thus 2

3 = 8
di�erent graphs.�e group S3 acts on this set of graphs by permuting the vertices.
(When doing so, the number of edges (andmore—On four vertices we cannotmap
a triangle to a Y) is preserved, so not every graph may be mapped to any other.
In general, for two given graphs on n (labeled) vertices, a permutation in Sn

that maps one graph to the other is called a graph isomorphism, if such a map exists
the graphs are called isomorphic.
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Figure VII.3:�e labeled graphs on 3 vertices.
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Figure VII.4:�ree nonisomorphic graphs that are regular of degree 3.

NoteVII.1:�e question of determining graph isomorphisms is a prominent [Bab16]
and hard problem.While local properties— number of edges or degrees of vertices
— can eliminate the existence of automorphisms, one can show that for any set of
local properties, there are graphs in di�erent orbits which agree on all of the invari-
ants.
FigureVII.4 shows three graphs, each of them regular of degree 3.�e le� graph

has trivial automorphism group, the middle graph an automorphism group of or-
der 20.�e right graph is in fact, with the given labeling, isomorphic to the Pe-
tersen graph (with automorphism group of order 120), though this isomorphism
is not obvious without the labeling – there are 10! possible maps, only 120 of them,
that is 1 in 30240 induce an isomorphism.

We close this section with the de�nition of an equivalence of actions:

Definition VII.2: Let G be a group acting on a set Ω and H a group acting on a
set ∆. We call these actions equivalent (actions), if there is a group homomorphism
α∶G → H and a bijection ψ∶Ω → ∆, such that

ψ(ωg) = ψ(ω)α(g)

�at means if a group G acts on a set Ω of size n, inducing a homomorphism
φ∶G → Sn , the action of G on Ω and the action of φ(G) on {1, . . . , n} are equiva-
lent.
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Orbits and Stabilizers

Ever he would wander, selfcompelled, to the
extreme limit of his cometary orbit.

Ulysses
James Joyce

�e two main concepts for working with group actions are orbits and stabiliz-
ers.

Definition VII.3: Let G act on Ω and ω ∈ Ω.
a)�e Orbit of ω is the set of all possible images:

ωG = {ωG ∣ g ∈ G}.

b)�e stabilizer of ω is

StabG(ω) = {g ∈ G ∣ ωG = ω}.

Since group elements are invertible, the orbits of a group form equivalence
classes.�ey represent “equivalence up to symmetry”. If we want to describe ob-
jects up to symmetry, we really ask to describe the orbits of an appropriate symme-
try group.
Example: Determine orbits in the examples of the previous section?

Definition VII.4:�e action of G on Ω is transitive if there is only one orbit, that
is Ω = ωG for (arbitrary) ω ∈ Ω. An element ω ∈ Ω, that is the only one in its orbit
— i.e. ωG = {ω}— is called a �xed point of G.

�e stabilizer of a point is closed under products and inverses and thus always
forms a group itself. Indeed,the automorphism group of an object can be consid-
ered as a stabilizer of the object in a larger “full” symmetry group: In the case of
the bracelet we can consider the set of all permutations of the pearls and want on-
ly those that preserve the neighbor relations amongst pearls.�e automorphism
group of a cube (centered at the origin) is the stabilizer of the cube in the orthog-
onal group of 3-dimensional space.

�e key theorem about orbits and stabilizers is the bijection between orbit ele-
ments and stabilizer cosets. Two elements g , h map ω in the same way if and only
if their quotient lies in the stabilizer:

ωg = ωh ⇔ ω = ω(g⋅g−1) = (ωg)g
−1
= (ωh)g

−1
= ωh/g ⇔ h/g ∈ StabG(ω).

�is means that if g is one element such that ωg = δ then the set of all elements
that map ω in the same way is (what is called a coset):

StabG(g) ⋅ g = {s ⋅ g ∣ s ∈ StabG(ω)}.

For any orbit element δ ∈ ωG there therefore are exactly ∣StabG(ω)∣ elements of G
that map ω to δ. We therefore have
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Figure VII.5: Schreier graph for the action of ⟨a = (1, 2), b = (1, 2, 3, 4)⟩ on pairs.

TheoremVII.5 (Orbit-Stabilizer):�ere is a bijection between elements of ωG and
cosets of StabG(ω). In particular:

∣G∣ = ∣ωG ∣ ⋅ ∣StabG(ω)∣ .

In particular, this means that the length of an orbit must divide the order of the
acting group.
Example: A group of order 25, acting on 12 points thus must have �xed points.
We note some consequences from this bijection.�ey show that the possible

transitive actions of a group G are prescribed by its structure:

Lemma VII.6: Let G act on Ω and ω, δ ∈ Ω with g ∈ G such that ωg = δ.�en

a) StabG(ω)g = StabG(δ).

b) �e set of elements of G mapping ω to δ is

StabG(ω) ⋅ g = g ⋅ StabG(δ) = StabG(ω) ⋅ g ⋅ StabG(δ).

c) �e action of G on ωG is equivalent to the action of G on the cosets of S =
StabG(ω) by (Sx , g) ↦ S(xg): If ωx = δ, ωy = γ and δ g = γ then S(xg) =
Sy.

We now de�ne a directed graph that describes the action of certain elements
A ⊂ G on Ω. (Typically Awill be a generating set for G, that is every element of G
is a product of elements of A and their inverses.)

Definition VII.7: Let SchA(Ω) = (Ω, E) the digraph with vertex set Ω and edges
E ⊂ Ω × Ω labeled by elements of A: We have that (ω, δ) ∈ E if and only if there
exists an a ∈ A such that ωa = δ. In this case we label the edge (ω, δ) with a. We
call SchA(Ω) the Schreier graph1 for the action of A on Ω.

1a�er Otto Schreier, 1901-1929
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For example, Figure VII.5 gives the Schreier graph for the action of S4, gener-
ated by the permutations a = (1, 2) and b = (1, 2, 3, 4) on sets of order 2 (which
form just one orbit).
A Schreier graph is connected (and, for a �nite group then also strongly con-

nected, that is connected with respect to directed edges) if and only if all of Ω is
one single orbit.
By tracing paths between vertices and multiplying up the elements of A on the

edges (inverses, if we go an arrow in reverse), we obtain a factorization of an ele-
ment, mapping one point to another, as a word in A. In the example above, we can
read o� that b2 will map {2, 3} to {1, 4}, as would aba, b−2, bab, and so on.
Puzzles, such as Rubik’s cube are essentially just about �nding such factoriza-

tions, in examples in which the group is far too large to draw the Schreier graph.

We candetermine the orbit of a point as the connected component of the Schreier
graph, starting from a vertex and continuing to add images under group genera-
tors, until no new images are found.images under group generators, until no new
images are found. (One needs to store only vertices encountered this way, not the
edges.) A spanning tree of a connected Schreier graph is called a Schreier tree, it is
easy to see that o�en there will be many possible Schreier trees, of di�erent depth.
We note that loops in the Schreier graph images yield stabilizer elements, that is

if ωg = δ, δa = γ, and ωh = γ, then ga and h are in the same coset of S = StabG(ω)
and ga/h ∈ S. Schreier’s theorem (which we shall not prove here) shows that if
we do so systematically for all loops that get created from elements of A, we obtain
a generating set for StabG(ω).

�is in fact provides the tool— called the Schreier-Sims algorithm—by which
computers calculate the order of a permutation group:�ey calculate the orbit of
a point and generators for its stabilizer, then recurse to the stabilizer (and another
point). By the Orbit-Stabilizer theorem the group order then is the product of the
orbit lengths.
Example: An icosahedron has 20 faces that are triangle shaped. Rotations can map
any face to any other face, yielding an orbit of length 20.�e stabilizer of a face can
clearly have only 3 rotations, yielding a rotational automorphism group of order
60. Similarly we obtain a rotation/re�ection automorphism group of order 120.

VII.2 Cayley Graphs and Graph Automorphisms

Spread oot, lads, and pretend ye’re enjoying the
cailey.

�e Wee Free Men
Terry Pratchett
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Figure VII.6: Two Cayley graphs for S3.

DefinitionVII.8: An action ofG on Ω is semiregular if the stabilizer of any ω ∈ Ω
is trivial. If the action is also transitive, it is called regular.

By Lemma VII.6, a regular action of G is equivalent to the action on the cosets
of the trivial subgroup, that is the action ofG on its elements by rightmultiplication:
(x , g) ↦ xg. If we have a generating set A of G, the Schreier graph for this action
gets a special name, it is called the Cayley graph of G (with respect to A).
Figure VII.6 shows the Cayley graphs for S3 for the generating set a = (1, 2),

b = (2, 3), as well as for the generating set x = (1, 2, 3), y = (1, 2).
We notice (Exercise ??) that G induces automorphisms of the Cayley graph

CayA(G). To be consistent with the way we de�ned actions and with the labeling
of edges, the action of g ∈ G is de�ned by (v , g) ↦ g−1v for a vertex v ∈ G. We
denote this automorphism by µg .
However Cayley graphs can, as graphs that ignore labels and directions, have

other automorphisms. For example, the graph in Figure VII.6, le�, has a dihedral
group of order 12 of symmetries, no all of which make sense for S3 (a rotation for
example would change element orders).
Such extra automorphisms however will not preserve edge labels:

Lemma VII.9: Let Γ = CayA(G) and α ∈ Aut(Γ).�en α preserves the labels of all
edges, if and only if there exists g ∈ G such that α = µg , that is α(v) = g−1v for all
v ∈ G.
Proof: If x ⋅ a = y then g−1 ⋅ (x ⋅ a) = g−1 ⋅ y.�us all µg preserve the edge labels.
Let 1 be the identity of G and g ∶= α(1).�en α ⋅ µg is an automorphism that maps
1 to 1. Furthermore (as µg preserves edge labels), α ⋅ µG preserves edge labels if and
only if α does. We thus may assume, without loss of generality, that α(1) = 1. (We
shall show that in this case α must be the identity map that is µ1. As α ⋅ µg = µ1 we
get that α = µg−1 .)
By de�nition, for every a ∈ A, there exists a unique vertex (namely the vertex

a) that is connected by an edge from 1 with label a.�at means that this edge must
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be �xed by α and thus α(a) = a.�e same argument for edges to 1 shows that a−1
must be �xed by α for any a ∈ A.�is shows that every vertex at distance one from
1 must be �xed by α.

�e same argument now can be used by induction to show that all elements at
distance 2, 3 . . . from 1 must be �xed by α. As A is a generating set of G, this is all
elements, thus α must be the identity, completing the proof. ◻

�is result implies that all �nite groups can be considered as the automorphism
group of a suitable graph.

TheoremVII.10 (Frucht): LetG be a �nite group.�en there exists a �nite graph
Γ such that Aut(Γ) ≅ G.

Proof: We have seen already that every group is the automorphism group of a di-
rected graph with labeled edges, for example its Cayley graph.What we will simply
do is to simulate direction and labeling by extra vertices and edges. First for direc-
tion: For each directed edge a → b between vertices a, b, we introduce three new
vertices x , y, z and replace the directed edge by undirected edges a−x−y−b, as well
as y−z.�at is, a and b are still connected, and z indicates the arrow direction.�e
z-vertices of this new graph are the only ones of degree 1, so the automorphisms
must map a z-vertex to a z-vertex, and thus an y-vertex to a y-vertex. We also add
a ”universal” vertex X which we connect to all x-vertices.�en (ensured if neces-
sary by adding further vertices we connect to X) the vertex X is the only vertex
of its degree and thus must remain �xed under any automorphism, implying that
the x-vertices must be permuted amongst each other as well.�us the “original”
vertices of the graph cannot be mixed up with any of the newly introduced ver-
tices representing edges. Also distance arguments show that each group of x/y/z
vertices must stay together as a group.�e automorphisms of this new undirected
graph thus are the same as the automorphisms of the original directed graph.
To indicate edge label number i, we insert i − 1 extra vertices into the y − z

edges, replacing y − z by y − z1 − z2 − c ⋅ ⋅ ⋅ − z i−1 − z. Automorphisms then need to
preserve these distances and thus are restricted to preserving the prior labeling. ◻

(Frucht in fact proved a stronger theorem, namely that every �nite group is the
automorphism group of a 3-regular graph, i.e. a graph in which every vertex has
degree 3.)

Note VII.11: A �nal caveat:�e same, unlabeled, directed graph can be a Cayley
graph for two di�erent, non-isomorphic, groups. Figure VII.7 depicts the Cayley
graphs for the cyclic group ⟨a ∣ a9⟩ of order 9 and the generating set {a, b = a4 , c =
b7}, as well as the Cayley graph for the noncyclic group ⟨x , y ∣ x3 , y3 , xy = yx⟩ of
the same order and the generating set {a = x , b = xy, c = x/y}.�e graphs are
isomorphic, when labels are ignored.
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Figure VII.7: Isomorphic Cayley graphs for nonisomorphic groups

VII.3 Permutation Group Decompositions

Permutation:
�e theory of how hairdos evolved

�e New Uxbridge Dictionary
Brook-Taylor et.al.

Finding the automorphism group of an object can be hard. In many practically
relevant cases, however the objects have substructures that need to be preserved
by automorphisms. In this case we can relate automorphisms of the structure with
automorphisms of the substructures in a meaningful way.
In this section we shall look at two kinds of decompositions that lend them-

selves to nice group theoretic structures.
By labeling relevant parts of the object acted on by G we can assume without

loss of generality that the automorphism group group on a set Ω.

We start with the situation that Ω can be partitioned into two subsets that must
be both preserved as sets, that is Ω = ∆ ∪Λ with ∆ ∩Λ = ∅.�is could be distinct
objects — say vertices and edges of a graph — or objects that structurally cannot
be mapped to each other – for example vertices of a graph of di�erent degree. (�e
partition could be into more than two cells, in which case one could take a union
of orbits and iterate, taking the case of two as base case.)
In this case G must permute the elements of ∆ amongst themselves, as well as

the elements of Λ. We thus can write every element of G as a product of a permu-
tation on ∆ and a permutation on Λ. Since the sets are disjoint, these two permu-
tations commute.
Group theoretically, thismeans thatwe get a homomorphismφ∶G → S∆ , aswell

as a homomorphism ψ∶G → SΛ .�e intersection Kernφ∩Kernψ is clearly trivial,
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Figure VII.8: Two graphs with an imprimitive automorphism group.

as elements of G are determined uniquely by their action on Ω = ∆ ∪ Λ. We thus
can combine these maps to an embedding (an injective group homomorphisms)

ι∶G → S∆ × SΛ , g ↦ (φ(g),ψ(g))

If we consider the direct product as acting on the disjoint union of ∆ and Λ, this
map is simply the identity map on permutations.

�e images of φ and ψ are typically not the whole symmetric groups. �us,
setting A = φ(G) and B = ψ(G), we can consider G as a subgroup of A × B, and
call it a subdirect product of A and B. All intransitive permutation groups are such
subdirect products.
Note that a subdirect product does not need to be a direct product itself, but

can be a proper subgroup, see Exercise ??.�ere is a description on possible groups
arising this way, based on isomorphic factor groups. Doing this however requires
a bit more of group theory than we are prepared to use here.
We also note that it is not hard to classify subdirect products abstractly, and

that this indeed has been done to enumerate intransitive permutation groups.

Block systems andWreath Products

�e second kind of decomposition we shall investigate is the case of a groupG that
is transitive on Ω, but permutes a partition into subsets (which then need to be of
equal size).
For example, in the two graphs in FigureVII.8, one such partitionwould be giv-

en by vertices that are diagonally opposed. Neither diagonal is �xed, but a diagonal
must be mapped to a diagonal again.
In the graph on the right, constructed from four triangles that are connected

in all possible ways with the two neighbors, such a partition would be given by the
triangles.
We formalize this in the following de�nition:
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Definition VII.12: Let G act transitively on Ω. A block system (or system of im-

primitivity) for G on Ω is a partition B of Ω that is invariant under the action of
G.

Example: For example, takingG = GLn(F) for a �nite �eld F, acting on the nonzero
vectors of Fn , the sect of vectors that span the same 1-dimensional space, that is
those that are equivalent under multiplication by F∗, form a block system.
We note a few basic properties of block systems, the proof of which is le� as an

exercise.

Lemma VII.13: Let G act transitively on Ω with ∣Ω∣ = n.

a) �ere are two trivial block systems, B0 = {{ω}}ω∈Ω , as well as B∞ = {Ω}.

b) All blocks in a block system must have the same size.

c) If B is a block system, consisting of a blocks of size b, then n = ab.

d) If B is a block system, then G acts transitively on the blocks in B.

e) A block system is determined uniquely by one of its blocks.

We note — See section ?? — that part a) of the lemma is the best possible –
there are groups which only a�ord the trivial block systems.

A connection between blocks and group structure is given by the following
proposition which should be seen as an extension of�eorem VII.5:

Proposition VII.14: Let G act transitively on Ω and let ω ∈ Ω with S = StabG(ω).
�ere is a bijection between block systems of G on Ω and subgroups S ≤ U ≤ G.

Proof:Wewill establish the bijection by representing each block systemby the block
B containing ω. For a block B with ω ∈ B, let StabG(B) be the set-wise stabilizer
of B. We have that S ≤ StabG(B), as S maps ω to ω and thus must �x the block B.
Since G is transitive on Ω there are elements in G that map ω to an arbitrary δ ∈ B,
as B is a block this means that these elements must lie in StabG(B).�is shows that
StabG(B) acts transitively on B and that B = ωStabG(B).�e map from blocks to
subgroups therefore is injective.
Vice versa, for a subgroup U ≥ S, let B = ωU . Clearly B is, as a set, stabilized

by U . We note that in fact U = StabG(B), as any element x ∈ StabG(B)must map
ω to ωx inB and by de�nition there is u ∈ U such that ω = (ωx)u = ωxu , so xu ∈
S ≤ U and therefore x ∈ U .�us the map from subgroups containing S to subsets
containing ω is injective.
We claim that B is the block in a block system. Since G is transitive, the images

of B clearly cover all of Ω. We just need to show that they form a partition. For
that, assume that Bg ∩ Bh /= ∅, that is there exists δ ∈ Bg ∩ Bh .�is means that
δ g−1 , δh−1 ∈ B = ωU and thus there exists ug , uh ∈ U such that ωu g g = δ = ωuh h .
But then ug g(uhh)−1 = ug gh

−1u−1h ∈ StabG(ω) ≤ U , the gh−1 ∈ U and (as U =
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StabG(B)) we have that Bg = Bh .�is shows that the images of B form a partition
of Ω.

�e properties shown together establish the bijection. ◻

CorollaryVII.15:�e blocks systems forG on Ω form a lattice under the “subset”
(that is blocks are either subsets of each other or intersect trivially) relation. Its
maximal element is B∞, its minimal element is B0.
We call a transitive permutation group imprimitive, if it a�ords a nontrivial

block system on Ω. We want to obtain an embedding theorem for imprimitive
groups, similar to what we did for direct products. �at is, we want to describe
a “universal” group into which imprimitive groups embed.

�e construction for this is called the wreath product”

DefinitionVII.16: Let Abe a group, b an integer, and B ≤ Sb a permutation group.
�e wreath product A ≀ B is the semidirect product of N = Ab = A×⋯ × A

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b

with B

where B acting on N by permuting the components.

If A ≤ Sa is also a permutation group, we can represent A ≀ B as an imprimitive
group on a ⋅b points: Consider the numbers 1, . . . , ab, arranged as in the following
diagram.

1 2 ⋯ a

a + 1 a + 2 ⋯ 2a
⋮

a(b − 1) + 1 a(b − 1) + 2 ⋯ ab

�en the direct product N = Ab can be represented as permutations of these num-
bers, the i-th copy of A acting on the i-th row. Now represent the permutations of
B by acting simultaneously on the columns, permuting the b rows.�e resulting
groupW is the wreath product A ≀ B. Points in the same row of the diagram will
be mapped byW to points in the same row, thusW acts imprimitively on 1, . . . , ab
with blocks according to the rows of the diagram.W is therefore called the imprim-

itive action of the wreath product.

LemmaVII.17: LetG act imprimitively on 1, . . . n = ab with b blocks of size a.�en
G can be embedded into a wreath product Sa ≀ Sb in
Proof: By renumbering the points we may assume without loss of generality that
the blocks of G are exactly {1, . . . , a}, {a + 1, . . . , 2a} and so on, as given by the
rows of the above diagram. Let g ∈ G.�en g will permute the blocks according
to a permutation b ∈ Sb . By considering Sb as embedded into Sa ≀ Sb , we have that
g/b �xes all rows of the diagram as sets and thus is in N = (Sa)b . ◻

(Again, it is possible — for example under the name of induced representations—
to give a better description, reducing to a wreath product of the block stabilizers
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action on its block with the groups action on all the blocks, but doing so requires a
bit more work.)

Product Action

�ere is a di�erent permutation action of wreath products, called the product ac-
tion: For a group G acting on a set Ω and a group H acting on a set ∆ of order n,
we de�ne an action ofG ≀H on the cartesian product Ωn :�e normal subgroupGn

acts with the i-th copy ofG acting in the i-th dimension,H then acts by permuting
dimensions.
Somewhat surprisingly, given that the degree is larger than that of the imprim-

itive action and thus has a smaller point stabilizer, this action is o�en primitive.We
give the proof in an easy case (in fact the theorem remains true if we only require
G to be primitive but not regular).

Lemma VII.18: Suppose that G acts 2-transitively on Ω, with ∣Ω∣ > 2, and that H
acts transitively on {1, . . . , n}.�en G ≀H acts primitively on Ωn

Proof: With G and H acting transitively, G ≀H acts transitively on Ωn . Assume this
action is imprimitive and B is a block that contains the point p = (ω, . . . ,ω) ∈ Ωn ,
as well as another point q = (δ1 , . . . , δn) with at least one δ i , say δ1, di�erent from
ω. By exercise ??, B must be invariant under

S = StabG≀H(ω, . . . ,ω) = StabG(ω) ≀H.

�us B must also contain all points (γ, δ2 , . . . , δn). As ∣Ω∣ > 2 it thus contains one
such point with γ /= δ1. But the stabilizer of q will (similar argument using doubly
transitivity) map (γ, δ2 , . . . , δn) to (ω, δ2 , . . . , δn).
Using the action of B to permute components we thus get that Ωn ⊂ B, that is

the block system is trivial. ◻

VII.4 Primitivity and Higher Transitivity

In action be primitive; in foresight, a

strategist. Agir en primitif et prévoir en stratège.

Feuillets d’Hypnos #72
René Char

A transitive permutation group G ≤ SΩ is called primitive, if the only block
systems it a�ords are the trivial ones B0 and B∞. Since block sized need to divide
the degree, every transitive group of prime degree is primitive.
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Example in arbitrary degree are given by symmetric groups:
Example: For n > 1, the symmetric group Sn is primitive: Assume that B is a block
in a nontrivial block system, then 2 ≤ ∣B∣ ≤ n − 1.�us there are ω, δ ∈ B and
γ ∈ Ω ∖ B. But there is g ∈ Sn such that ωg = ω and δ g = γ, thus B is mapped by
g to a set that has proper, nontrivial, intersection with B contradicting the block
property.

�is argument in fact only requires that the action on pairs of points is transitive
— map {ω, δ} to {ω, γ}, motivating the following de�nitions:
Definition VII.19: Let G be a permutation group that is transitive on Ω.
a) If G acts transitively on all k-tuples of distinct elements of Ω, then G is called
k-transitive.
b) IfG acts transitively on all k-sets of elements of Ω, thenG is called k-homogeneous.

�ese properties are related:

Theorem VII.20: a) If G is k-transitive for 1 < k then G is also k − 1-transitive
b) If G is k-homogeneous for 1 < k ≤ ∣Ω∣ /2, then G is also k − 1-homogeneous
c) If G is k-transitive, then G is k-homogeneous
d) If G is k-transitive or k-homogeneous for k > 1, then G is primitive.
Proof: a and c) are clear. b) follows from Proposition ?? below. For d), it is su�-
cient to show that a 2-homogeneous group must be primitive: Assume that B is a
nontrivial block and choose α, β ∈ B and γ /∈ B. An element g mapping {α, β} to
{α, γ} will map B to an image Bg with nontrivial intersection, contradiction.
◻

Note VII.21: Apart from the symmetric and alternating groups there are very few
groups that aremore thanquadruply (or higher) homogeneous. See also SectionX.7.

Observe that 2-homogeneity is a su�cient, but not a necessary condition for
primitivity. Consider for example the group

⟨(1, 2, 3)(4, 5, 6)(7, 8, 9), (1, 5, 9)(2, 6, 7)(3, 4, 8), (2, 7, 3, 4)(5, 8, 9, 6)⟩

≅ F23 × ⟨( 0 −1
1 0 )⟩

with F3 the �eld with three elements and the matrix considered modulo 3. It has
two orbits of length 18 on sets of cardinality 2.

We now give the proof for part b) of�eorem VII.20, following [Cam76]: For
a set Ω and s ≥ 0, we denote by (Ω

s
) the set of all s-element subsets of Ω.

PropositionVII.22: Let G ≤ SΩ and s, t ∈ Z with 0 ≤ s ≤ t and s+ t ≤ ∣Ω∣.�en G
has at least as many orbits on (Ω

t
), as it has orbits on (Ω

s
).
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Proof: Let F be the vector space of rational-valued functions from (Ω
t
). We can

consider this set as a (∣Ω∣
t
)-dimensional vector space over Q with a basis indexed

by (Ω
t
). We similarly de�ne E to be the vector space of functions on (Ω

s
). We now

de�ne a linear map θ∶ E → F on basis elements as

θ( f )(∆) = ∑
Λ⊂∆
Λ∈(Ω

s
)

f (Λ),

using the subset relation of s-element subsets in t-element subsets. If we take bases
corresponding to the s-element, respectively t-element, subsets of Ω, then the ma-
trix for θ is the incidence matrix for the sets. �at is the matrix entry at a row
corresponding to A ⊂ Ω and a column corresponding to B ⊂ Ω is one if and only if
A ⊂ B (and zero otherwise). We claim that Kern θ = {0}, that is that θ is injective.
For that, let f ∈ Kern θ.
First consider the special case that ∣Ω∣ = s + t.�en we can identify any t-set

with its complement, an s-set with inclusion becoming disjointness. We de�ne, for
∆ ⊂ Ω

F(∆) = ∑
S∈(Ω

s
)

S∩∆=∅

f (S).

and then have for Λ ∈ (Ω
s
), that F(Λ) = 0, because this is the value of θ( f ) on the

complement of Λ.
Now assume that ∣∆∣ = j with 0 ≤ j ≤ s.�en any S ∈ (Ω

s
) with S ∩ ∆ = ∅

will complement (t− j
s− j) di�erent s-element sets Λ ⊃ ∆ (there are t − j elements in

Ω ∖ (∆ ∪ S), of which we can add s − j elements to ∆ to form such a Λ). If we sum
the values of F(Λ) over all these sets Λ, we thus add the value f (S) for each set S
disjoint from ∆ exactly (t− j

s− j) times.�us

(t − j

s − j
)F(∆) = (t − j

s − j
) ∑

S∈(Ω
s
)

S∩∆=∅

f (S) = ∑
Λ∈(Ω

s
)

∆⊂Λ

∑
S∈(Ω

s
)

S∩Λ=∅

f (S) = ∑
Λ∈(Ω

s
)

∆⊂Λ

F(Λ) = 0,

and thus F(∆) = 0.
We now change the scope of subsets in the summation, one element at a time.

For disjoint subsets Λ ∈ (Ω
i
), ∆ ∈ (Ω

j
), with i + j ≤ s (and Λ ∩ ∆ = ∅) let

F(Λ, ∆) = ∑
S∈(Ω

s
)

Λ⊂S
S∩∆=∅

f (S)

be the sum over f (S) of sets containing Λ but disjoint to ∆.�en for Λ ∈ (Ω
s
) we

have that F(∅, Λ) = F(Λ) = 0.
If we have ω /∈ Λ, then

F(Λ ∪ {ω}, ∆) = F(Λ, ∆) − F(Λ, ∆ ∪ {ω}),
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since the sum on the le� hand side disallows sets not containing ω. By induction
over ∣Λ∣ we thus get that F(Λ, ∆) = 0 and in particular that f (S) = F(S ,∅) = 0.
�is proves the statement for ∣Ω∣ = s + t.

In the general case, given S ∈ (Ω
s
) pick Ω′ ∈ Ωs + t with S ⊂ Y and de�ne θ′

analog to θ for subsets of Ω′ and f ′ as the restriction of f to (the span of) s-element
subsets of Ω′.�en θ′( f ′) is the restriction of θ( f ) to (the span of) (Ω

′

t
), and thus

zero.�at is f ′ ∈ Kern θ′, and by the argument for the case ∣Ω∣ = s + t this implies
that f ′ = 0. But f (S) = f ′(S), and so f is zero on S. Since S was arbitrary, this
shows that Kern f = {0}.

�e action of G on (Ω
s
) induces an action on E (with f g(S) ∶= f (S g−1) for

g ∈ G, the inverse required for the product property), and similarly on F. For a
vector space X we set

FixG(X) = { f ∈ X ∣ f g = f∀g ∈ G}

and observe that f ∈ FixG(E), if and only if f is constant on orbits ofG on (Ωs ).�e
number of orbits of G on (Ω

s
) thus equals the dimension of FixG(E), and similarly

for F.
We now note that the G-actions are compatible with θ, we have that θ( f g) =

θ( f )g , since for ∆ ∈ (Ω
t
):

θ( f )g(∆) = θ( f )(∆g−1) = ∑
Λ⊂∆g−1

f (Λ) = ∑
(Λ g)g−1⊂∆g−1

f ((Λg)g
−1
)

= ∑
Γ g−1⊂∆g−1

f (Γg
−1
) = ∑

Γ⊂∆
f g(Γ) = θ( f g)(∆).

�at means that FixG(E) under θ is mapped into FixG(F). But since θ is injective,
this implies dim(FixG(F)) ≥ dim(FixG(E)), which yields the claimed statement.◻

By proposition VII.14, G is primitive if and only if the point stabilizer is max-
imal, respectively the action of G on the cosets of S ≤ G is primitive if and only if
S is maximal in G.�is indicates the importance of the concept of primitivity to
pure algebra.
Exercise ?? shows that normal subgroups in primitive groups must act transi-

tively.�is gives, under the name O’Nan-Scott theorem, an entry point towards
classifying primitive groups based on information about simple groups.�is has
been done explicitly so far for degree up to 4095 [CQRD11].

VII.5 Enumeration up to Group Action

So far we have seen several ways of enumerating objects by taking them apart and
reducing the enumeration to that of the constituents.�is however might involve
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choices and thus arbitrarily restrict symmetries. A typical example would be to
enumerate all graphs on n vertices: For example, �gure VII.3 showed all possible
labeled graphs on 3 vertices clustered into orbits of S3. Typically we do not want to
enumerate the labeled graphs (in which the vertices have �xed numbers, and where
there clearly are 2(

n
2) of them), but unlabeled ones, allowing for an arbitrary labeling

of the vertices.�at is, we want to enumerate orbits.
If the set Ω of objects is small, this is easy to do.We thus will assume now that Ω

is large.Wewill use instead the structure of the acting groupG to count the number
of orbits of G on Ω without explicitly listing the orbits (or obtaining orbit repre-
sentatives). While this might initially look as if we just replaces one problem with
another, these groups are o�en highly regular and useful structural information is
known.

�e basic tool is the following lemma which sometimes is attributed to Burn-
side, Frobenius and Cauchy:

LemmaVII.23: LetG act on Ω and denote by �x(g) = ∣{ω ∈ Ω ∣ ωg = ω}∣ the num-
ber of �xed points of a group element g ∈ G.�en the number of orbits of G on Ω
is given by

1
∣G∣ ∑g∈G

�x(g)

Proof: We double count the number of pairs (ω, g) ∈ Ω × G for which ωg = ω.
Summing over group elements this is clearly∑g∈G �x(g).
On the other hand we can sum over elements of Ω, according to the n orbits

X1 , . . . , Xn , and get

∑
ω∈Ω

∣StabG(ω)∣ = ∑
i

∑
ω∈X i

∣StabG(ω)∣ =∑
i

∑
ω∈X i

∣G∣
∣ωG ∣ =∑i

∑
ω∈X i

∣G∣
∣X i ∣

= ∣G∣∑
i

1
∣X i ∣

∑
ω∈X i

1 = ∣G∣∑
i

∣X i ∣
∣X i ∣

= ∣G∣ ⋅ n.

Setting the two expressions equal yields the desired result. ◻

In applying this lemma we note that “action equivalent” elements — for exam-
ple2 elements conjugate in G, that is equivalent under the relation g ∼ gh = h−1gh

for h ∈ G — have equal �x point numbers, allowing a summation over a signi�-
cantly smaller set.
Example: We want to count the ways in which we can color the six faces of a cube
with green or gold. With two color choices, there are 26 = 64 possibilities if we
consider the faces of the cube of being labeled.
To count orbits under the symmetry group we need to enumerate its element

types (e.g. conjugacy classes) and determine for each the number of their �xed
points.

2In some situations we can also consider conjugacy under a larger group normalizing G
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To enumerate the elements we shall simply exhibit some elements that clearly
must exist and then (as we know already the group order) show that we have found
all 24 elements of this group.

To count �xed points, we notice that a coloring �xed under a group element
g must have the same color on faces in the same orbit of ⟨g⟩.�at is, if we write
the action of g on the faces of the cube in cycle form, there are 2c �xed colorings,
where c is the number of cycles (including cycles of length 1 which we do not write
down).

�e possible non-identity rotations will have axes that go through the middle
of a face, an edge or a corner.�is gives the following tabulation:

Kind Order # Cycle Structure �x(g) = 2c # ⋅ �x(g)
Identity 1 1 16 26 = 64 64
Face,180○ 2 3 1222 24 = 16 48
Face,90○ 4 6 1241 23 = 8 48
Edge 2 6 23 23 = 8 48
Corner 3 8 32 22 = 4 32
Sum 24 240

�ere thus are 240/24 = 10 di�erent colorings. If we permitted three colors, we only
would need to replace 2c by 3c .
What makes this method powerful is that the acting group in many cases has a

structure that allows us to determine the conjugacy classes easily, even if the action
is not the natural one.
Example: We want to count the number of (unlabeled) graphs on four vertices. We
consider edges as pairs of vertices, the group action is thus the one by S4 on pairs.
(�ere are (42) = 6 such pairs. In fact these two examples utilize the two di�erent
transitive actions of S4 on 6 points.) Again for a graph to be �xed under a group
element all edges in one element orbit must either be set or not set. An element
with o orbits on pairs thus has 2o �xed graphs.

�is gives the following table:

Kind Order # o = #orbits on pairs # ⋅ 2o
() 1 1 6 64

(1, 2) 2 6 4 96
(1, 2)(3, 4) 2 3 4 48
(1, 2, 3) 3 8 2 32

(1, 2, 3, 4) 4 6 2 24
Sum 24 264

�ere thus are 264/24 = 11 di�erent unlabeled graphs on 4 vertices.
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VII.6 Pólya Enumeration�eory

Inmany cases, such as the graphswe just considered, the actionwewant to consider
is one on composed objects, such as sets or sequences.�at is, we have an action of
G on a set X and based on this want to count orbits on a more complicated set Ω.
In the case of ordinary enumeration (Section III.6), the product of generating

functions was a tool do allow composition of objects. We will introduce a similar
tool for enumeration up to symmetry in this section. A�er its discoverers this o�en
goes under the name of Pólya or Pólya-Redfield enumeration theory.
We startwith a partition of n = ∣X∣, given by the cycle structure of a permutation

g. Assuming a partition 1c12c2⋯ncn , that is c1 �xed points, c2 2-cycles etc..

Definition VII.24: Let G ≤ Sn . For g ∈ G the cycle index of g is

z(g; s1 , . . . , sn) = sc11 s
c2
2 ⋯scnn

where the s i are indeterminates.
�e cycle index of a �nite group G is de�ned as

Z(G; s1 , . . . , sn) =
1
∣G∣ ∑g∈G

z(g; s1 , . . . , sn) =
1
∣G∣ ∑g∈G

∏
i

s
c i(g)
i

where the c i(g) indicate the cycle structure of g ∈ G.
If G is not a permutation group itself, but acts on X we consider the permuta-

tions induced on X.
If G acts on X, it induces an action on k-sets, or k-sequences of elements of X.

�e following proposition indicates how the cycle index connects to these actions.
Note the connection to the multiplication principles for generating functions — a
tuple of distinct elements is a set with labeled positions for the entries.

Proposition VII.25: a) For 1 ≤ k ≤ n let fk the number of orbits of G on k-sets of
elements of X.�en

n

∑
k=0

fk t
k = Z(G , 1 + t, 1 + t2 , . . . , 1 + tn).

b) For 1 ≤ k ≤ n let Fk the number of orbits of G on k-tuples of (distinct) elements
of X.�en

n

∑
k=0

Fk
tk

k!
= Z(G , 1 + t, 1, . . . , 1).

Proof: a) By Lemma VII.23 we have that
n

∑
k=0

fk t
k = 1

∣G∣ ∑g∈G

n

∑
k=0
�xk(g)tk

with �xk denoting the number of �xed-points on k-sets. To determine this number
for g ∈ G, we note that a �xed k-set must be the union of cycles of g. On the other



124 CHAPTER VII. SYMMETRY

hand, for any choice of numbers b i ≤ c i(g) with∑ ib i = k, we can �nd k-sets that
are �xed under g by selecting b i cycles of length i.�ere are (c i(g)b i

) choices for such
cycles.�us

�xk(g) = ∑
(b1 , . . . ,bn)∈Bk(g)

n

∏
i=1

(c i(g)
b i

)

where
Bk(g) = {(b1 , . . . , bn) ∣ 0 ≤ b i ≤ c i(g),∑

i

b i i = k} .

�erefore

n

∑
k=0
�xk(g)tk = ∑

k

⎛
⎝ ∑
(b1 , . . . ,bn)∈Bk(g)

n

∏
i=1

(c i(g)
b i

)
⎞
⎠
tk

=
n

∏
i=1

c i(g)

∑
b i=0

(c i(g)
b i

)t ib i =
n

∏
i=1

c i(g)

∑
b=0

(c i(g)
b

)t ib

=
n

∏
i=1

(1 + t i)c i(g) = z(g; 1 + t, 1 + t2 , . . . 1 + tn).

by the binomial theorem. Averaging over G gives the desired result.
b) Now Fixk(g) shall denote the number of �xed points on k-tuples. For a tuple to
be �xed, all entries must be �xed, that is the entries may be chosen only from the
�xed points of g. Using the notation of�eorem II.2, we thus get that:

Fixk(g) = c1(g)(c1(g) − 1)⋯(c1(g) − k + 1) = (c1(g))k .

As
n

∑
k=0

(c1(g))k
k!

tk =
n

∑
k=0

(c1(g)
k

)tk = (1 + t)c1(g) = z(g; 1 + t, 1, . . . , 1),

we get again from Lemma VII.23 and averaging that:

n

∑
k=0

Fk
tk

k!
= 1

∣G∣ ∑g∈G

n

∑
k=0

(c1(g))k
k!

tk = 1
∣G∣ ∑g∈G

z(g; 1 + t, 1, . . . , 1)

= Z(G , 1 + t, 1, . . . , 1).

◻

�e Cycle Index�eorem

Stepping up from sets and tuples, we now generalize, as in Section II.4 to functions.
�is is a generalization, since a subset of X can be considered as a function from X

to {0, 1}.
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For this, consider a set C of objects we shall call “colors” (though they could
simply be di�erent integers). For a set X, we consider the set CX of functions from
X → C. If G acts on X, it also acts on the functions f ∈ CX by

( f g)(x) ∶= f (x g−1)

�e inverse is needed, as we are permuting the arguments. It ensures that

(( f g)h)(x) = ( f g)(xh−1) = f ((xh−1)g
−1
) = f (xh−1 g−1) = f (x(gh)

−1
) = f gh(x).

We also introduce a “weight” functionw∶C → Z≥0 and de�ne the weight of a func-
tion to be the sum of the weights of its values:

w( f ) ∶= ∑
x∈X

w( f (x))

�e action of G, permuting X, clearly preserves weights.
Many enumerations up to symmetry then can be phrased as counting the orbits

of G on a set of such functions (of particular weight(s)).
Example:

1. For subsets of X, we let C = {0, 1} and assign weight 0 to 0 and weight 1 to
1. A subset of size k then corresponds to a function f ∈ CX of weight k and
the action of G on the set of such functions is equivalent to the action of G
on k-subsets of X.

2. Let X be the faces of a cube and G the group of rotational symmetries. A
coloring of the cube with colors from a �nite set C then corresponds to a
function in CX , and the action of G on CX is the rotational equivalence of
colorings. We could simply give all colors the same weight, or use weights to
count separately the colorings in which certain colors arise a certain number
of times.

3. A graph on n (labeled) vertices can be considered as a function from the set X
of possible edges (that is ∣X∣ = (n2)) to the indicators C = {0, 1} that indicate
whether a possible edge exists.�e action of G = Sn permutes vertex labels
so that the induced action on the functionsCX gives isomorphic graphs. One
could use weights onC to consider graphs with a particular number of edges.

Theorem VII.26 (Cycle Index�eorem): Let a i be the number of colors of weight
i and let a(t) = ∑i≥0 a i t

i . Let b i the number of orbits of G on the set Ω i ⊂ CX of
functions of weight i and let b(t) = ∑i≥0 b i t

i .�en

b(t) = Z(G; a(t), a(t2), . . . , a(tn)).

Corollary VII.27: If we assign weight 0 to all of C then a(t) = ∣C∣.�us the total
number of orbits of G on Ω = CX is given by

Z(G; ∣C∣ , ∣C∣ , . . . , ∣C∣).
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CorollaryVII.28: If C = {0, 1}with weight 0, 1 respectively, then a(t) = 1+ t.�e
number of orbits of G on k-subsets of X is (in agreement with Proposition VII.25
a)) given by

Z(G , 1 + t, 1 + t2 , . . . , 1 + tn).
Example:We consider oncemore the example of coloring the faces of a cube. Going
back to the example above, we can read o� the cycle index from the table as:

Z(G; s1 , s2 , s3 , s4) =
1
24

(s61 + 3s21 s22 + 6s21 s4 + 6s32 + 8s23)

We give green weight 1 and gold weight 0, so we have a(t) = 1 + t.�e theorem
gives us that the series b(t), counting the colorings of particular weight is

b(t) = Z(G , 1 + t, 1 + t2 , . . . , 1 + tn) = t6 + t5 + 2t4 + 2t3 + 2t2 + t + 1.

We thus can read o� that there is one coloring each with 0, 1, 5 or 6 green faces, and
two colorings each with 2, 3 or 4 green faces.

Proof: (of�eorem VII.26) We start by considering the function-counting series
for the trivial group, that is counting functions X → C according to weight. We
claim that this series is a(t)n with n = ∣X∣:

�e coe�cient of te in this series is the number of tuples (c1 , . . . , cn) ∈ Cn of
weight sum e = ∑i w(c i). For a particular distribution of weights, w(c i) = w i this
gives aw i

color choices for c i , that is ∏i aw i
possibilities of tuples. Summing over

all possible weight distributions gives

∑
(w i),∑w i=e

∏
i

aw i

which is also the coe�cient of te in a(t)n = (∑ a i t
i)n , showing that the series

must be equal.
Next we consider functions that are �xed by a particular permutation g.�is

means that the functions must be constant on the cycles of g. For a single cycle of
length i this gives the weight of the chosen color i-fold, thus the weight counting
series for the single cycle of length i is a(t i). If there are k cycles it thus is a(t i)k .
We now consider all cycles, assuming that there are k i cycles of length i. By

induction we get the enumeration function

∏
i

a(t i)k i = z(g; a(t), a(t2), . . . , a(tn)).

�e number of orbits of G on functions of weightw is, by Lemma VII.23, the aver-
age number of �xed functions of weight w. By using the enumeration function we
can do so simultaneously for all weights, getting

1
∣G∣ ∑g∈G

z(g; a(t), a(t2), . . . , a(tn)) = Z(G; a(t), a(t2), . . . , a(tn))
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by de�nition. ◻

We consider another example of enumerating graphs:
Example: Consider the graphs on 5 vertices.�e group acting on the vertices is S5.
�e conjugacy classes are parameterized by partitions of 5, and it is an easy counting
argument to get the class sizes. However we will need the cycle index for the action
on the 10 pairs of points. So we �rst need to get the cycle structure for this action,
which is done in Exercise ??.�is gives us the following table of conjugacy classes:

Element Number Cycle structure on pairs
() 1 110
(1,2) 10 1423

(1,2)(3,4) 15 1224
(1,2,3) 20 1 ⋅ 33

(1,2,3)(4,5) 20 1 ⋅ 3 ⋅ 6
(1,2,3,4) 30 2 ⋅ 42
(1,2,3,4,5) 24 52

�is gives the cycle index:

1
120

(s101 + 10 ⋅ s41 s32 + 15 ⋅ s21 s42 + 20 ⋅ s1s33 + 20 ⋅ s1s3s6 + 30 ⋅ s2s24 + 24 ⋅ s25)

We consider edges as weight 1 and non-edges as weight 0, giving again the series
a(t) = 1 + t�e theorem gives us:

b(t) = Z(G; 1 + t, 1 + t2 , 1 + t3 , 1 + t4 , 1 + t5 , 1 + t6)
= t10 + t9 + 2t8 + 4t7 + 6t6 + 6t5 + 6t4 + 4t3 + 2t2 + t + 1,

telling us that there are one graphs each with 0, 1, 9 and 10 edges, two graphs with
2 and 8 edges, four each with 3 and 7 edges, as well as six each with 4, 5 or 6 edges.
Knowing these separate numbers makes it far easier to enumerate them explicitly.
If we were only interested in the total number of graphs, we could have given

the same weight to both edges and obtained

Z(G; 2; 2; 2; 2; 2; 2) = 34.

If we wanted to enumerate colored edges, say with 3 possible edge colors, we would
give each color a di�erent weight and thus get

Z(G; 4; 4; 4; 4; 4; 4) = 10688

possible graphs.
We notice that the cycle index behaves nicely with respect to group products:
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Lemma VII.29: Let G ,H be permutation groups.�en
a) Z(G ×H) = Z(G)Z(H) (in the intransitive action of G ×H),
b) Z(G ≀ H) = Z(H; Z(G; s1 , s2 , . . .), Z(G; s2 , s4 , . . .), Z(G; s3 , s6 , . . .), . . .) (in the
imprimitive action of the wreath product).

�e proof of part a) is exercise ??, part b) an unappealing direct calculation.
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VIII

Finite Geometry

One must be able to say at all

times–instead of points, straight lines,

and planes–tables, chairs, and beer mugs

Man muß jederzeit an Stelle von “Punkte,
Geraden, Ebenen” “Tische, Stühle,
Bierseidel” sagen können.

Lebensgeschichte, in:
David Hilbert, Gesammelte mathematische

Abhandlungen
O. Blumenthal

Mathematics in the Ancient World arose from counting and from geometry.
Having dealt with counting problems in the �rst part, it thus seems appropriate to
begin this second part with geometric ideas.
We consider a geometry as a collections of two sets of objects – points and lines,

together with an incidence relation of a point being on a line, or a line containing
a point. (We shall encounter this dichotomy amongst two classes of objects again
in later chapters.) A �nite geometry then is simply a geometry for which the sets of
points and lines both are �nite. (In such a setting we may consider a line simply as
the set of its points.)
We shall start by describing the construction of some (�nite) structures consist-

ing of points and lines. For this we shall need a few basic facts about �nite �elds:

Intermezzo: Finite Fields

A �eld is a set that is closed under commutative addition and multiplication and
that has a multiplicative one (a commutative ring with one) such that every nonze-
ro element has a multiplicative inverse. (�ere are some axioms which ensure the
usual arithmetic rules apply, we will not need to delve into these here.)

129
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Typical examples of �elds are the Rational, the Real, or the Complex Numbers,
but we will be more interested in �nite �elds.

�e standard example of a �nite �eld is given bymodulo arithmetic: For a prime
p, we take the numbers 0, . . . , p − 1 under addition and multiplication modulo p.
Inverses exist as for any nonzero 1 ≤ a ≤ p − 1 we have that gcd(a, p) = 1, thus
(extended Euclidean algorithm) there exist x , y such that xa+yp = 1, that is x ⋅a ≡ 1
(mod p) and thus x is the multiplicative inverse of a. We denote this �eld with p

elements by Fp .

A source of further �nite �elds comes from polynomials. For an irreducible
polynomial f (x) ∈ Fp[x] of degree n, we consider the polynomials ∈ Fp[x] of de-
gree < n with arithmetic modulo f (x).�ese polynomials form an n-dimensional
vector space over Fp which thus contains pn elements. We denote this set with the
modulo arithmetic by Fp(α) where α, the element represented by the remainder
x, is a root of f .
Since f is irreducible every nonzero polynomial has a multiplicative inverse, so

Fp(α) is a �eld.
Example: Working modulo 2, the polynomial x2 + x + 1 is irreducible over the �eld
with 2 elements.�e associated �eld F2(α) thus has elements we can denote by
{0, 1, α, α + 1} and arithmetic given by

+ 0 1 α α + 1
0 0 1 α α + 1
1 1 0 α + 1 α

α α α + 1 0 1
α + 1 α + 1 α 1 0

⋅ 0 1 α α + 1
0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1

α + 1 0α + 1 1 α

Example: In the �eldF3 there is no element a such that a2 = −1, thus the polynomial
x2 + 1 is irreducible.�is yields a �eld F3(α) with 9 elements.

�e following theorem (which summarizes results that are proven in a standard
graduate abstract algebra class) summarizes properties of these �elds.

TheoremVIII.1: a) Any �nite �eld has order pn for a prime p and an integer n > 1.
We call p the characteristic of the �eld.
Now let p be a prime and n > 1 an integer
b)�ere exists an irreducible polynomial of degree n over Fp and thus a �eld with
pn elements.
c) Regardless of the choice of polynomial, any two �elds with pn elements are iso-
morphic (since the polynomial x pn−x splits over either �eld into pn di�erent linear
factors). We thus can talk of the �eld with pn elements; we denote this �eld by Fpn .
d)�e �eld Fpa is isomorphic to a sub�eld of Fpb if and only if a ∣ b.
e)�e map x ↦ x p is an automorphism (i.e. a map that preserves the arithmetic
operations) of the �eldFpa , called the Frobenius automorphism. If has order a (thus
is the identity if a = 1) and generates the group of �eld automorphisms (also called
the Galois group) of F. f)�e multiplicative group of F is cyclic (of order pn − 1).
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�is theorem in particularly implies that the choice of a di�erent irreducible
polynomial (while a�ecting the coordinates of how we describe an extension) has
no impact on the abstract structure of the �eld extension we obtain.

VIII.1 Projective Geometry

Underweysung der Messung
Albrecht Dürer

In standard 3-dimensional space, lines may intersect, be parallel, or be skew.
�is is a certain asymmetry which we can avoid by adding further points and lines.
We can describe this nicely in a systematic way by employing a tool of Renaissance
Art:

When looking along two parallel lines – say the twometal bars of a long straight
railway track, they actually do not seem parallel to us, but to approach asymptoti-
cally in the distance. A picture of such a situation thus only looks realistic if it shows
a similar narrowing in the distance.
We can describe this phenomenon by imagining the picture being located be-

tween the viewer’s eye (or a virtual focus point) and the situation in reality:

A point a in reality then is depicted by a point b in the picture, by taking the
line connecting a with the eye, and taking for b the intersection of this line with the
picture plane.�at is, all points on a line from the eye would project to the same
point in the picture (and usually only the closest point is drawn).
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Mathematically, we can interpret this situation as the vector space R3 with the
eye at an origin.�e lines are one-dimensional subspaces, and the picture is a hy-
perplane o�set from the origin (that is, a coset of a 2-dimensional subspace). Every
point in this hyperplane intersects a 1-dimensional subspace.
Two 1-dimensional subspaces span a 2-dimensional space, the 1-dimensional

subspaces within all project onto a line in the hyperplane.
We thus de�ne PG(2,R) as the set of all 1-dimensional subspaces of R3, each

of which we call a projective “point”.�e “lines” of PG(2,R) are given the sets of
points, arising from 1-dimensional subspaces that lie in a two-dimensional space.
With this de�nition we get more than the Renaissance artist bargained for:

1. �ere are 1-dimensional subspaces (those in the 2-dimensional subspace that
yielded the hyperplane) which do not intersect in a projection point. We call
these the “points at in�nity”. All of these lie in the “line at in�nity”, the pro-
jection of the 2-dimensional space they lie in.

2. If two lines are given, they arise from two 2-dimensional spaces. In a three-
dimensional space they must intersect nontrivially in a 1-dimensional sub-
space that will project to a point.�at is any two (di�erent) lines intersect in
exactly one point. (�at point will be “at in�nity” for lines that are parallel, it
would be the “vanishing point” of these lines.)

Analogous constructions are of course possible in higher dimensions (wherewe
might get multiple lines at in�nity and non-intersecting lines) and over arbitrary
�elds F, yielding the projective space PG(n, F).�e projection image of a k + 1-
dimensional subspace of Fn+1 in PG(n, F) is called a k-�at.
Taking �nite �elds we get �nite structures of points and lines that are examples

of �nite geometries. We shall write PG(n, q) for PG(n,Fq).
Example:�e smallest example possible is PG(2, 2) with 7 points and 7 lines. It is
called the Fano plane. Its incidence of points and lines is depicted in Figure VIII.3.

VIII.2 Gaussian Coe�cients

To count points in these spaces, we introduce a relative of the binomial coe�cients:

Definition VIII.2:�e Gaussian coe�cient [n
k
]
q
is de�ned to be the number of

k-dimensional subspaces of Fn
q .

and get immediately:

CorollaryVIII.3: PG(n, q) has [n+11 ] points. It has [n+1
k+1]q k-�ats, each containing

[k+11 ]
q
points.

Proposition VIII.4:

[n
k
]
q

= (qn − 1)(qn−1 − 1)⋯(qn−k+1 − 1)
(qk − 1)(qk−1 − 1)⋯(q − 1)
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Proof: A k-dimensional subspace will be spanned by a set of k linear independent
vectors. Counting these sets we get qn−1 choices for the �rst vector, qn−1 = q(qn−1−
1) choices for the second vector (we need to leave out multiples of the �rst vector)
and, leaving out vectors in the span of the �rst i−1 vectors, qn−q i−1 = q i−1(qn−i+1−
1) choices for the i-th basis vector.

�e same counting argument gives us that an k-dimensional subspace has

∣GLk(q)∣ = (qk−1)(qk−q)⋯(qk−qk−1) = (qk−1)q(qk−1−1)q2(qk−2−1)⋯qk−1(q−1)

di�erent bases. To count subspaces we thus need to take the quotient of these two
expressions. ◻

VIII.3 Automorphisms of PG(n,F)
Wewant to describe the group of automorphisms of PG(n,F), that is of those per-
mutations of points that preserve the structure of lines, respectively permutations
of points and lines that preserve incidence. (Suchmaps also are called collineations.)
�e resulting groups are prominent, not only in geometry, but also in many other
areas of mathematics.
We start by describing two classes of automorphisms of PG(n,F):
�e group GLn+1(F) acts linearly on the vectors of Fn+1 and thus on subspaces

of a given dimension. It thus induces automorphisms of PG(n,F).
Example:�e Fano plane, PG(2, 2) arises from F32 and thus inherits an action of
GL3(2) of order 168. On the other hand, automorphisms that �x one of the 7 lines
(as a set of points) are completely determined by what they do on the 4 points not
on that line, thus giving at most 168 automorphisms.

IfF is not a prime �eld (i.e. it contains another �eld as strict subset – for �niteF
thismeans the order ofF is not a prime), there typicallywill be �eld automorphisms
of F.
According to�eorem VIII.1, for F = Fpa this groups is cyclic of order a and

generated by the Frobenius automorphism x ↦ x p .
On the vector spaceFn+1

q these �eld automorphisms inducemaps thatmap sub-
spaces to subspaces, though they are not linear (they preserve addition, but scalar
multiplication would bemapped to amultiple by themapped scalar; suchmaps are
called semilinear).
If we take these two sets of operations ofFn+1 together we get a group ΓLn+1(F).

As shown in exercise ??, its structure is that of a semidirect product

ΓLn+1(F) = GLn+1(F) × ⟨x ↦ x p⟩

and its order is (for F = Fq with q = pa)

(qn+1 − 1)(qn+1 − q)(qn+1 − q2)⋯(qn+1 − qn) ⋅ a.
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�e action of this groupon subspaces induces automorphisms (incidence-preserving
bijective maps) of PG(n,F). Let φ∶ ΓLn+1(F)→ Aut(PG(n,F)).
Lemma VIII.5:

Kernφ = { f ⋅ I ∈ GLn+1(F) ∣ f ∈ F} = Z(GLn+1(F))

Proof: It is clear that scalarmultiplication �xes all subspaces and thus induces trivial
automorphisms of PG.
Vice versa, suppose that α ⋅M ∈ Kernφ withM ∈ GLn+1(F) and α ∈ Aut(F).
Let {e1 , . . . , en+1} the standard basis of Fn+1. As the entries of the e i are zero

or one, α will act trivially on these vectors. By virtue of lying in Kernφ, α ⋅M, and
thusM preserves the spaces ⟨e i⟩, thus e i ⋅M = λ i ⋅M.
A similar argument shows that ⟨e i + e j⟩ must be �xed by M and thus there is

λ ∈ F such that

λ(e i + e j) = (e i + e j)M = e iM + e jM = λ i e i + λ je j

�e linear independence of the vectors implies that λ = λ i = λ j , thusM is scalar.
By considering spaces ⟨γ ⋅ e1⟩ for γ ∈ F we also get that α = id.
By considering products with elementary matrices, is seen easily that this ker-

nel indeed the center of the group. ◻

We thus can consider the factor group

PΓLn+1(F) = ΓLn+1(F)/Z(GLn+1(F))

as a subgroup of Aut(PG(n,F)). In fact we have equality:
Theorem VIII.6 (Fundamental theorem of projective Geometry):

Aut(PG(n,F)) ≅ PΓLn+1(F).

We do not give a proof here; while it is not overly hard, it is lengthy in nature.
Instead we brie�y describe the structure of ΓLn(F), see Figure VIII.1
We set G = GLn(F) and A = Aut(F). By de�nition ⟨G ,A⟩ = ΓLn(F) and G ∩

A = ⟨1⟩. We let S = SLn(F) the kernel of the determinant map and Z = Z(GLn(F))
the group of scalar matrices and set H = ⟨Z , S⟩ and Y = Z ∩ S.�en Y = Z ∩ S =
Z(SLn(F)), since the elementary matrices lie in SL the proof that Z(GL) is scalar
essentially repeats, showing that Z(SL) also must be scalar.
If F is �nite, we can determine some indices and orders:
As matrices in G have nonzero determinant we get that [G ∶ S] = q − 1 = ∣Z∣.
�ematrices inY = Z(SL) are scalar λ⋅I andmust satisfy that 1 = det(λ⋅I) = λn ,

that is the multiplicative order of λ in the multiplicative group F∗ divides n. As F∗
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Γ

S

H

Z

Y

1

A

T

G U
Γ ΓLn(F) = ⟨GLn(F),Aut(F)⟩
G GLn(F)
A Aut(F)
S SLn(F), det = 1
Z Z(GLn(F))
Y Z(SLn(F))
T ⟨SLn(F), Aut(F)⟩
H ⟨SLn(F), Z(GLn(F))⟩
U ⟨H, Aut(F)⟩

Figure VIII.1: Structure of ΓLn(F)

is cyclic of order q− 1, it contains exactly gcd(q− 1, n) (the largest subgroup whose
order divides n) elements of order dividing n, thus ∣Y ∣ = gcd q − 1, n.
Since S , Z ⊲ G, we have that [Z ∶ Y] = [H ∶ S], this implies that

[G ∶ H] = q − 1
[H ∶ S] =

q − 1
[Z ∶ Y] =

q − 1
(q − 1)/ ∣Y ∣ = ∣Y ∣ = gcd(q − 1, n).

Finally, as a consequence of the semidirect product structure and�eorem VI-
II.1 we get that ∣A∣ = [Γ ∶ G] = logp(∣F∣).
(�e subgroups U , T are only listed for completion.)

VIII.4 Projective Spaces

Parallel lines
Who meet
Side by side!

Side by Side by Side (from Company)
Stephen Sondheim

Euclidean geometry starts with a set of axioms. We thus now change our point
of view and introduce an axiomatic description of geometry that �ts the projective
geometries we have seen.
Formally, we de�ne a projective geometry as a set of points and a set of lines

(as sets of points), satisfying the following conditions:

PG1 For any two distinct points, there is one, and only one, line containing both
points

PG2 If A, B, C are three points not on a line, and if D /= A is a point on the line
through A, B, and of E /= A is a point on the line through A,C, then there is
a point F on a line with D and E and also on a line with B and C.
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A

C

DB

E
F

Figure VIII.2:�e Pasch axiom

PG3 Every line contains at least three points

Axiom PG1 makes it possible to talk about a “line through two points”. It in
particular implies that two lines can intersect in but one point (as otherwise there
would be two di�erent lines going through both intersection points). Axiom PG3
eliminates some degenerate cases. Axiom PG2, the Pasch axiom requires some ex-
planation.
Consider �gure VIII.2.�e lines AB and AC intersect in a point, namely A. In

Euclidean geometry we would interpret this as the two lines lying in a plane.�e
con�guration (and the point A) thus simply ensures that the lines CB and DE lie
in a common plane. We can thus interpret this axiom instead as: Two lines in the

same plane have a point of intersection.
We thus do not have a parallel axiom, but always have points (maybe “at in�n-

ity”) where lines meet.
As we have drawn a picture, a word on what these are is in order: Pictures of

con�gurations only indicate incidence.�ere are no distances, no angles, no clos-
est points.�ere are no “intermediate” points. A line does not need to be drawn
straight, but neither can we deduce incidence from the intersection of lines.�at
is, pictures will only ever illustrate proofs, never be proofs in themselves.

It now turns out that these axiomsnot onlymatch the projective spaces PG(n,F),
but are a complete characterization unless the dimension is 2:

Theorem VIII.7 (Veblen-Young): Consider a projective geometry, satisfying the
axioms PG1,2,3 above. If there are two lines that do not intersect (one says that it
has dimension > 2), then this con�guration is isomorphic to PG(n,F) for some
n ≥ 3 and a division ring1 F.

�e proof of this is long and consists of geometric constructions, with the ax-
ioms, to build the arithmetic in F.

What the theorem does, is to show that the di�erent axiomatic setup is of limit-
ed interest for dimensions > 2, but the theorem leaves open the possibility of other
structures in dimension 2. We study these next.

1�at is we do not require commutative multiplication, but otherwise the axioms for a �eld
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Figure VIII.3:�e Fano Plane

Projective Planes

It’s a bird. It’s a plane. It’s Superman!

The Adventures of Superman (1952-1958)

Motivated by the only exception in the Veblen-Young theorem, we now aim to
describe projective plane, that is 2-dimensional projective spaces. In this case the
axioms simplify. PG2 becomes PP2 below, which is nicely dual to the �rst axiom.

PP1 For any two distinct points, there is one, and only one, line containing both
points

PP2 For any two distinct lines, there is one, and only one, point on both lines.

PP3 �ere exist four points, no three of which are on a line.

We observe that PG(2, q) indeed satis�es these axioms. (However it turn out
that there are other projective planes.)
Example:�e axioms alone let us construct the minimal con�guration PG(2, 2):
Let A, B,C ,D be four points, no three on a line, that are given by PP3.
Let L1 = AB, L2 = AC, L3 = AD, L4 = BC, L5 = BD, L6 = CD. Because of the

choice of the points, these lines must be distinct. By PP2, L1 and L6 must intersect
in a point that cannot be any of the existing four, we call this point X. Similarly we
get L2 ∩ L5 = {Y} and L3 ∩ L4 = {Z}.
Finally, there must be a line L7 = XY , we may assume that Z ∈ L7. We thus get

the con�guration in �gure VIII.3, the Fano plane PG(2, 2).
We notice, exercise ??, that in the axioms we could replace PP3 by its dual:

PP3’ �ere exist four lines, no three of which go through the same point.

�is means that for a projective plane we can switch the labels of points and planes
and again obtain a projective plane, (the dual).
Finite projective planes satisfy nice numerical properties:
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Theorem VIII.8: Let n ≥ 2 an integer. In a projective plane π any one of the fol-
lowing properties imply the other �ve:

1. One line contains exactly n + 1 points.
2. One point is on exactly n + 1 lines.
3. Every line contains exactly n + 1 points.
4. Every point is on exactly n + 1 lines.
5. �ere are exactly n2 + n + 1 points in π.
6. �ere are exactly n2 + n + 1 lines in π.

Proof:
We assume property 1. Let L = {Q1 , . . .Qn+1} be a line with n + 1 points and

P /∈ L a further point.�e lines PQ1 , . . . , PQn+1 then need to be di�erent, for if
PQa = PQb then P ∈ QaQb = L. By PP2 any line through P must intersect L and
thus the n + 1 lines PQ i are exactly the lines through P.�at is, any point P not on
L will lie on (exactly) n + 1 lines. By PP3 such a point P must exists, showing that
property 1 implies property 2.
Assuming property 2, let P be a point on exactly n + 1 lines K1 , . . . ,Kn+1.�en

P is the only point common to any pair of these lines. If L any line with P /∈ L, then
the K i will intersect it in n + 1 points Q i , which must be distinct since P is the only
point on any pair of the K i . If there was another point Q′ ∈ L, then PQ′ would be
another line through P, contradiction.�at is, any line not containing Pmust have
n + 1 points. By PP3 such lines exist, thus property 2 implies property 1.
Now assume 1 and 2 and let P and L as above. We have seen that any line not

through P must have n + 1 points, and any point not on L lies on n + 1 lines. Let K
be a line through P and {Q} = K ∩ L. By PP3 there must be two further points in
addition to P and Q, neither on K, of which at most one lies on L.�us there is a
point R /∈ L,K. With the previous arguments we have that R lies on n + 1 lines and
thus K has n + 1 points. Any point S /∈ K thus lies on n + 1 lines. To show that Q
also lies on n + 1 lines, we chose another point Q′ ∈ L and K′ = PQ′ and repeat the
argument.�is shows 3 and 4.
Vice versa, obviously 3 implies 1 and 4 implies 2.

If 3 and 4 hold, pick a point P and sum up the number of (each n+ 1) points on
all n + 1 lines through P, yielding (n + 1)2 = n2 + 2n + 1 Any point except P is on
exactly one of these lines, but P is on all lines.�is means we are overcounting the
number of points by n + 1− 1 = n.�us in total there are n2 + n + 1 points, yielding
5. A dual argument gives 6.
We notice that f (x) = x2+x+1 is one-to-one for x > 0, as then f ′(x) = 2x+1 >

0.�is means, with the implications we know already, that 5 or 6must imply 1 and 2
(otherwise a di�erent count of points on one line or lines through one point would
imply a di�erent total number of points or lines). ◻



VIII.4. PROJECTIVE SPACES 139

A

B

C

D
E

F

PQR

O

R

ED

CBA

F

Q
P

Figure VIII.4: Desargues’ theorem and Pappus’ theorem

For the planes PG(2, q)we have of course that every line has [21]q = q+1 points,
motivating the following de�nition:

Definition VIII.9: A �nite projective plane is of order n is a line contains n + 1
points.

It turns out that the axioms for a projective plane alone do not characterize
PG(2, q), but that this can be done using two theorems from classical geometry:

Desargues’�eorem Let A, B,C and D, E , F are triangles, such that the lines AD,
BE, and CF intersect in a common point O. Let P = AB∩DE, Q = BC∩EF,
and R = AC ∩ DF.�en P,Q and R are collinear. (Figure VIII.4, le�.)

Pappus�eorem Let A,B,C be collinear and D,E,F be collinear and that the tri-
angles ACE and BDF overlap.�en the intersection points P = AE ∩ BD,
Q = AF ∩ CD, and R = BF ∩ CE are collinear. (Figure VIII.4, right.)

Both theorems can be proven using coordinates, these proofs carry over to
PG(2, q). It turns out that this in fact characterizes PG(2, q).
TheoremVIII.10: Let Π be a projective plane.�e following statements are equiv-
alent:

a) Π ≅ PG(2, F) (suitable map of points, lines) for a �eld F. In particular Π ≅
PG(2, n) if it is �nite of order n.

b) Desargues’�eorem holds in Π.

c) Pappus’�eorem holds in Π.

In this situation Π is called desarguesian.

We note that there are projective planes that are not desarguesian. Some of
them are constructed similarly to PG(2, q) but by replacing the �eld with a dif-
ferent structure. An easy in�nite example will be given in section VIII.5.
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VIII.5 A Non-Desarguesian Geometry

Since the constructions of �nite non-desarguesian planes are somewhat involved,
we only give an in�nite example here.�e description is not a priori a projective
plane, but we will see in section VIII.8 how it could be embedded into a projective
plane. What we are doing is to “bend” lines of the ordinary geometry locally to
ensure that one point does not lie on a particular line:

�eMoulton Plane is de�ned by the points (x , y) ∈ Q×Q, together with three
kind of lines:

• Vertical lines x = a

• Lines with nonnegative slope y = mx + b for parameters (b,m) ,m ≥ 0.

• Lines with negative slope. We treat these lines, my doubling the slope for
positive x values, that is

y = { mx + b if x ≤ 0
2mx + b otherwise.

Figure VIII.5, le� shows some lines in theMoulton plane. Note that for all lines
that are not vertical and not of slope 0, the x coordinate of any point on the line is
uniquely determined by the y-coordinate.
We claim that any two points line on a unique line. (�is will make the struc-

ture that of an a�ne plane (see VIII.8) and we shall see that such planes can be
embedded into projective planes.)
Let (a, b) and (c, d) be two di�erent points. If a = c, they lie on a (unique)

vertical line x = a but no other (since we must have that b /= d and for non-vertical
lines di�erent y-values imply di�erent x-values).

�us now assumeWLOG that a < c. If b < d the slope of a linemust be positive,
and thus there is only one.
If b < d the slope is negative. If a < c ≤ 0 or 0 < a < c we still deal with ordinary

lines. If a ≤ 0 < c we can still set up linear equations to determinem and b of a line
and get a unique solution, thus a unique line.

To show that Desargues’ theorem may fail, we simply take a construction in
which (by placing most of it on coordinates with negative x) only one intersection
point is a�ected by the bending lines. See Figure VIII.5, right:�e lines QR and
DE have nonnegative slope, thus are not a�ected.�e line AB has negative slope
and thus clearly has to bend, moving the intersection point P o� from the common
line with Q and R.
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Figure VIII.5:�e Moulton plane and failure of Desargues’ theorem

VIII.6 Homogeneous coordinates

O�en the algebraic theorem is easy to prove,
whereas the search for a “pure geometric” proof
requires considerable ingenuity.

Projective Geometry
H.S.M.Coxeter

A convenient way of working in PG(2, F) is to introduce coordinates, and to
use algebraic operations on the coordinates to prove theorems.�is is called ana-
lytic geometry.
A point, corresponding to the subspace ⟨(x , y, z)⟩, will be represented by the

homogeneous coordinate vector [x , y, z] (not all zero), with the understanding that
[x , y, z] = [cx , cy, cz] for c /= 0.
Similarly a line of PG(2, F) stems from a hyperplane l x + my + nz = 0. We

represent this line by the coordinate vector [l ,m, n] (that is we need to specify
whether a coordinate vector represents a point or a line) and note that the point
[x , y, z] and the line [l ,m, n] are incident if and only if the “inner product” l x +
my + nz = 0.
Lemma VIII.11: a) Let [x1 , y1 , z1] and [x2 , y2 , z2] be points.�e line through these
points has the homogeneous coordinates

[l ,m, n] = [y1z2 − z1 y2 , z1x2 − x1z2 , x1 y2 − y1x2].

b)�ree points [x1 , y1 , z1], [x2 , y2 , z2], [x3 , y3 , z3] are collinear if and only if

det
⎛
⎜
⎝

x1 y1 z1
x2 y2 z2
x3 y3 z3

⎞
⎟
⎠
= 0
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c)�e point of intersection of the two lines [l1 ,m1 , n1] and [l2 ,m2 , b2] has coordi-
nates

[x , y, z] = [m1n2 − n1m2 , n1 l2 − l1n2 , l1m2 −m1 l2].

Proof: Exercise ?? ◻

CorollaryVIII.12: If three points [x1 , y1 , z1], [x2 , y2 , z2], [x3 , y3 , z3] are collinear,
we can scale coordinates of one point, so that

[x1 , y1 , z1] + [x2 , y2 , z2] + [x3 , y3 , z3] = [0, 0, 0]

Using homogeneous coordinates, we can prove geometric theorems by algebra-
ic means:

Theorem VIII.13: Desargues’ theorem holds in PG(2, F).
Proof: We shall use letters A = [xA, yA, zA] to represent the homogeneous coordi-
nates of points. We can represent the lines through O by the equations (possibly
rescaling coordinates of D, E , F)

A+ D + O = 0
B + E + O = 0
C + F + O = 0

which gives that A+ D = B + E − C + F.
�is means that we can choose P = A − B = E = D as coordinates of the

intersection of AB ∩ DE (the point with these coordinates is collinear with A, B
and with D, E).
Similarly we set Q = B − C = F − E and R = C − A = D − F. But then

P + Q + R = (A− B) + (B − C) + (C − A) = 0,

showing that the three points are collinear. ◻

VIII.7 �e Bruck-Ryser�eorem

An obvious question is for which orders projective planes exist. We know already
that for any prime power q we have that PG(2, q) is a plane of order q.

�e main theorem about non-existence is the following

Theorem VIII.14 (Bruck-Ryser): If a projective plane of order n exists, where n ≡
1 or 2 (mod 4), then n is the sum of the squares of two integers.
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�is theorem (proven below) for example shows that there cannot be a projec-
tive plane of order 6. It does not exclude the next interesting degree if 10 = 12+32 ≡ 2
(mod 4), though – the result of a huge computer search [LTS89] – no such plane
exists. In fact, as of this writing all projective planes known to exist are of prime-
power order.
Proof:(�eorem VIII.14) Suppose there is a projective plane of order n with n ≡
1 or 2 (mod 4).�en the plane has N = n2 + n + 1 ≡ 3 (mod 4) points and lines.
Let A = (a i j) ∈ {0, 1}N×N be the incidence matrix of the plane, that is a i , j = 1 if and
only if the i-th point is on the j-th line.

�en the i , j entry AAT = (c i , j) is c i , j = ∑k a i ka jk with the product a i ka jk

being 1 if and only if the k-th line contains points i and j.�us c i , j is the number
of lines containing the points i and j, which is n + 1 if i = j and 1 otherwise.�us
AAT = nI + J where J is the all-one matrix.
We introduceN variables, x1 , . . . , xN and let x = (x1 , . . . , xN).�en z = (z1 , . . . , zn) ∶=

xA satis�es

z21 +⋯ + z2N = zzT = xAATxT = n ⋅ xxT + xJxT = n(x21 +⋯ + x2N) + ω2

with ω = x1 +⋯ + zN . We add nx2N+1 (for a new variable xN+1) to both sides of the
equation, and observe that the number of variables, N + 1, is a multiple of 4.
Lagrange’s four squares theorem from number theory states that we can write

n = b21 + b22 + b23 + b24 as a sum of four squares. We thus collect the terms nx2i in
groups of four and use that

n(x21 +⋯x24) = (b21 +⋯ + b24)(x21 +⋯x24)
= y21 + y22 + y23 + y24 with

y1 = b1x1 − b2x2 − b3x3 − b4x4

y2 = b1x2 + b2x1 + b3x4 − b4x3

y3 = b1x2 + b3x1 + b4x2 − b2x4

y3 = b1x4 + b4x1 + b2x3 − b3x2

with the y i ’s being linear combinations of the x i ’s. (�is identity, which can be veri-
�ed by straightforward calculation is themultiplicativity of the norm in the quater-
nions.) Collecting all terms together gives us

z21 +⋯ + z2N + nx2N+1 = y21 +⋯ + y2N+1 + ω2 . (VIII.15)

We now utilize some freedom in the choice of the variables x i to simplify this ex-
pression:
Recall thatwehave z j = ∑i a i , jx i (from the incidencematrix) and yk = ∑i b i ,kx i

(from expanding the four-square sums). Choose indices j, k such that a1, j and b1,k
are both nonzero. (Such indices must exist for reasons of matrix rank.) Choose a
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sign such that a1, j ± b1,k is nonzero and substitute

x1 = −
(a2, j ± b2,k)x2 +⋯ + (aN , j ± bN , j)xN + aN+1, jxN+1

a1, j ± b1,k

�en yk ± z j = 0 and thus y2k = z2j , and both terms can be canceled from equa-
tion (VIII.15), resulting in an equation in fewer variables that are all linear expres-
sions in x2 , . . . , xN+1.
We can repeat this argument, leaving only one y variable and xN+1, yielding

nx2N+1 = y2k + ω2 .

where yk and ω are rational multiples of xN+1. Setting xn+1 to a suitable integer thus
gives an integer equation

nx2 = a2 + b2 ,

with a, b, c not all zero. Again a theorem from number theory shows that this is
only possible if n is a sum of squares. ◻

VIII.8 A�ne Planes

To build a connection with another areas of combinatorics we �rst step back to the
constructions that motivated PG as an extension of the ordinary points and lines
of classical geometry.

Definition VIII.16: A a�ne plane of order q (for q ≥ 2) is a set X of q2 points
and a set B of q-element subsets of X, called lines, such that any two points lie on
a unique line.

�e de�nition implies that two lines may share at most one point. We call lines
parallel, if they are equal or disjoint.

Proposition VIII.17: Let (X ,B) be an a�ne plane of order q.�en

1. Every point lies on exactly q + 1 lines.
2. �ere are q(q + 1) lines in total.
3. (Parallel postulate) If p ∈ X and L ∈ B there exists a unique p ∈ L′ parallel to

L.
4. Parallelity is an equivalence relation on lines.
5. Each class of parallel lines contains q lines, partitioning X.

Proof: For a point p, the q2− 1 other points distinct from p each lie on a unique line
through p that contains q− 1 points di�erent from p. So there are (q2 − 1)/(q− 1) =
q + 1 lines through p.



VIII.8. AFFINE PLANES 145

If we double-count pairs (p, L) with p ∈ L we thus get

q2(q + 1) = l ⋅ q

with l the number of lines, yielding l = q(q + 1).
If p ∈ L then L is the unique line parallel to L containing p must be L (as they

would share a point). If p /∈ L, then p lies on q + 1 lines of which q are needed to
connect p to points on L, leaving one unique line L′ parallel to L.
By de�nition, parallelity is re�exive and symmetric. To show transitivity, as-

sume that L,M both are parallel to N . Without loss of generality we may assume
that these three lines are di�erent. But if L is not parallel to M, they must share a
point p, yielding two lines through p parallel to N , contradiction.
As a partition into cells of equal size, each parallel class must contain q2/q = q

lines. ◻

By the parallel postulate, the q+ 1 lines through a point must contain represen-
tatives for all parallel classes, implying that there are q + 1 classes.
We now describe two constructions that construct a projective plane from an

a�ne plane by adding a line “at in�nity”, respectively construct an a�ne plane from
a projective plane by removing a line.
Let (X ,B) be an a�ne plane. Let Y be the set of parallel classes. We add a new

point for every parallel class, letting A = X ∪Y be the new point set with q2 + q + 1
points. For lines, we add to every line L ∈ B the point representing its parallel class.
We also add Y as a new line “at in�nity”.�us the structure we get is (A, C) with

C = {L ∪ {y} ∣ L ∈ B, L ∈ y ∈ Y} ∪ {Y}.

We note that any new line has q + 1 points, as we added one point to each new line
as well as a new line at in�nity with q + 1 points. To verify the axioms we note that
the only new points and new lines are at in�nity.�at is for two points in X there
is a unique line in B through these points, and this line extends in C. Neither point
is on the line at in�nity.
For a point x ∈ X and a point y at in�nity, take the line L ∈ B in the class y that

goes through x, then L ∪ {y} ∈ C. x is not on the new line.
For two points at in�nity the common line is Y .�us PP1 holds.
For PP2, we note that two lines on C that arise from L will intersect in their

common point in X if they are not parallel, if they are parallel they intersect in
their parallel class y.�e line at in�nity intersects the other lines each once in the
appropriate parallel class.
PP3 is satis�ed as we have q ≥ 2.�us (A, C) is a projective plane.
Vice versa, we take a projective plane and designate an (arbitrary) line L as

being at in�nity. Removing this line and its q + 1 points has q2 points remaining
and any line has q points (one got removed with L). By Axiom PP1 any two points
lie on a unique line.�us the resulting structure is an a�ne plane.
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�ese two constructions give the obvious consequence

Corollary VIII.18: A projective plane of order q exists, if and only if an a�ne
plane of order q exists.

VIII.9 Orthogonal Latin Squares

[...] the sole piece not yet �lled in has the

almost perfect shape of an X. But the

ironical thing, which could have been

foreseen long ago, is that the piece the dead

man holds between his �ngers is shaped

like a W.

Life, a User’s Manual

[...] la seule pièce non encore posée
dessine la silhouette presque parfaite
d’un X. Mais la pièce que le mort tient
entre ses doigts a la forme, depuis
longtemps prévisible dans son ironie
même, d’un W.

La vie, mode d’emploi
G. Perec

We now introduce another combinatorial structure:

DefinitionVIII.19: a) A Latin Square of order n is a matrix in {1, . . . , n}n×n , such
that every entry occurs once (and thus exactly once) in every row and every col-
umn.

b) Two Latin squares A = (a i j) and B = (b i j) are orthogonal, if for any pair of
numbers k, l ∈ {1, . . . n} there are unique indices i , j such that a i j = k and b i j = l .

c) A set {A1 , . . .A l} of Latin squares is called a set of mutually orthogonal Latin

squares (MOLS) if A i is orthogonal to A j for i /= j.

Orthogonal Latin squares used to be written in the same matrix with an ordi-
nary (Latin) letter denoting the one square and aGreek letter designating the other,
thus they are sometimes called Graeco-Latin squares.
Orthogonal Latin squares have for example application in experimental design

– averaging out correlations among pairs of parameters without forcing to try out
the total of all n3 (or more) combinations.
Imagine we’d be testing n possible fertilizers on n kinds of plants and we have

n plots (of potentially varying quality for growth). Two orthogonal Latin squares
describe a sequence of growing every plant on every plot (square one: columns are
the plots, rows are subsequent time units, entries are plant numbers) and using
every fertilizer on every plot (square two: entries are fertilizer numbers) with n2

plantings in total.
An obvious question is on how many squares could be in a set of MOLS. An

upper bound is given by n − 1:
Lemma VIII.20: a) If A, B are orthogonal Latin squares of order n, and we apply
any permutation π ∈ Sn to the entries of B, the resulting Latin squares are orthog-
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onal as well.

b)�e maximal cardinality of a set of MOLS is n − 1.
Proof: a) is clear as there is a bijection between pairs (k, l) and (k, l π).
For the proof of b) we assume by a) WLOG that all squares have entry 1 in po-

sition (1, 1). Each of the squares then will have to have an entry of 1 in row two
in columns 2, . . . , n. By orthogonality no two squares may have this entry 1 in the
same column, thus limiting their total number to n − 1. ◻

It now turns out (as it will be in other situations later in the course) that a max-
imal set of MOLS corresponds to an a�ne plane (or a projective plane).

Proposition VIII.21: An a�ne plane of order n de�nes a set of n − 1 MOLS of
order n.

Proof: Given an a�ne plane, choose two classes {H1 , . . . ,Hn} and {V1 , . . .Vn} of
parallel lines. As every point p lies on a unique line H i and Vj , we can identify it
with a pair i , j.
For each further class {L1 , . . . , Ln} of parallel lines we de�ne a matrix AL =

(a i j) by setting a i , j = k, i� the point p corresponding to coordinates i , j is on line
Lk .

�en AL is a Latin square – would we have that a i , j = k = a i ,m the point p cor-
responding to (i , j), and the point q corresponding to (i ,m) would be on line Lk

(as having the same value) and on lineH i (as being in the same row), contradicting
the fact that there is a unique line through p and q. An analog argument holds for
same column index.
Similarly, if for another class of lines {M1 , . . . ,Mn} andAM = (b i j)we had that

AM was not orthogonal to AL , there would be a pair of values (k, t) and two po-
sitions (i , j) and (r, s), corresponding to points p and q, such that a i , j = k = ar ,s
and b i , j = t = br ,s . But then p, q ∈ Lk , as well as p, q ∈ Mt , again contradicting
uniqueness of lines. ◻

For the converse result we take a set {A1 , . . .Ar} of Latin squares of order n.
We consider the set X = {1, . . . , n}×{1, . . . , n} of coordinates as points and de�ne
three classes of lines:

Horizontal: {(i , x) ∣ x = 1, . . . , n} for �xed i,

Vertical: {(x , j) ∣ x = 1, . . . , n} for �xed j,

Latin: For each Latin square As = (a i , j) and value k the lines {(i , j) ∣ a i , j = k}.

�is yields n2 points and n(r + 2) lines, each containing n points, and every point
lies on r + 2 lines.
Lemma VIII.22: In this construction any two points lie on at most one line
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We note that a structure with these properties is a geometric structure called a
net.
Proof: Suppose that two points, (i , j) and (s, t), are on two common lines. By def-
inition of the lines they must be of di�erent types.
If one is horizontal and the other vertical we get that i = s and j = t, contradic-

tion.
If one line is horizontal and the other Latin, we have that s = i and thus that the

Latin square had two equal entries in one row, contradiction.
�e argument for vertical and Latin is analog. ◻

If with r = n − 1 the set of MOLS is of maximal size we get n(n + 1) lines, each
containing n points. As no pair of points lies on two lines, these connect

n(n + 1)(n
2
) = n(n + 1)n(n − 1)

2
= n4 − n2

2
= (n

2

2
).

pairs of points. As there are in total only (n
2

2 ) pairs, this shows that in this case the
net is an a�ne plane.

CorollaryVIII.23: A set of n− 1 MOLS of order n exists if and only if there exists
an a�ne plane of order n if and only if there exists a projective plane of order n.

Existence of Orthogonal Latin Squares

Six di�erent regiments have six o�cers,

each one belonging to di�erent ranks.

Can these 36 o�cers be arranged in a

square formation so that each row and

column contains one o�cer of each rank

and one of each regiment?

Cette question rouloit sur une assemblée de 36
O�ciers de six Rêgimens di�érens, qu’il
s’agissoit de ranger dans un quarré, de manière
que sur chaque ligne tant horizontale que
verticale ils se trouva six O�ciers tant de
di�érens caractères que de Régimens di�érens.

Recherches sur une nouvelle espè ce de quarrés
magiques, 1782

L. Euler

Stepping back from the question of the size of maximal sets of MOLS, one can
ask the question for which orders n at least a pair of MOLS exists.�e boundaries
we’ve already proven show that this is not possible for n = 2 (as n − 1 = 1).
With this question we go back to Leonard Euler and the origins of combina-

torics. Euler (who introduced the concept of a Graeco-Latin square) constructed
examples for any order n /≡ 2 (mod 4) and claimed that this would be impossi-
ble for any order n ≡ 2 (mod 4), but was not able to prove this impossibility. A
proof of the impossibility of order 6 was given in 1900 by G. Tarry, based on case
distinctions.
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With this pedigree, it came as an enormous surprise2 that Parker, Bose3 and
Shrikande in 1959 found an example of a pair of orthogonal Latin squares of order
10.�ey are depicted in the following matrix with the �rst square given by the �rst
digit, and the second by the second digit of each entry.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

00 47 18 76 29 93 85 34 61 52
86 11 57 28 70 39 94 45 02 63
95 80 22 67 38 71 49 56 13 04
59 96 81 33 07 48 72 60 24 15
73 69 90 82 44 17 58 01 35 26
68 74 09 91 83 55 27 12 46 30
37 08 75 19 92 84 66 23 50 41
14 25 36 40 51 62 03 77 88 99
21 32 43 54 65 06 10 89 97 78
42 53 64 05 16 20 31 98 79 87

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In fact it is now known that for any n /= 2, 6 there is a pair of orthogonal Latin
squares of order n.We shall give a construction that covers the same orders as Euler
did:
We �rst consider a “direct product” construction for Latin squares:

DefinitionVIII.24: Let A, B be Latin squares of orderm, n respectively.We de�ne
the direct product by identifying the pairs in {1, . . .m} × {1, . . . n} with numbers
from 1 to mn by mapping (i , j) to i +m ⋅ ( j − 1).�en

A× B = (cx ,y) with c(i , j),(r ,s) = (a i ,r , b j ,s) .

Lemma VIII.25: If A and B are Latin squares, so is A× B.

Proof: It is su�cient to show that every value occurs in every row and every col-
umn. Let (x , y) be a value and (i , j) the index of a row.�en a i ,r = x and b j ,s = y

for suitable values (r, s) and thus A×B has the entry (x , y) in column (r, s) of row
(i , j). ◻

Lemma VIII.26: If A, B are orthogonal Latin squares of order m and C ,D are or-
thogonal of order n, then A× C and B × D are orthogonal.

Proof: We use the bijection between numbers and pairs. Suppose that L = A × C

and M = B × C share the same combination of entries in two positions.�at is,
we have positions (i , j), (k, l) and (p, q), (r, s) where both L and M have equal
entries.�at is

(a i ,k , c j , l) = L(i , j),(k , l) = L(p ,q),(r ,s) = (ap ,r , cq ,s)
(b i ,k , d j , l) = M(i , j),(k , l) = M(p ,q),(r ,s) = (bp ,r , dq ,s)

2yielding a front page story in the New York Times, only pushed below the fold by the opening of
the St. Lawrence Seaway

3at that time at U.NC Chapel Hill but later at CSU!
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�is implies that a i ,k = ap ,r and b i ,k = bp ,r , which because of the orthogonality of
A and B implies that (i , j) = (p, q). We similarly prove that ( j, l) = (q, s), showing
that the positions must be equal. ◻

Corollary VIII.27 (MacNeish’s �eorem): Let n = ∏i p
e i
i a product of prime

powers with the p i being distinct primes. �en there are at least mini (pe ii − 1)
MOLS of order n.

Proof:�e existence of PG(2, pe ii ) gives us p
e i
i − 1 MOLS of order p

e i
i . Form direct

products of such squares over the di�erent primes. ◻
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IX

Designs

I want your horror,
I want your design

Bad Romance
Lady Gaga

In a geometrywe had that lineswere subsets of points that were de�ned unique-
ly de�ned by the choice of two points. We now generalize this concept:

Definition IX.1: Let X be a set of points with ∣X∣ = v and B a set of k-element
subsets of X and t < k < v.�en (X ,B) is called a t − (v , k, λ) design (or t-design
with parameters (v , k, λ) ) for λ > 0, if any t points are contained in exactly λ

blocks.
In the special case of λ = 1, a t − (v , k, 1) design is also o�en called a Steiner

system S(t, k, v).
Example:

• �e points and lines of a projective plane of order q are an 2− (q2 + q+ 1, q+
1, 1)-design.

• Let X be a set of size v and B the set of all k-element subsets of X for k < v.
�en for t < k, there are (v−t

k−t) possibilities to extend a t-set to a k-set, so
(X ,B) is an t − (v , k, (v−t

k−t)) design.

• A partition of v points into blocks of size k is an 1 − (v , k, 1)-design.

• Let X be the vertices (labeled 1, . . . , 7) of a regular heptagon and consider
the triangle 1, 3, 4 and its images under rotation. Its vertices have distances
1, 2 and 3 respectively and any edge of the complete graph on these vertices
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Figure IX.1: A 3 − (8, 4, 1) design

lies on exactly one rotation image of this triangle.�us we get an 2− (7, 3, 1)
design. If we also allow re�ection images of the triangle we similarly get an
2 − (7, 3, 2) design.

• Let X be the 8 corners of a cube.�en three points are either

1. On a common face, Figure IX.1, a).
2. Two corners form an edge, but the third is not on a common face.�en
the three corners are on a diagonal slice through the common edge,
Figure IX.1, b).

3. No two vertices share a common edge.�ey then lie on the corners of
a tetrahedron, Figure IX.1, c).

In all three situations three points de�ne uniquely a fourth point.�us if we
make B the set of all of these 4-corner con�gurations, we get that (X ,B is a
3 − (8, 4, 1) design.

�e regularity of a design implies that the parameters determine the number
of blocks:

Proposition IX.2:�e number of blocks of an t − (v , k, λ) design is

b = λ(v
t
)/(k

t
).

Proof: Double-count the pairs (T , B) with T ⊂ B and ∣T ∣ = t and B a block.�ere
are (v

t
) sets T , each in λ blocks, respectively b blocks each with (k

t
) subsets. ◻

If we have a design, we can remove points and get a smaller design:

Proposition IX.3: Let (X ,B) be a t − (v , k, λ) design and S ⊂ X with ∣S∣ = s < t.
We let Y = X ∖ S and

C = {B ∖ S ∣ S ⊂ B ∈ B}.

�en (Y , C) is a (t − s)− (v − s, k − s, λ) design, called the derived design of (X ,B)
with respect to S.
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Proof: Each block in C contains k − s points of the v − s points of Y . Let Z ⊂ Y with
∣Z∣ = t− s.�en Y ∪S is a t-subset of X and thus lies in λ blocks (that automatically
contain S), thus Z lies in λ blocks in C. ◻

Example:�e example above gave a 3 − (8, 4, 1) design. Removing one point gives
an 2 − (7, 3, 1) design.
We note that the number of blocks of this (t − s) − (v − s, k − s, λ) design is

λs = λ(v − s

t − s
)/(k − s

t − s
)

and thus only dependent on s.�at means that any s-point subset of X lies in λs

blocks, that is

Corollary IX.4: Any t−(v , k, λ) design is also a s−(v , k, λs) design for any s ≤ t.

Example: For the 3 − (8, 4, 1) design from above and s = 2 we get

λs = 1(
6
1
)/(2
1
) = 3

and thus an 2 − (8, 4, 3) design.
For the case s = 1 we are getting similarly an 1 − (8, 4, 7) design.

Corollary IX.5: Every point of X lies in

r = λ1 = λ(v − 1
t − 1)/(

k − 1
t − 1)

blocks.

Another operation to construct designs from designs is the complement design,
that is we replace B with B = {X ∖ B ∣ B ∈ B}.
Proposition IX.6:�e complement of a t − (v , k, λ) design is a t − (v , v − k, λ̄)
design with

λ̄ =
t

∑
s=0

(−1)s(t
s
)λs

Proof:�e number of blocks in B containing the points x1 , . . . , xt ∈ X is equal to
the number of blocks in B containing none of the x i . For I ⊂ {1, . . . , n} let BI be
the set of blocks containing x i for all i ∈ I.�en ∣BI ∣ = λ∣I∣. By PIE the number of
blocks containing none of the x i thus is

∑
I⊂{1, . . .n},∣I∣≤t

(−1)∣I∣ ∣BI ∣ =
t

∑
s=0

(−1)s(t
s
)λs .

◻

Example:�e complement of a 2−(7, 3, 1) design is a 2−(7, 7−3 = 4, 2 = 7−2 ⋅3+1)
design.



154 CHAPTER IX. DESIGNS

IX.1 2-Designs

Definition IX.7: We �x an indexing of the v points X and the b blocks B of a
design.�e incidence matrix of the design is M ∈ {0, 1}v×b de�ned by m i j = 1 i�
x i ∈ B j .

Transposition of the incidencematrix de�nes a dual structure with the contain-
ment relation inverted.�is begs the question, whether this structure also could be
a design.
To answer this in part, we now consider the case of a 2-design, that is t = 2 and

every point lies in r = λ v−1
k−1 blocks

Lemma IX.8:�e incidence matrixM of a 2-design satis�es that

MMT = (r − λ)I + λJ

where I is the v × v identity matrix and J the all-1 matrix.

Proof:�e i , k-entry of the product is

(MMT)i ,k =∑
j

m i jmk , j ,

that is the number of blocks that contain x i and xk .�is count is r if i = j and λ if
i /= j. ◻

Lemma IX.9: det(MMT) = rk(r − λ)v−1

Proof: A general linear algebra result, Exercise ??, shows that det(xI + yJ) = (x +
ny)xn−1. Applying this for n = v and x = r − λ and y = λ gives the determinant as

(r − λ + vλ)(r − λ)v−1 = (r + (v − 1)λ)(r − λ)v−1 .

Using that r + (v − 1)λ = rk then gives the result. ◻

Theorem IX.10 (Fischer’s inequality): A 2−(v , k, λ) design with k < v has at least
as many blocks as points, i.e. b ≥ v.

Proof: As r is the total number of blocks containing a particular point, and λ the
number of blocks containing this point and another, we have that r = λ implies
that all points must be in one block, contradicting k < v.�erefore r − λ /= 0.�us
MMT has full rank v.�is is impossible if b < v. ◻

In the case of equality in Fischer’s inequality is of particular interest:

Theorem IX.11: Let (X ,B) be a 2−(v , k, λ) design with k < v.�e following prop-
erties are equivalent:



IX.1. 2-DESIGNS 155

a) b = v,
b) r = k,
c) Any two blocks meet in λ points
d) Any two blocks meet in a constant number of points

Note that condition d) states, that if we exchange points and blocks, maintain-
ing incidence (i.e. transpose the incidence matrix), the resulting structure is again
a design.
Proof: For a 2-design we have by Proposition IX.2 that

kb = kλ(v
2
)/(k
2
) = λ

v(v − 1)
k − 1 = vr,

thus a) and b) are equivalent.
To see that b) implies c), assume that r = k and thus b = v.�is means that M

is square.
With J being the all-1 matrix, the properties of a design give us that JM = kJ

(row sums are the block size), as well asMJ = rJ (column sums are the number of
blocks in which one point lies). As k = r this implies that MJ = JM.�erefore M
will commute with (r − λ)I + λJ and thus with ((r − λ)I + λJ)M−1 = MT .
We thus know that MTM = MMT = (r − λ)I + λJ which implies that any two

blocks have λ points in common.
c) trivially implies d)
If d) holds, it means that the dual structure (reversing the roles of points and

blocks, as well as the incidence relation) (B, X) is a 2-design. It has b points and
v blocks, and thus, by Fischer’s inequality, we have that v ≥ b. But Fischer on the
original design implies b ≥ v, thus v = b and a) is implied. ◻

Definition IX.12: A 2-design satisfying the conditions of�eorem IX.11 is called
a square design or a symmetric design.

A square design with λ = 1 is a projective plane.
Note IX.13: As r = k the parameters (v , k, λ) of a square 2-design satisfy k(k−1) =
(v − 1)λ.

Note IX.14:�e complement of a square 2-design is a square 2-design.

Some restriction (necessary, not su�cient) for the existence of square designs
is given by the following theorem:

Theorem IX.15 (Bruck-Ryser-Chowla): Suppose there exists a square 2−(v , k, λ)
design.
a) If v is even, then k − λ must be a square.
b) If v is odd, the Diophantine equation

z2 = (k − λ)x2 + (−1)(v−1)/2λy2
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has a solution in integers x , y, z not all zero.

Proof: We only prove a), the proof of b) is similar to theorem VIII.14 and can be
found, for example in [vLW01]:
By Lemma IX.9, and because r = k we have that

det(M)2 = det(MMT) = rk(r − λ)v−1 = k2(k − λ)v−1

As det(M) is an integer, the right hand side must be a square. For even v this can
only be if k − λ is square. ◻

Note IX.16:�e parameter set 2−(111, 11, 1) satis�es the conditions of the theorem,
but no such design exists.

Note IX.17: A projective plane of order n is a 2− (n2 + n + 1, n + 1, 1) design.�us

r = 1 ⋅ n
2 + n

n
= n + 1 = k

and the design is square. Note that v = n2 + n + 1 is odd. If n ≅ 1, 2 (mod 4), then
n2 + n + 1 − 1 = n2 + n ≅ 1 (mod 4), that is n2+n

2 is odd.�us the Diophantine
equation becomes

z2 = (n + 1 − 1)x2 − y2

which was the equation in the proof of�eorem VIII.14 that gave rise to the fact
that n must be a sum of two squares.

A theorem (�rst proven by Petrenjuk for t = 4) by Ray-Chaudhuri and
Wilson generalizes Fischer’s inequality:

Theorem IX.18: If t = 2s and k ≤ v − s, a t − (v , k, λ) design satis�es that b ≥ (v
s
).
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Error-Correcting Codes

Codes in the combinatorial sense deal with the correctness of transmitted data, not
with preventing unauthorized reading:
When transmitting data over a channel (the generic term for any mode of da-

ta transfer – a letter, a cable, a wireless transfer, reading from a physical storage
medium), it will typically by using symbols from some alphabet, be it letters, 0/1,
or numbers. choice of alphabet and the translation between message and symbol
sequencewill depend on the application. For example,music on aCD is encoded by
sampling the signal at a �xed rate (44.1kHZ) by 16 bit numbers (this is called Pulse
CodeModulation, PCM) and storing these numbers on theCD.Aplayer then reads
these numbers and reconstructs an electric signal whose amplitude corresponds to
the numbers.
We can describe this by the following diagram:

SourceÐ→
Source to
Symbol
sequence
converter

Ð→ Channel Ð→

Symbol
sequence
to

destination
converter

Ð→ Destination

NoteX.1: Wewillnot be concernedwith any issues or signal degradations in trans-
lating between signal and symbol sequence. Nor are we concerned with data mod-
i�cations (such as psychoacoustic encoding as utilized for example byMP3 �les, or
with JPG compression) that produce a signal that is equally good or unperceivably
di�erent from the original. We simply send a sequence of symbols over a channel
and need to receive the same symbol sequence back on the other side, that is we are
interested in the middle part of the diagram

Symbol SequenceÐ→ Channel Ð→ Symbol Sequence.

157
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What can (in fact is almost guaranteed) to happen is that errors in the trans-
mission process (transcription errors, noise, dirt, static) a�ect the data so that the
received data di�ers from the transmitted one.�is cannot be plausibly be resolved
by better engineering: When the CD format was de�ned the available manufactur-
ing technology made it impossible to expect that it would be possible to read back
the data without a signi�cant number of errors.

Note X.2:�e typical form of errors are bursts that erase or modify a sequence of
subsequent symbols: A smudge of dirt or water on paper, a burst of electromagnetic
waves from starting a motor, a manufacturing imperfection in the plastic of a CD.
By interleaving data, that is storing a sequence ABCDEFGHI in the formADG-

BEHCFI, we can spread out the e�ect of burst errors to become rather that of in-
dividual random symbol errors that occur equidistributed at a given rate for each
symbol.
We also will not deal with channel coding, the way how symbols are translated

to the transmission channel. (An example of this would be Morse code.)

�e standard way to combat errors is redundancy:�e word “houxe” has really
only one possible correction in the English language, if a message becomes too
garbled we would even ask for it to be repeated in full.

�at is we do not transmit the actual information (say the information that the
recipient should carry an umbrella) but we encode it in a sequence of symbols (“It
will be raining”) which includes redundant data stored. On the receiver side in a de-
code process the information is restored with small garbles �xed (error-correction)
or at least that it can be discovered that an error happened (error-detection).

MessageÐ→ Encode Ð→ Channel Ð→ Decode Ð→Message.

�e redundancy of everyday processes however comes at a high cost: Languages
typically use three (or more) symbols in average for each symbol transmitted (as
one can see by selectively erasing some symbols from a text), repeating information
for redundancy further reduces the capacity of the channel.
Another example are check digits or parity conditions (e.g. every CSUID is ≡ 1

(mod 7)) that can detect errors.
Our goal is to do reduce the amount of redundancy needed for recovering from

a particular error rate.

X.1 Codes

To help with analysis and to avoid practical issues with intermediate storage, we
shall assume that the message to be transferred will be cut into units of equal size
(possibly by padding the last piece), and each of these pieces will be separately
encoded and decoded.

Definition X.3: Given an alphabet Q with ∣Q∣ = q and n > 0, the Hamming Space

H(n, q) = Qn is the set of all n-tuples (called words) with entries chosen from Q.



X.1. CODES 159

�e Hamming distance of two words is de�ned as d(v ,w) = ∣{i ∣ v i /= w i}∣
Lemma X.4: Let v ,w ∈ H(n, q).
a) d(v ,w) ≥ 0 and d(v ,w) = 0 i� v = w.
b) d(v ,w) = d(w , v)
c) d(u, v) + d(v ,w) ≥ (u,w)

DefinitionX.5: A code C ⊂ H(n, q) is a subset of theHamming space, its elements
are called codewords. We call n the length of the code and C an q-ary code.

�eminimum distance of C is d = min{d(v ,w) ∣ v ,w ∈ C , v /= w}.
C is called e-error-correcting if for any w ∈ H(n, q) there is at most one code-

word v ∈ C such that d(v ,w) ≤ e.

As an example consider the most pathetic of all codes:�e repetition code of
length n over an alphabetQ consists of the words (x , x ,⋯, x) of length n for x ∈ Q.
Its minimum distance is obviously n.

�e de�nition of e-error correcting related to the concept of nearest neighbor
decoding: When transmitting a codeword c, channel errors might modify it to a
word w which is received. If the code is e-error correcting and ≤ e errors arose, c
will be determined uniquely by w.

Proposition X.6: A code with minimum distance d is e-error correcting if d ≥
2e + 1.
Proof: If the code C is not e-error correcting there will be w ∈ H(n, q) and b, c ∈ C
such that d(w , c), d(w , b) ≤ e but then

d(b, c) ≤ d(b,w) + d(w , c) ≤ 2e

contradicting the de�nition of minimum distance d = 2e + 1. ◻

If we assume that errors occur independently, with equal probability, and with
equal probability for each letter (this is called a symmetric channel), the nearest
neighbor decoding of a word w returns the codeword that is most likely to result
in the received word w.

Dual to the minimum distance is the rate of the code C, de�ned as logq(∣C∣)/n.
(�at is the symbol overhead in the transmission, compared with the information
theoretic minimum required for the ability to transmit ∣C∣ possible messages per
unit.

Theorem X.7 (Shannon’s channel theorem): Given a symmetric channel with er-
ror probability p for a single symbol, there exists a maximal channel capacity M
(which can be calculated explicitly):
a) For any R < M and є > 0 there exists a code C of rate ≥ R such that the error
probability of nearest neighbor decoding is less than є.
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b)�ere exists є0 > 0 such that for any code C with rate R > M the error probability
of nearest neighbor decoding is ≥ є0.

We shall not prove this theorem here (which belongs in a class on statistical
communication theory), but note that the result of this theorem is theoretical in
nature:

• When reducing the error probability, the required length of the codes under
a) tends→∞.

• �e proof is an existence proof (the code is constructed by random choices),
there is no explicit way to construct an optimal code.

• Without further structure, nearest-neighbor decoding is of a cost exponen-
tial in the length and thus is not practical.

It thus is meaningful to ask for the largest code of a given length n and given
minimum distance d over an alphabet of size q. Furthermore, the utility of such
a code is higher if one can describe an e�ective method for nearest-neighbor de-
coding. Mathematicians usually care more about the �rst, engineers for the second
question.

�e aspects of decoding however are o�en (and have been even more in the
past) dictating which codes are used in practice. A device that uses codes might
not have the resources to perform a complicated decoding process in real time,
and thus will have to use a less sophisticated code than theoretically available.

X.2 MinimumDistance Bounds

We start by determining some bounds on the possible quality of codes.�e �rst
is an (o�en pathetic) lower bound that could be obtained by a greedy choice of
(otherwise unspeci�ed) code words:

Proposition X.8 (Varshamov-Gilbert bound): Given n, q, d there is a q-ary
code of length n and minimum distance ≥ d with at least

qn/ (
d−1
∑
i=0

(n
i
)(q − 1)i)

codewords.

Proof: For a �xed code word c and a distance i, there are (n
i
)(q − 1)i words w at

distance d(c,w) = i, as we can choose the i components in which the word di�ers,
and for each component have q − 1 choices of di�erent entries.

�is means that the choice of every code word eliminates at most

d−1
∑
i=0

(n
i
)(q − 1)i
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words in H(n, q) as candidates for code words, as they would have distance < d.
A greedy algorithm, that in each step simply selects a random word that is not at
distance < d to any of the words chosen so far, thus will be able to make at least as
many choices as claimed. ◻

We call the set of words at bounded distance ≤ r the ball or (in coding theory)
sphere of radius r
If d ≥ 2e + 1 these spheres of radius e may not overlap and thus give a similar

upper bound:

Theorem X.9 (Hamming bound, sphere-packing bound): Suppose that d ≥ 2e+ 1.
A q-ary code of length n and minimum distance d has at most

qn/ (
e

∑
i=0

(n
i
)(q − 1)i)

codewords.

If this bound is attained, that is the code has as many code words as possible, it
is called a perfect code.
It is rare that a particular parameter set a�ords a perfect code.

Proposition X.10 (Singleton bound): A q-ary code C of length n and minimum
distance d has at most qn−d+1 codewords.

Proof: Two words of C cannot agree in the �rst n−d+1 positions (as they then only
would have d − 1 < d positions to di�er).�us codewords are determined by their
entries in the �rst n − d + 1 positions, yielding qn−d+1 possibilities. ◻
A code that achieves the Singleton bound is called maximum distance separable

(MDS).
Wenote – Exercise ?? – that depending on the size of the alphabet theHamming

bound or the Singleton bound could be better.
�ere are further, better, bounds for the size of codes, but we shall not need

these here.

X.3 Linear Codes

So far we have not given any examples of codes apart from random selections of
codewords.�e �rst class of systematic constructions comes with tools from Lin-
ear Algebra.�is makes it easier to describe codes and will also provide a better
decoding algorithm.
We now consider the case that q is a prime power and Q = Fq . In this case we

can identify the Hamming space H(n, q) with the vector space Fn
q .

Definition X.11: A linear code is a subspace C ≤ Fn
q .�e weight of c ∈ C is the

numberwt(c) of nonzero entries of c.�eminimumweightw of C is theminimum
weight of nonzero c ∈ C.
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If C is of dimension k, we call it an [n, k,w]-code.
Linearity means that distances are based on weights:

Lemma X.12: Let C be linear and v , c ∈ C.�en d(v , c) = wt(v − c).
If C is a linear code, say of dimension k, it is the Fq span of a basis, consisting

of k vectors. We can write these vectors as rows of a k × n matrix G, called the
generator matrix of C. (�at is, C is the row space of G.) Note that the choice of G
is not unique. Since we also can permute columns (replacing C with an equivalent
code) one o�en assumes that G = (I ∣ P) for some matrix P.
Next we consider a basis of the null space (the vectors G ⋅ x = 0) of G and write

the basis vectors as rows in a matrix H, that is GHT = 0.�en H is called a check
matrix for C. Basic linear algebra gives us thatG ∈ Fk×n

q andH ∈ F(n−k)×n
q , and that

the rows of G are a basis of the null space of H.
Note that for w ∈ Fn

q we have that w ∈ C if and only if wHT = 0, thus the term
check matrix.

Generator matrix and check matrix now o�er a convenient way of encoding
and decoding. As the code is k-dimensional, the messages to be encoded will be
simply vectors m ∈ Fk

q .�e encoding process then simply consists of the product
m ⋅G = c ∈ C.�is is the code word that will be transmitted.
We receive a wordw = c+uwith u denoting the (as yet unknown) transmission

error. For decodingw we calculate s = wHT = uHT (as cHT = 0 by de�nition). We
call s the syndrome of w and note that it only depends in the error u. Furthermore,
the map from error to syndrome is injective:
Suppose thatu1 , u2 are two error vectorswithu1HT = u2H

T .�en (u1−u2)HT =
0, that is u1 − u2 is in the null space of H, that is in C.
On the other hand, since they are errors, we have that wt(u1), wt(u1) ≤ e and

thus wt(u1 − u2) ≤ 2e.�e only vector in C of this weight is the zero vector.
�is shows that in principle the error (and thus the correct decoding) can be

determined from the syndrome, this is called syndrome decoding.
In some situations a clever choice of the check matrix H – e.g. putting it in

RREF – allows for construction of an algorithm that computes u from s; in general
however (as HT is not invertible), we might have to rely on a look-up table, listing
errors for each syndrome.
Example: In a pathetic example, let Q = F2 and

G = ( 1 1 0 0 1
0 0 1 1 1 ) .

We easily �nd the four vectors in the row space ofG and verify that this is a code of
minimum weight 3, i.e. an [5, 2, 3] code.�e message m = (1, 1) thus gets encoded
by c = (1, 1, 1, 1, 0).
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We also calculate

H =
⎛
⎜
⎝

1 0 0 1 1
0 1 0 1 1
0 0 1 1 0

⎞
⎟
⎠

Suppose we receive w = c + u = (1, 1, 1, 0, 0). We calculate the syndrome wH =
(1, 1, 1).�e only vectoru ofweight 1 that can give this syndrome isu = (0, 0, 0, 1, 0),
allowing us to recover the original codeword and message.
If two errors happened and we receivedw = c+u = (0, 1, 1, 0, 0).�e syndrome

then is [0, 1, 1], which could come from the errors (1, 0, 0, 1, 0) or (0, 1, 1, 0, 0).
Proposition X.13: A linear code has minimum weight ≥ d if any d − 1 columns of
its check matrix H are linearly independent.

Proof: A product cHT is a linear combination of the columns ofH with coe�cients
given by c.�at is a linear relation amongstm columns ofH corresponds to a word
in C of weight m and vice versa. Since the minimum weight is ≥ d it is impossible
for < d columns to be linearly dependent. ◻

In the special case of 1-error correcting codes this simply means that any two
columns of H must be linearly independent. For a given number d of rows, a max-
imal set of such columns is obtained by representatives of the 1-dimensional sub-
spaces of Fd

q , corresponding to the [d1]q points of PG(d − 1, q).

Definition X.14: Let H be a d × [d1]q matrix whose columns are representatives of
PG(d− 1, q), and C the code of length n = [d1]q whose checkmatrix isH. It is called
the Hamming code over Fq of length n.

�e Hamming code of length n thus is a linear (n, n − d , 3) code.
Note X.15: Changing representatives does not change C, changing the order of the
columns will change the column order of C, an equivalent code.
Note X.16: Syndrome decoding of Hamming codes is particularly easy. If the syn-
drome s is nonzero, it is, up to a scalars α, equal to a unique (the i-th) column of
H.�e (weight one) error vector then is u = α ⋅ e i
Example: Taking d = 3 and q = 2 we get

H =
⎛
⎜
⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎟
⎠
, and G =

⎛
⎜⎜⎜
⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞
⎟⎟⎟
⎠
.

We encode, for example,m = (1, 0, 1, 0) bymG = (1, 0, 1, 0, 1, 0, 1). Suppose a trans-
mission error makes us receive w = (1, 0, 0, 0, 1, 0, 1) and syndrome (0, 1, 1).�is
equals the third column of H, so the error was (indeed) in the third position.
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Theorem X.17: Hamming codes are perfect 1-error correcting.

Proof:�e above discussion shows that a Hamming code is 1-error correcting and
its length is n = [d1]q = (qd − 1)/(q − 1), so qd = n(q − 1) + 1.�e number of code
words is qn−d = qn/qd = qn/(1+n(q−1)), which is theHamming bound for e = 1.◻

TODO: Exercise, Lie

X.4 Code Operations

there are a number of operations that take an existing code and construct new ones.
We shall describe these for linear codes, though similar ideas also work for other
codes.

Punctured Code

We assume that C ⊂ Fn
q is a linear [n, k, d] code. For 1 ≤ i ≤ n, we de�ne the

punctured code at i to be the set of all code words of C with the i-th entry removed.
We denote it by C∗. As image under the linear map omitting the i-th component it
is a linear code of length n − 1.
We obtain a generator matrix for C∗ from a generator matrix for C by removing

the i-column (and any resulting duplicate or zero rows).

Theorem X.18: a) If d > 1 then C∗ is of dimension k. If C has a minimum weight
codeword with a nonzero entry in the i-th position, then C∗ is of minimum dis-
tance d − 1, otherwise of minimum distance d.
b) If d = 1 then C∗ is of dimension k and minimum distance d = 1 if e i is not a

codeword. Otherwise C∗ is of dimension k − 1 and minimum distance ≥ 1.
Proof: Exercise ?? ◻

Example: Let C be theHamming code for d = 3 and q = 2 in the example above.�e
�rst row of the generator matrix is a word of minimum weight 3.�us puncturing
in position 1 yields a [6, 4, 2] code.

Extended Code

A somewhat dual operation to puncturing is extension.

Definition X.19: If C is a linear code of length n and size qk that has minimum
distance d, let

Ĉ = {(x1 , . . . , xn+1) ∣ (x1 , . . . , xn) ∈ C ,
n+1
∑
i=1

x i = 0}

the extended code.
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Clearly we have that the length of the extended code increased by 1 and the
minimum weight does not decrease and cannot increase by more than 1. Over F2,
the minimum weight of the extended code is guaranteed to be even.

Dual Codes and the Weight Enumerator

If GHT = 0, transposition gives HGT = 0.�is means that for a linear code the
roles of generator matrix and check matrix can be exchanged.

DefinitionX.20: Let C be a linear code with generator matrixG and checkmatrix
H.�e dual code C⊥ is de�ned by generator matrix H and check matrix G.
Note that C⊥ is the orthogonal complement to C with respect to the standard

inner product. Its dimension is n − k.

We want to determine a relation between the weights of code words in C and
those in C⊥.
Definition X.21: For a code C let a i be the number of code words c ∈ C of weight
wt(c) = i.�e polynomial

A(z) =
n

∑
i=0

a iz
i ∈ C[z]

is called the weight enumerator of C.
Clearly A(0) = a0 = 1 and A(1) = ∣C∣ = qk .

Theorem X.22 (MacWilliams identity): Let C be a linear code of length n and
dimension k over Fq whose weight enumerator is A(z) and let B(z) be the weight
enumerator of C⊥.�en

B(z) = q−k(1 + (q − 1)z)nA( 1 − z

1 + (q − 1)z) .

Proof: We give the proof only in the case q = 2 to avoid having to introduce linear
characters (mappings from a �nite �eld to the roots of unity), but may simply use
a ±1. (�e proof otherwise is identical.)
We de�ne a function g∶Fn

2 → C by

g(u) = ∑
v∈Fn

2

(−1)(u ,v)zwt v .

(with (⋅, ⋅) the standard inner product) and thus

∑
u∈C

g(u) = ∑
v∈Fn

2

zwt v ∑
u∈C

(−1)(u ,v) .
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If v ∈ C⊥, the inner sum is over 10 = 1 and thus has value ∣C∣. If v /∈ C⊥, then (u, v)
is a linear map with nonzero image. It thus takes as values all �eld elements with
equal frequency.�e inner sum then cancels out to zero, and we get that

∑
u∈C

g(u) = ∣C∣B(z).

On the other hand we can split up

(−1)(u ,v)zwt v =
n

∏
i=1

((−1)u iv i zv i ) ,

and thus have

g(u) = ∑
v=(v1 , . . . ,vn)∈Fn

2

(−1)(u ,v)zwt v

=
n

∏
i=1
∑
v i∈F2

(−1)u iv i zv i

=
n

∏
i=1

(1 + (−1)u i z)

= (1 − z)wt(u)(1 + (q − 1)z)n−wt(u) .

�erefore

qkB(z) = ∣C∣B(z) = ∑
u∈C

(1 − z)wt(u)(1 + (q − 1)z)n−wt(u)

= (1 + (q − 1)z)n ∑
u∈C

( 1 − z

1 + (q − 1)z)
wt(u)

= (1 + (q − 1)z)nA( 1 − z

1 + (q − 1)z) ,

proving the theorem. ◻

Code Equivalences

�e basic property of the Hamming space is distance.�e appropriate set of equiv-
alence operations are thus transformations of the Hamming space, called isome-

tries, that preserve distances. As distance is de�ned as the number of coordinates
in which words di�er, two kinds of isometries are:

• Permutations of the alphabet in one coordinate.

• Permutations of the coordinates.



X.5. CYCLIC CODES 167

Together they generate a group Sq ≀ Sn , acting in the product action on H(n, q).
Note X.23:�is is the full group of isometries of Hamming space: Pick a “base”
element v = (a, a, . . . , a). By considering code elements at distance 1 to v and dis-
tance 1 to each other, we can establish a permutation of coordinates. What remains
are symbol permutations.

As usual, we call two codes equivalent if they can bemapped to each other under
an isometry.�e automorphism group of a code is the set of those isometries that
map the set of code words back in the code.

When considering linear codes, the zero word has a special role and needs to be
preserved. Furthermore we cannot permute the alphabet – Fq arbitrarily, but need
to do so in a way that is compatible with vector space operations, that is we need
to replace the set of all permutations Sq of the alphabet with scalar multiplication
by nonzero elements, the group F∗q .

�e resulting linear isometry group thus is F∗q ≀ Sn . It elements, can be repre-
sented bymonomial matrices, that is matrices that have exactly one nonzero entry
in every row and column. In this representation the action on F qn is simply by
matrix multiplication.
If q = 2, there is no nontrivial scalar multiplication and the linear isometry

group becomes simply Sn .

X.5 Cyclic Codes

An important subclass of linear codes are cyclic codes: they allow for the construc-
tion of interesting codes, they connect coding theory to fundamental concepts in
abstract algebra and — this is what gives them practical relevance — the existence
of practical methods for decoding (which we shall not go into detail of).

Definition X.24: A linear code C ⊂ Fn
q is cyclic, if cyclic permutations of code-

words are also codewords, that is C is (as a set) invariant under the permutation
action of the cyclic group ⟨(1, 2, 3, . . . , n)⟩.
Assume that gcd(n, q) = 1 and let R = Fq[x] the polynomial ring and the ideal

I = (xn − 1) ⊲ R.�en Fn
q is isomorphic (as a vector space) with Fq[x]/I, the

isomorphism being simply

(a0 , a1 , . . . , an−1)↔ I + a0 + a1x +⋯ + an−1x
n−1 .

In this representation, cyclic permutation corresponds to multiplication by x, as
I + axn−1 ⋅ x = +axn = I − a(xn − 1) + axn = I + a.�at means that a code C,
considered as a subset of R/I, is cyclic if and only if it is (as a set) invariant under
multiplication by x.
SinceC is a linear subspace, this is equivalent to invariance undermultiplication

by arbitrary polynomials, that is

Proposition X.25: A cyclic code of length n is an ideal in Fq[x]/(xn − 1).
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We know from abstract algebra that ideals of a quotient ring R/I correspond
to ideals I ≤ J ⊲ R (as J/I). Furthermore Fq[x] is a principal ideal domain, that is
every ideal is generated by a polynomial.

Lemma X.26: Let R be a ring and a, b ∈ R.�en (a) ⊂ (b) if and only if b ∣ a in R.
Proof:�e statement (a) ⊂ (b) is equivalent to a ∈ (b). By de�nition this is if and
only if there exists r ∈ R such that a = rb, that is b ∣ a. ◻

We thus get

Theorem X.27:�e cyclic codes of length n over Fq are given by the divisors of
xn − 1 over Fq .

Note X.28:�is is the reason for the condition that gcd(n, q) = 1. Otherwise q =
pa and p ∣ n but

xn − 1 = (x
n
p )

p

− 1 ≡ (x
n
p − 1)

p

(mod p)

is a power.

If C = (I+ g(x)) for a cyclic code C ≤ Fq[x]/(xn−1), we call g(x) the generator
polynomial of C and h(x) = (xn − 1)/g(x) the parity check polynomial of C.
Considered as a polynomial, we have that the code words c ∈ C are simply

multiples of g, we that get that an arbitrary polynomial f (x) ∈ C if and only if
f (x)h(x) ≡ 0 (mod xn − 1).
Example: For n = 7 and q = 2 we have that x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).
�us g(x) = x3 + x2 + 1 creates a cyclic code of length 7 and 27−3 = 24 = 16 code
words, and check polynomial h(x) = x4 + x3 + x2 + 1.
While this is a slickway of constructing codes, we have not yet said a singleword

about their ultimate purpose, error correction; respectively the minimum distance
of cyclic codes.

�e �rst step on that path will be to look at a di�erent version of check matrix:

Theorem X.29: Let C ⊂ Fq[x]/(xn − 1) be a cyclic code with generator polynomial
g of degree n − k, and let α1 , . . . , αn−k be the roots of g.�en

H =
⎛
⎜
⎝

1 α1 α21 ⋯, αn−1
1

⋮ ⋮ ⋮ ⋮
1 αn−k α2n−k ⋯, αn−1

n−k

⎞
⎟
⎠

is a check matrix for C, that is f (x) = ∑ f ix
i ∈ Fq[x]/(xn − 1) is in the code if and

only if ( f0 , . . . , fn−1) ⋅HT = 0.
Proof:�e criterion is that for all j we have 0 = ∑ f iα

i
j = f (α j).�is is the case if

and only if g(x) ∣ f (x), that is if f (x) ∈ C. ◻
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Note X.30: By expressing the α
j

i as (column) coe�cient vectors in an Fq basis of
a suitable �eld Fqm ≤ Fqn (that is multiplying the number of rows by a factor) we
can replace H with an Fq matrix.

We now can use Proposition X.13 on this matrix H to determine the minimum
distance.We note that rows associated to roots of the sameminimal polynomial do
not contribute to further checking.

LemmaX.31: Suppose that g(x) =∏m
i=1 g i(x) as a product of (di�erent) irreducible

polynomials overFq and that (a�er reordering) we have g i(α i) = 0 for i = 1, . . . ,m.
�en

H′ =
⎛
⎜
⎝

1 α1 α21 ⋯ αn−1
1

⋮ ⋮ ⋮ ⋮
1 αm α2m ⋯ αn−1

m

⎞
⎟
⎠

(that is we only take one root for each irreducible factor) is a check matrix for C.
Proof: Let β be a root of g that is not amongst α1 , . . . , αm .�en (WLOG) β and
α = α1 must be roots of the same irreducible factor of g.�is implies that there is a
Galois automorphism σ of the �eld extension Fq(α) = Fq(β) that will map α → β.
But then for any f (x) ∈ Fq[x] we have that

σ( f (α)) = f (σ(α)) = f (β).

As σ(0) = 0 the statement follows. ◻

Note X.32:�e reader might wonder whether these check matrices H violate the
theorems we have proven about rank and number of rows of these matrices.�ey
don’t, because they are not de�ned over Fq but over an extension – If α is of degree
mwewould need to replace the row for α bym rows, representing α (and its powers
similarly) with coe�cients with respect to an Fq-basis.

Example: Let n = 15 and q = 2. We take

g(x) = (x4 + x + 1) ⋅ (x4 + x3 + x2 + x + 1) ∣ x 15 − 1,

that is deg(g) = 8 and it de�nes a code of dimension 15 − 8 = 7. Let α be a root
of p1(x) = x4 + x + 1 in F16, then p1(x) = (x − α)(x − α2)(x − α4)(x − α8) (the
other roots must be images of the �rst under the Frobenius automorphism), α is a
generators of themultiplicative group ofF16 (explicit calculation), and (also explicit
calculation) we have that α3 is a root of x4 + x3 + x2 + x + 1.�us we can take the
check matrix as

H =
⎛
⎜⎜⎜
⎝

1 α α2 ⋯, α14
1 α2 α4 ⋯, α28
1 α3 α6 ⋯, α42
1 α4 α8 ⋯, α56

⎞
⎟⎟⎟
⎠
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or – removing some rows as in the prior lemma –

H = ( 1 α α2 ⋯, α14
1 α3 α6 ⋯, α42 ) .

Lemma X.33 below shows that any four columns of this matrix H are linearly
independent, thus g de�nes a code of minimum distance d ≥ 5.

�eminimumbound in this example follows from the following technical lem-
ma:

LemmaX.33: Let α be an element of multiplicative order n (also called an primitive

n-th root of unity) and b > 0.�en any m columns of the m × n matrix

H =
⎛
⎜⎜⎜
⎝

1 αb α2b ⋯, α(n−1)b

1 αb+1 α2(b+1) ⋯, α(n−1)(b+1)

⋮ ⋮ ⋮ ⋮
1 αb+m−1 α2(b+m−1) ⋯, α(n−1)(b+m−1)

⎞
⎟⎟⎟
⎠

are linearly independent.

Proof: Let i1 , . . . im be the indices (starting with 0) of the columns chosen.�en
these columns form the matrix

M =
⎛
⎜⎜⎜
⎝

αbi i αbi2 αbi3 ⋯, αbim

α(b+1)i1 α(b+1)i2 α(b+1)i3 ⋯, α(b+1)im

⋮ ⋮ ⋮ ⋮
α(b+m−1)i1 α(b+m−1)i2 α(b+m−1)i3 ⋯, α(b+m−1)im

⎞
⎟⎟⎟
⎠

and we get by the usual determinant rules that

det(M) = αb(i1+i2+⋯+im) det(M0)

with

M0 =
⎛
⎜⎜⎜
⎝

1 1 1 ⋯ 1
α i1 α i2 α i3 ⋯ α im

⋮ ⋮ ⋮ ⋮
α(m−1)i1 α(m−1)i2 α(m−1)i3 ⋯ α(m−1)im

⎞
⎟⎟⎟
⎠
.

ButM0 is a Vandermonde matrix, so

det(M0) = ∏
1≤ j<k≤m

(α i j − α ik) /= 0,

since all powers of α will be di�erent. ◻

We generalize this result to a class of codes that was discovered independently
by R.C. Bose (as in previous chapters) and D.K. Ray-Chaudhuri, as well as by
A. Hocquenghem and which are named a�er these discoverers.
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DefinitionX.34: Let q be a prime power, n be an integer and α ∈ Fqe be a primitive
n-th root of unity (that is n ∣ qe − 1). A BCH code over Fq of length n and designed
distance 2 ≤ d ≤ n is the cyclic code de�ned by the polynomial over Fq with roots

αb , αb+1 , . . . , αb+d−2 .

�e polynomial that de�nes such a code is simply

lcm(m1(x),m2(x), . . . ,mb+d−2)

where m i is the minimal polynomial of α i over Fq . In general several of these m i

will be equal or could be of degree 1.

PropositionX.35: ABCHcode of designed distance d hasminimumdistance≥ d.

Proof: If the code is of designed distance d, its check matrixH will include the d− 1
rows of the matrix in Lemma X.33 as rows.�us any d − 1 columns of H must be
independent, showing that the code has minimum distance ≥ d. ◻

BCH codes are particularly easy to work with if no extension is involved, that
is n ∣ q − 1:
Definition X.36: A BCH code of length n = q− 1 over Fq is called a Reed Solomon

code.

Reed Solomon codes have been the work-horse of error correction.�ey are
used, for example for error correction on CD’s DVD’s, Blu-Ray, QR codes, DSL
networking and several wireless standards.

X.6 Perfect Codes

In general, perfect codes only exist for a select few parameter sets and thus are
rarely used in practice.�e codes which exist however are o�en mathematically
signi�cant, which is the reason for studying them.
In the case of 1-error correcting perfect codes we easily get a full classi�cation:

Proposition X.37: a) A perfect 1-error correcting code over an alphabet of prime-
power order q has length [d1]q (for a suitable value of d).
b) A linear, perfect, 1-error correcting code is a Hamming code.

Proof: Let C be a perfect 1-error correcting code. By de�nition this means that
∣C∣ = qn/(1 + n(q − 1)), that is 1 + n(q − 1) divides qn . As q = pa this means
that 1 + n(q − 1) = qd pe for nonnegative d , e with e < a. Reduction modulo q − 1
gives pe ≡ qd pe ≡ 1 (mod q − 1), as pe < q this implies that pe = 1 and thus
1 + n(q − 1) = qd , that is n = (qd − 1)/(q − 1).
If C is also linear we have that qn/(1 + n(q − 1)) = ∣C∣ = qn−d .�at means a check
matrix H for C must have n columns of length d each. By X.13 these columns are
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pairwise linear independent, which implies that they are representatives of the 1-
dimensional subspaces of Fd

q . By de�nition, C is a Hamming code. ◻

We now consider e-error correcting codes for e > 1 and q = 2.
For e = 2 the Hamming bound gives

2dim = ∣C∣ = 2n/ ((n
2
) + n + 1) = 2n+1/(n2 + n + 2)

�is implies that n2 + n+ 2a for some a ≥ 0. Setting x = 2n+ 1 and y = a + 2 we get
2y −7 = x2.�is isNagell’s equation, whose solution is a standard topic in algebraic
number theory.�e only solutions are

x ±1 ±3 ±5 ±11 ±181
y 3 4 5 7 15

Since the code is to be 2-error correcting we must have that 5 ≤ n = x−1
2 , so only

n = 5, 90 are possible. For n = 5, the repetition code of length 5 is an example.
We will see below (X.40) that n = 90 is impossible.
Next we consider q = 2 and e = 3 and get

2dim = ∣C∣ = 2n/ ((n
3
) + (n

2
) + n + 1) = 2n+1/(n2 + n + 2) = 2n6/(n3 + 5n + 6).

�us (with m = n + 1):

2a3 = n3+5n+6 = (n+1)(n2−n+6) = (n+1)((n+1)2−3(n+1)+8) = m(m2−3m+8).

As the code is 3-error correcting we know that n ≥ 7, i.e.m ≥ 8.We now use unique
factorization to �nd the possible solutions:

If m ≡ 0 (mod 16), then m2 − 3m + 8 ≡ 8 (mod 16). But we also know that
m2−3m+8 = 2x3 for some x.�is means that the congruence can only be satis�ed
if x ≤ 3 and m2 − 3m + 8 = 24 is the only possibility. However, for m ≥ 8 we have
that m2 − 3m + 8 ≥ 48, contradiction.

�is means that m /≡ 0 (mod 16), which implies that m must be a divisor of
23 ⋅ 3, of which only 8, 12, and 24 satisfy that m ≥ 8. But for m = 12 we have that
m2 − 3∗m + 8 = 116 = 2229.�usm ∈ {8, 24}, respectively n ∈ {7, 23} are the only
possibilities.
If n = 7, then ∣C∣ = 6 ⋅ 128/384 = 2 and the code must be a repetition code. We

thus consider n = 23 (for which a perfect code would need to be 12-dimensional:

Considering cyclic codes, we note that

x23−1 ≡ (x+1)(x 11+x9+x7+x6+x5+x+1)(x 11+x 10+x6+x5+x4+x2+1) (mod 2)
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and that g(x) = x 11 + x9 + x7 + x6 + x5 + x + 1 will yield a 23− 11 = 12-dimensional
code1.

Let α ∈ F211 a root of g.�en the other roots of g are αx for (we note as an aside,
that these exponents are exactly the squaresmodulo 23) x ∈ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}.
As the exponent set includes 1, 2, 3, 4, g de�nes a BCH code of designed distance
5. We call this code the Golay code G23 and study it more in Section X.7.
In particular, we shall show that the minimum weight of G23 is in fact 7, so G23

is a perfect code!

Golay also discovered a perfect code of length 11 over F3 that is 2-error cor-
recting. In fact one can show that we have found all perfect codes for alphabets of
prime-power order:

Theorem X.38 (Tietäväinen - van Lint):�e only perfect e-error correcting
codes for e > 1 over alphabets of prime-power size q are the repetition codes for
q = 2, n = 2e + 1; as well as the two codes discovered by Golay.

Perfect codes have an intimate relation with designs.

PropositionX.39: Let C be a linear perfect code of length n over Fq that is e-error
correcting.�en the supports (i.e. the indices of the nonzero entries) of the code
words of minimal weight 2e + 1 are the blocks of an (e + 1) − (n, 2e + 1, (q − 1)e)
design.

Proof: Choose a set of e + 1 indices and let w ∈ Fn
q with support on this index set.

�en there is a unique c ∈ C that is at distance ≤ e to w. �is word must have
wt c = 2e + 1, so it is of minimal weight.�e support of c must include the initially
chosen e+1 indices, and cmust agreewithw on these indices.�us di�erent choices
ofw ( there are (q−1)e+1 words inFn

q with the same support) imply di�erent choices
of c.
Scalar multiples of code words have the same support, so the (q − 1)e+1 code

words c de�ned this way de�ne (q − 1)e index sets by their support. ◻

Corollary X.40:�ere is no perfect 2-error correcting code of length 90 over F2.

Proof: Let C a code as described. If the code is not linear we translate it in the
Hamming space so that WLOG 0 ∈ C. As there are no nontrivial scalar multiples
over F2, the argument of Proposition X.39 still holds for this translated code.

�us a code as described would de�ne a 3 − (90, 5, 1) design which by IX.2
would have 88/3 blocks, an impossibility. ◻

1A similar argument will work for the other degree 11 factor and produce an equivalent code
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X.7 �e (extended) Golay code

Île de feu II
OlivierMessiaen

Some years ago he had embarked [...] on a
series of commentaries on Jane Austen [...]�e
object of the exercise [...] was not to enhance
others’ enjoyment and understanding of Jane
Austen, still less to honour the novelist herself,
but to put a de�nitive stop to the production of
any further garbage on the subject.

Changing Places
David Lodge

Much in this section are marvelous coincidences whose properties we can ob-
serve, but that alas do not generalize to other settings.�us the calculations should
not be considered as special cases of general principles!

Recall G23 as the cyclic code over F2 of length 23, generated by the polynomial
g(x) = x 11+x9+x7+x6+x5+x+1.We know that it has dimension 12 andminimum
weight at least 5.
We extend it to a new code G24 of length 24 (called the extended Golay code

by adding a parity bit that ensures that all words have even weight.�e minimum
weight of G24 thus is at least 6.
An inspection of the (in �gure X.1 triangulized) generator matrix of G24 shows

that G24 is self-dual (i.e. the matrix can also serve as check matrix).
�e arithmetic of F2-vectors now gives the following surprising consequences

Lemma X.41: Let v ,w ∈ Fn
2 .�en

wt(v +w) = wt(v) +wt(w) − 2(v ,w)

with (⋅, ⋅) being the standard (characteristic zero) inner product.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 . . . . . . . . . . . 1 1 . . . 1 1 1 . 1 . 1
. 1 . . . . . . . . . . . 1 1 . . . 1 1 1 . 1 1
. . 1 . . . . . . . . . 1 1 1 1 . 1 1 . 1 . . .
. . . 1 . . . . . . . . . 1 1 1 1 . 1 1 . 1 . .
. . . . 1 . . . . . . . . . 1 1 1 1 . 1 1 . 1 .
. . . . . 1 . . . . . . 1 1 . 1 1 . . 1 1 . . 1
. . . . . . 1 . . . . . . 1 1 . 1 1 . . 1 1 . 1
. . . . . . . 1 . . . . . . 1 1 . 1 1 . . 1 1 1
. . . . . . . . 1 . . . 1 1 . 1 1 1 . . . 1 1 .
. . . . . . . . . 1 . . 1 . 1 . 1 . . 1 . 1 1 1
. . . . . . . . . . 1 . 1 . . 1 . . 1 1 1 1 1 .
. . . . . . . . . . . 1 1 . . . 1 1 1 . 1 . 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure X.1:�e generator matrix of the extended Golay code

Proof:�e only elements of F2 are zero and one.�e nonzero entries of v +w thus
are the nonzero entries in v and not in w or vice versa.�us the weight of v + w

equals the sum of the weights of v andw minus twice (once to avoid double count-
ing by PIE, once as 1+ 1 = 0) the number of common 1-entries in v and w, which is
given by (v ,w). ◻

Proposition X.42: For any c ∈ G24 we have that 4 ∣ wt(c).
Proof: Every code word can be expressed as sum of a suitable set of rows of the
generating matrix. We use induction on the number of summands.
For the base case, observe that the generatingmatrix ofG24 consists of translates

of g with a parity 1 appended (as wt(g) = 7), that is all rows have weight 8 which is
a multiple of 4.
For the inductive step suppose that a, b ∈ G24 with 4 ∣ wt(a), wt(b).�en, by

the previous lemma

wt(a + b) = wt(a) +wt(b) − 2(a, b).

SinceG24 is self-dual, we know that (a, b) ≡ 0 (mod 2).�us 2(a, b) ≡ 0 (mod 4),
proving the theorem. ◻

Corollary X.43:�e minimum weight of G24 is 8.
Corollary X.44:�e minimum weight of G23 is 7, thus G23 is perfect.
Proposition X.45: a)�e weights of the words of G23 are

wt 0 7 8 11 12 15 16 23
# 1 253 506 1288 1288 506 253 1
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b)�e weights of the words of G24 are

wt 0 8 12 16 24
# 1 759 2576 759 1

Proof: F232 has (234 )words of weight 4.�ese must be covered (uniquely, as the code
is perfect) by the balls around the code words of minimum weight 7. To achieve
distance 3, this will happen by changing 3 bits of 1 to 0, thus each code word covers
exactly (73) words of weight 4.�us there are (

23
4 )/(

7
3) = 253 words of weight 7.

�e (235 )words of weight 5 are in balls around words of weight 7 (each covering
(72) words), or around words of weight 8, each covering (

8
3) words).�us there are

(235 ) − 253(
7
2)

(83)
= 506

words of weight 8.�e argument for 11, 12 is similar, the larger degrees follow from
the fact that the all-1 word is in the code.
b) As the weights in G24 must be ≡ 0 (mod 4), words of weight 7, 11, and 15 will
increase by 1. ◻

By X.39, G23 de�nes a 4 − (23, 7, 1) design and G24 a 5 − (24, 8, 1) design.�e
latter has 759 blocks and is called theWitt design.

Automorphisms

We now consider the linear automorphism group of G24, considered as a subgroup
of S24: For thiswe return to the de�nition ofG23 and label the 24 indices by 0, 1 . . . , 22,∞,
that is PG(1, 23).�e cyclicity of G23 gives that the map x ↦ x + 1 mod 23 (leaving
∞ �xed) is a code automorphism.�is corresponds to the permutation

p1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)

On polynomials dividing x23 − 1, the map x ↦ −x−1 exchanges the two factors
of degree 11 (and thus G23 with the cyclic code de�ned by the other factor ĝ(x)
of degree 11). By de�nition of cyclic codes, x

23−1
g(x) = (x − 1)ĝ(x) de�ned the check

matrixH ofG23. But the checkmatrix Ĥ forG24 then is obtained fromH (by adding
a column 0 and an all-1 row).
As G24 is self-dual, this implies that the map x ↦ −x−1 must be an automor-

phism of G24, which on 0, 1, . . . , 22,∞ (de�ning 1/0 =∞) acts as

p2 = (1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)(7, 20)(8, 14)(9, 21)(11, 17)(13, 22)(15, 19)

(e.g. 7 maps to 20 as −1/6 ≡ 19 (mod 23)).
(Given these permutations, one also could verify directly that p1 and p2 pre-

serve G24.)
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Lemma X.46:�e group P SL2(p) is generated by the automorphisms x ↦ x + 1
and x ↦ −x−1.
Proof: SL2(p) is generated by the matrices

( 1 1
0 1 ) and ( 0 −1

1 0 ) .

◻

We thus know that the automorphism group of G24 must contain a subgroup
isomorphic to P SL2(23).
In fact there are further automorphisms. Consider the permutation

p3 = (1, 6)(4, 7)(5, 8)(11, 12)(16, 18)(17, 22)(19, 21)(20, 24)

One can verify easily, that this permutation of entries, applied to the rows of the
generator matrix, will cause a swap of rows: Consider the generator matrix with
rows reordered as 1, 6, 4, 7, 5, 8, 11, 12, 2, 3, 9, 10 in Figure X.2. Now the permutation

Figure X.2:�e column permutation p3

of columns, given by p3 will swap the �rst four row pairs, and �x the bottom four
rows and thus also preserve the code G24.

�e groupM24 = ⟨p1 , p2 , p3⟩ generated by these permutations is in fact the full
automorphism group of G24. It is called theMathieu group of degree 24.
How large is it? Since ∣P SL2(23)∣ = 6072, ∣p1 ⋅ p3∣ = 15, ∣p2 ⋅ p1 ⋅ p3∣ = 21, we

know that it must have order at least 212520 (which already is surprisingly large).
But using standard computer tools (such as GAP), we can calculate its order as

244823040 = 210335⋅7⋅11⋅23.�is group is one of the sporadic simple groups. It acts
quintuply transitive on the 24 points, and the underlying combinatorial structure
of the Witt design can be used to investigate its structure.
We just note a few of its subgroups.
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M23 �e point stabilizer StabM24(24) is a (sporadic) simple groupof order 10200960,
quadruply transitive.

M22 �e 2-point stabilizer StabM24(23, 24) is a (sporadic) simple group of order
∣M24∣ /(23 ⋅ 24) = 443520, triply transitive on the points {1, . . . , 22}.

PΓL3(4) �e stabilizer of a 3-element set StabM24({22, 23, 24}) acts faithfully on
the points {1, . . . , 21} as a group of order ∣M24∣ /(243 ) = 120960, isomorphic
to PΓL3(4).�e permutation action on the 21 points stems from the action
of GL(3, 4) on the (43 − 1)/(4 − 1) = 21 nonzero vectors of PG(3, 4).

M12 �e stabilizer of an 12-element set that is the support of a code word of weight
12 acts on these 12 points as a quintuply transitive (sporadic) simple group
M12 of order ∣M24∣ /2576 = 95040.

M11 �e point stabilizer StabM12(12) is a quadruply transitive group of order 7920,
its is the smallest sporadic simple group.

M10 Apoint stabilizer inM11 is a group of order 720, that has a normal subgroup of
index 2 that is isomorphic to A6. It acts on this A6 as an outer automorphsim
that does not come from S6.

�e simple groups Mn , n ∈ {11, 12, 22, 23, 24} were all originally discovered by
Emile Mathieu (1835-1890) as groups of permutations, without the connection
to the Golay codes.�ey are, apart from symmetric and alternating groups, the
only k-transitive groups for k ≥ 4.

We �nally mention another connection of the Golay codes to algebra, number
theory, and geometry:
Take the set Λ24 of vectors in R24 that have the form

1√
8
(2c + 4x) and 1√

8
(o + 2c + 4y) where

• o is the all-one vector

• x , y ∈ Z24 such that∑ x i ≡ 0 (mod 2),∑ y i ≡ 1 (mod 2).

• c ∈ G24 (interpreted as 0/1-vector).

�e scalar factor 1/
√
8 is only there to rescale norms. Considering the remaining

vectors modulo 4, we have the Golay code scaled by 2, as well as a displaced version
of it.

�is set of vectors is closed under addition and subtraction, it thus is an Z-
lattice2, called the Leech lattice. It is a closest sphere packing in 24-dimensional
space. Its automorphism group gives rise to the sproradic simple group Co1.

2One of the other usages of the word lattice in mathematics, no relation to posets
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XI

Algebraic Graph�eory

We have encountered some concepts of graphs in prior chapters of this book.With
automorphism groups we have seen connections between graphs and their auto-
morphism groups. In this chapter we will look at techniques from (linear) algebra
that can be used to analyze particular interesting classes of graphs.
We start with two examples of classes:

Example: Let Zn = {0, . . . , n− 1} the (additive) group modulo n, and C ⊂ Zn ∖{0}
such that −C = C.�e circulant graph X(Zn ,C) has vertices V = Zn and edges
(i , j) ∈ E if and only if i − j ∈ C.
Clearly Sn ≥ Aut(X(Zn ,C)) ≥ D2n .

Example: Let v , k, i ∈ Z>0 with v ≥ k ≥ i and let Ω = {1, . . . , v}.
�e Johnson graph J(v , k, i) is the graph with vertex set X = {S ⊂ Ω ∣ ∣S∣ = k},

and (S , T) ∈ E if and only if ∣S ∩ T ∣ = i.
An example is the Petersen graph J(5, 2, 0) – see Exercise ??.

Lemma XI.1: If v ≥ k ≥ i then J(v , k, i) ≅ J(v , v − k, v − 2k + i).
Proof:�e isomorphism is given by mapping every set to its complement. ◻

DefinitionXI.2: A graph Γ = (X , E) is called transitive if its automorphism group
acts transitively on the vertices.
An arc (1-arc) in a graph is an ordered pair of adjacent vertices. A graph is arc-

transitive if its automorphism group acts transitively on the set of arcs.
A graph is distance transitive if any pair of vertices u, v with distance (length of

the shortest connecting path) d can be mapped under the automorphism group to
any other pair of vertices of the same distance.

Clearly every distance transitive graph is arc transitive

179
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Lemma XI.3: a) A transitive graph Γ is arc transitive if and only if for a vertex v its
stabilizer acts transitively on the neighbors of v.
b)�e graphs J(v , k, i) are arc transitive.

Proof: a) Let (u, v) an arc and (a, b) another arc. As the graph is transitive there is
α ∈ Aut(Γ) such that α(b) = v. Clearly amust be mapped to a neighborw of v. But
then there exists β ∈ Stab(v) such that β(w) = u, implying that αβ maps (a, b) to
(u, v).
b)�e graph is clearly transitive.
Consider the vertex {1, . . . , k}. Its stabilizer is Sk × Sn−k . It clearly can map any

two sets which intersect {1, . . . , k} in i vertices to each other. ◻

Lemma XI.4: a)�e graph J(v , k, k − 1) is distance transitive.
b)�e graph J(2k + 1, k + 1, 0) is distance transitive.
�e proof is exercise ??.

XI.1 Strongly Regular Graphs

We can interpret the concept of a transitive automorphism group as indicating that
a graph “looks the same from every vertex”. We now consider a condition that de-
mands this property without enforcing transitivity.
Remember that we call a graph regular if every vertex has the same degree.

DefinitionXI.5: Let Γ be a regular graph that is neither complete, nor empty.�en
Γ is called strongly regular with parameters (n, k, a, c) if it has n vertices, is regular
of degree k, and every pair of adjacent vertices has a common neighbors and any
pair of (distinct) nonadjacent vertices has c common neighbors.

Example:�e cycle of length 5 is strongly regular with parameters (5, 2, 0, 1).
�e Petersen Graph is strongly regular with parameters (10, 3, 0, 1).
If Γ is strongly regular with parameters (n, k, a, c) it is easily seen that the com-

plement Γ is strongly regular with parameters

(n, n − k − 1, n − 2 − 2k + c, n − 2k + a).

We will from now on assume that both Γ and Γ are connected. Since there cannot
be a negative number of adjacent vertices this implies that the parameters of such
a graph must satisfy

n ≥ 2k − c + 2, n ≥ 2k − a.

Note XI.6: A strongly regular graph does not need to be (vertex-)transitive.�e
smallest examples are the so-called Chang graphs, three strongly regular graphs, all
with parameters (28, 12, 6, 4).
A further dependency is given by:
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Proposition XI.7:�e parameters of a strongly regular graph satisfy that

k(k − a − 1) = (n − k − 1)c.

Proof: For a vertex x, consider the edges {y, z} with y adjacent to x, but z not.
�ere are k vertices adjacent to x, and each of them has k neighbors. One of these
is x, and there are a who are also neighbor of x, so there are k− a− 1 neighbors not
adjacent to x.
On the other hand, there are n − k − 1 vertices z not adjacent to x and di�erent

from x. For each such z there are c vertices y adjacent to x and z. ◻

Example: For m ≥ 4, the Johnson graph J(m, 2, 1) is strongly regular with param-
eters n = m(m−1)

2 , k = 2(m − 2), a = m − 2, c = 4.
Example: For a prime power q with q ≡ 1 (mod 4) (ensuring that −1 is a square
in Fq), the Paley graph P(q) has vertex set Fq with two vertices adjacent if their
di�erence is a non-zero square in Fq .
It is strongly regular with parameters n − q, k = q−1

2 , a =
q−5
4 and c =

q−1
4 .

Example:�e Clebsch graph has as vertices the 16 subsets of {1, 2, 3, 4, 5} of even
size. To vertices are adjacent if their symmetric di�erence is of size 4. It is strongly
regular with parameters (16, 5, 0, 2).
Another example class of strongly regular graphs is given by orthogonal Latin

squares:
Let {A i , . . . ,Ak} a set of MOLS of order n. We de�ne a graph Γ = (X , E) with

X = {(i , j) ∣ 1 ≤ i , j ≤ n} and an edge given between (i , j) and (a, b) if one of the
following conditions holds (compare Section VIII.9):

• i = a

• j = b

• For one of the latin squares Ax , its (i , j) entry and its (a, b) entry are equal.

Theorem XI.8:�e graph de�ned by k MOLS of order n is strongly regular with
parameters

(n2 , (n − 1)(k + 2), n − 2 + k(k + 1), (k + 1)(k + 2)).

�e proof is exercise ??.

Note XI.9: IT is possible to generalize the concept of strongly regular to that of a
distance regular graph in which the number of common neighbors of x, y depends
on the distance of x and y.

XI.2 Eigenvalues

A principal tool for studying strongly regular graphs (and generalizations) is their
adjacency matrix Awith A i , j = 1 i� vertex i is adjacent to vertex j and 0 otherwise.
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Note XI.10: A is a symmetric matrix, thus (by the spectral theorem) it has real
eigenvalues and can be diagonalized by orthogonal transformations, respectively
its eigenspaces for di�erent eigenvalues are mutually orthogonal.

Lemma XI.11: If Γ is regular of degree k, then A has largest eigenvalue k with the
all-one vector as associated eigenvector. k is the largest eigenvalue.
If Γ is connected, the multiplicity of k is one.

Proof: If Γ is regular, then the sum over every row of A is k, showing that the all-one
vector is eigenvector for eigenvalue k.
Now let v be an eigenvector of A for eigenvalue λ ≥ k. WLOG we assume that

v is scaled such that its largest entry is 1. Let i be an index of this largest entry in v.
�en the i-th entry e of Av (which by assumption must equal λ ≥ k) is the sum of
the k entries of v, at indices of the vertices adjacent to vertex i. All of these entries
are ≤ 1, thus e ≤ k with equality only if all these entries are 1.

�is shows that k is the largest eigenvalue. Furthermore, for v to be an eigen-
vector, its entries at all indices neighboring i must be 1. By induction this shows
that the entries of v at indices of distance j ≥ 1 from i must be 1, showing that for a
connected Γ the multiplicity of k is one. ◻

Lemma XI.12: Let Γ be a graph with adjacency matrix A.�en the i , j entry of Ak

is the number of walks (like path but we permit to walk back on the same route) of
length k from i to j.

Proof: By induction over k it is su�cient to consider a product AB with B = Ak−1.
�e i , j entry of this product is∑s a i ,sbs , j , which is the sum, over the neighboring
vertices s of i, of the number of walks of length k − 1 between s and j. ◻

In a strongly regular graph with parameters (n, k, a, c), the number of walks of
length 2 between two vertices i and j is

• k if i = j (walk to neighbor and back),
• a if i /= j are adjacent (walk to common neighbor and then to other vertex),
• c if i /= j are not adjacent.

�is means that
A2 = kI + aA+ c(J − I − A)

(where J is the all-one matrix). We write this in the form

A2 − (a − c)A− (k − c)I = cJ

Note XI.13:�e adjacency matrix for a strongly regular graph with parameters
(v , k, a, a) satis�es – compare to Lemma IX.8 –

AAT = A2 = (k − a)I + aJ
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and thus can be interpreted as incidencematrix of a symmetric 2−(v , k, a)-design.
Let v be an eigenvector of A for eigenvalue λ, that is orthogonal to the all-1

vector. (By Note XI.10, this can be assumed.)�en

(λ2 − (a − c)λ) − (k − c))v = A2v − (a − c)Av − (k − c)v = cJv = 0

because of the orthogonality of v and the columns of J.�is implies that λ2 − (a −
c)λ) − (k − c) = 0.
Setting ∆ = (a − c)2 + 4(k − c), we thus get that

λ± =
(a − c) ±

√
∆

2
.

As λ+ ⋅ λ− = c − k the assumption that c < k implies that λ+ and λ− are nonzero
with opposite sign.
Letm± be the dimensions of the respective eigenspaces.�enm+ +m− = n − 1

and (as the trace of A, the sum of the eigenvalues, is zero) m+λ+ +m−λ− = −k.
We solve this system of equations (with signs corresponding) as

m± = ∓
(n − 1)λ∓ + k

λ+ − λ−

and note that

(λ+ − λ−)2 = (λ+ + λ− − 4λ+λ− = (a − c)2 + 4(k − c) = ∆.

�is yields the multiplicities

m± =
1
2
((n − 1) ∓ 2k(n − 1)(a − c)√

∆
) ,

which must be nonnegative integers, imposing a condition on the possible param-
eters.

We also note a converse result

PropositionXI.14: A connected, regular, graph Γwith exactly three distinct eigen-
values is strongly regular.

Proof: Suppose Γ is connected and regular.�en the valency (degree of each vertex)
k is an eigenvalue, let λ, µ be the other two. Let A be the adjacency matrix and

M = 1
(k − µ)(k − λ)(A− µI)(A− λI).

�en (using the orthogonality of eigenspaces), M has eigenvalues only 0 or 1 and
the eigenspaces of λ and µ in the kernel.
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�us the rank ofM is the multiplicity of the eigenvalue k. By Lemma XI.10 this
multiplicity is one, if Γ is connected.
As the all-one vector is an eigenvector of A (and thus ofM) we must have that

M = 1
n
J.�us J is a quadratic polynomial in A and A2 is a linear combination of

I, J ,Awhich implies that Γ is strongly regular. ◻

We can interpret this situation also in di�erent language:�e matrices A, I, J
generate a 3-dimensionalC-vector spaceA that also is a ring under multiplication.
Such a set of matrices is called an algebra, this particular algebraA is called the

Bose-Mesner algebra.

�e Krein Bounds

�e eigenspaces of A clearly also are eigenspaces for the other two generators I, J
of A and thus for all of A. Call them V1,V+ and V− and let E i for i ∈ {1,+,−} be
the matrix projecting onto Vi (and mapping the other two eigenspaces to 0).�ey
lie in A, as they can be constructed from A − λI. Vice versa (as any operator can
be written as linear combination of the projections to its eigenspaces) we have that
A = ⟨E1 , E+ , E−⟩ (as a vector space or as an algebra).

�e E i are idempotent (that is they satisfy that x ⋅ x = x), they are orthogonal
(that is E iE j = 0 if i /= j) and they decompose the identity E1 + E+ + E− = I. (Such
idempotents are part of a standard analysis of the structure of algebras.)

We now consider a di�erent multiplication ○, called the Hadamard product in
which the i , j entry of A○ B is simply a i , jb i , j . As 0, 1 matrices, A, I and J are idem-
potent under the Hadamard product, thus A is closed under this product as well.

�is means that
E i ○ E j =∑

k

qki jEk

But the E i are positive de�nite, and the Hadamard product of positive de�nite ma-
trices it positive de�nite as well1.

�us the qki , j must be positive. Using explicit expressions for the E i in terms of
A, I, J, one can conclude:

TheoremXI.15 (Krein bounds): Let Γ be strongly regular such that Γ and its com-
plement are connected and let k, r, s be the eigenvalues of Γ.�en

(r + 1)(k + r + 2rs) ≤ (k + r)(s + 1)2 ,
(s + 1)(k + s + 2rs) ≤ (k + s)(r + 1)2 .

1�is can be shown by observing that A ○ A is a principal submatrix of A⊗ A.
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Association Schemes

�e concept of the Bose-Mesner algebra can be generalized to higher dimensions:

Definition XI.16: A set of square 0/1 metrics A0 ,A1 , . . . ,Ad is called an Associa-
tion Scheme with d classes if

1. A0 = I.

2. A1 + A1 +⋯ + Ad = J the all-one matrix.

3. For all i there is a j such that AT
i = A j .

4. A iA j = ∑k p
k
i , jAk for nonnegative integers pki , j .�e pki , j are called the inter-

section numbers, parameters or structure constants of the scheme.

Example: Let G be a transitive permutation group on Ω = {1, . . . n}.�en G acts
on Ω × Ω, the orbits being called orbitals. For each orbit we de�ne a 0/1 matrix
A = (ax ,y) such that ax ,y = 1 if and only if (x , y) is in the orbit.
As one orbit consists of pairs (i , i) we may assume that A0 = I, and clearly

∑A i = J. Furthermore, is (i , j) and (x , y) are in the same orbit, clearly also ( j, i)
and (y, x) are in the same orbit, showing that AT

i = A j .
Finally, let A i = (ax ,y) and A j = (bx ,y). �en the (x , y) entry of A iA j is

∑z ax ,zbz ,y , that is the number of z’s such that (x , z) is in the �rst orbit and (z, y)
is in the second orbit, thus it is a nonnegative integer. Call this number q i , j(x , y).
Furthermore, if (x′ , y′) lies in the same orbit as (x , y), that is for g ∈ G we have

that x g = x′ and yg = y′, we have that the z′ such that (x′ , z′) is in the �rst orbit
and (z′ , y′) in the second are exactly the elements of the form zg .�us the values
of q i , j(x , y) are constant on the orbit of (x , y), that is we can set pki , j = q i , j(x , y)
for an arbitrary (x , y) in the k-th orbit.

XI.3 Moore Graphs

Definition XI.17:�e diameter of a graph is the maximum distance between two
vertices.

�e girth of a graph is the length of the shortest closed path.
A connected graph with diameter d and girth 2d + 1 is called aMoore graph.

Example: �e 5-cycle and the Petersen graph both are both examples of Moore
graphs.

Lemma XI.18: Let Γ be a Moore graph.�en Γ is regular.

Proof: Let v ,w be two vertices at distance d and P a path connecting them.Consider
a neighbor u of v that is not on P.�en vmust have distance d fromw, as otherwise
w − u − v −w would be a cycle of length < 2d + 1.�en there is a unique path from
u to w (as otherwise the di�ering paths would give a cycle), it will go through one
neighbor of w. Di�erent choices of u yield (again cycle length) di�erent neighbors
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of w and thus w has at least as many neighbors as v. By symmetry thus v and w
must have the same degree. Since we have seen that all neighbors of v, that are not
on P also have distance d from w, by the same argument they also have the same
degree, as will be all neighbors of w not on P.
Now Let C be a cycle of length 2d+! involving a vertex v. By stepping in steps

of length d along the circle the above argument shows that all vertices on C must
have the same degree. If x is a vertex not on C take a path of length i from x to C.
By taking d − i steps along C we have that x is at distance d from a vertex on C and
thus has the same degree. ◻

Lemma XI.19: A Moore graph Γ of diameter d and vertex degree k has 1 + k((k −
1)d − 1)/(k − 2) vertices.
Proof: Vertex degree k implies (easy induction) that there are at most k(k − 1)i−1
vertices as distance i ≥ 1 from a chosen vertex v.
Suppose that w is at distance i.�en there is one neighbor of w art distance

i − 1, and no other at distance i (as otherwise we could form a cycle using w and
this neighbor).�us k − 1 neighbors of w must be at distance i + 1 from v, which
shows that there are at least that many neighbors.

�us there are in total

1 + k + k(k − 1) + k(k − 1)2 +⋯ + k(k − 1)d−1 = 1 + k
(k − 1)d − 1

k − 2
vertices. ◻

Consider a Moore graph of diameter 2�en G has 1 + k + k(k − 1) = k2 + 1
vertices and girth 5.�us two adjacent vertices have no common neighbor, and
two non-adjacent vertices have exactly one common neighbor.

�us Γ is strongly regular and its adjacency matrix A satis�es

A2 = kI + (J − I − A),

and A has eigenvalues k and

λ± =
−1 +

√
4k − 3
2

.

If 4k − 3 is not a square, then λ± will be irrational and thus the multiplicities m±
must be equal (and thus be (n − 1)/2 = k2/2.
As A has only zeroes on the diagonal, it has trace 0. But the trace is the sum of

all eigenvalues.�us (with the irrationalities canceling out)

0 = k + k2

2
(−1
2
+ −1
2
)
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and thus k = 2. A graph of valency 2 must be a cycle, thus the only possibility here
is the 5-cycle.

If 4k − 3 is a square, it must be the square of an odd number, 4k − 3 = (2s + 1)2.
We solve for k = s2 + s + 1 and the eigenvalues of A are k, s, and −s − 1, the latter
two with multiplicities f and g such that f + g = n − 1 = k2.�e trace of A is
k + f s + g(−s − 1) = 0.�ese are two linear equations in f and g, which gives

f = s(s2 + s + 1)(s2 + 2s + 2)
2s + 1 .

�is number must be an integer. We expand the numerator as

s5 + 3s4 + 5s3 + 4s2 + 2s = 1
32

((16s4 + 40s3 + 60s2 + 34s + 15)(2s + 1) − 15) .

We conclude that 2s + 1 must divide 15, which implies that s = 0, 1, 3, 7.�is corre-
sponds to k = 1, 3, 7, 57, respectively n = 2, 10, 50, 3250.

�e choice of n = 2 vertices is spurious, thus a Moore graph of diameter 2 and
valency k can exist only for k = 2, 3, 7, 57 and associated n = 2, 10, 50, 3250.
We already have seen the 5-cycle for k = 2. For k = 3 the Petersen graph is an

example.�ere is also an example for k = 7, theHo�man-Singleton graph.�e case
k = 57, n = 3250 is open.
It has been shows that these three, possibly four, cases are the only Moore

graphs of diameter 2 and that for diameter d ≥ 3 the 2d + 1 cycle is the only Moore
graph.
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Rudio, ed.), Birkhäuser, 1915, pp. 241–253.

[Fel67] William Feller,A direct proof of Stirling’s formula, Amer.Math.Monthly
74 (1967), 1223–1225.

189

https://www.math.kit.edu/iag6/lehre/combinatorics2017s/media/script.pdf
https://www.math.kit.edu/iag6/lehre/combinatorics2017s/media/script.pdf


190 BIBLIOGRAPHY

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete
mathematics, second ed., Addison-Wesley Publishing Company, Read-
ing, MA, 1994.

[GNW79] Curtis Greene, Albert Nijenhuis, and Herbert S. Wilf, A probabilistic

proof of a formula for the number of Young tableaux of a given shape,
Adv. in Math. 31 (1979), no. 1, 104–109.

[GR01] Chris Godsil andGordonRoyle,Algebraic graph theory, Graduate Texts
in Mathematics, vol. 207, Springer-Verlag, New York, 2001.

[Hal86] Marshall Hall, Jr.,Combinatorial theory, second ed.,Wiley-Interscience
Series in Discrete Mathematics, John Wiley & Sons, Inc., New York,
1986, A Wiley-Interscience Publication.

[Jac90] C.G.J. Jacobi, De investigando ordine systematis aequationum di�eren-

tialum vulgarium cujuscunque, GesammelteWerke, Fün�er Band (Karl
Weierstrass, ed.), G. Reimer, Berlin, 1890, pp. 193–216.

[Knu98] Donald E. Knuth,�e art of computer programming. Vol. 3, Addison-
Wesley, Reading, MA, 1998, Sorting and searching, Second edition [of
MR0445948].

[LN94] Rudolf Lidl and Harald Niederreiter, Introduction to �nite �elds and

their applications, Cambridge University Press, Cambridge, 1994.

[LTS89] C. W. H. Lam, L.�iel, and S. Swiercz,�e nonexistence of �nite projec-

tive planes of order 10, Canad. J. Math. 41 (1989), no. 6, 1117–1123.

[Rei84] Philip F. Reichmeider,�e equivalence of some combinatorial matching

theorems, Polygonal Publ. House, Washington, NJ, 1984.

[Sta99] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Stud-
ies in Advanced Mathematics, vol. 62, Cambridge University Press,
Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1
by Sergey Fomin.

[Sta12] , Enumerative combinatorics. Volume 1, second ed., Cambridge
Studies inAdvancedMathematics, vol. 49, CambridgeUniversity Press,
Cambridge, 2012.

[vLW01] J. H. van Lint and R. M. Wilson, A course in combinatorics, second ed.,
Cambridge University Press, Cambridge, 2001.

[Wie64] Helmut Wielandt, Finite permutation groups, Academic Press, 1964.

[Zei84] Doron Zeilberger, Garsia and Milne’s bijective proof of the inclusion-

exclusion principle, Discrete Math. 51 (1984), no. 1, 109–110.



Index

a�ne plane, 144
algebra, 50, 184
alphabet, 100, 157
antichain, 47
arc, 179
arc-transitive, 179
Assignment problem, 59
Association Scheme, 185
at the edge, 94
augmenting path, 60, 68
automorphism group, 106

ball, 161
base, 77
BCH code, 171
Bell number, 15
binomial coe�cient, 7
binomial formula, 19
bipartite, 58
block system, 115
Bose-Mesner algebra, 184

capacities, 64
capacity, 67
cardinality, 6
Catalan number, 27
Cayley graph, 111
cells, 14

chain, 42
Chang graphs, 180
channel coding, 158
characteristic, 130
check matrix, 162
circulant graph, 179
Clebsch graph, 181
code, 159
codewords, 159
collineations, 133
column sum vector, 86
complement design, 153
Complete Homogeneous Symmetric

Function hm , 84
compositions, 7
conjugate, 74
convolution, 20
coset, 108
covers, 40, 58
cut, 65
cycle index, 123
cyclic, 167

decode, 158
derangement, 5
derangements, 29
derived design, 152
desarguesian, 139

191



192 INDEX

design, 151
designed distance, 171
diameter, 185
di�erentiation, 18
digraph, 56
distance regular, 181
distance transitive, 179
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