1) a) Let

\[A := \begin{pmatrix} 60 & -60 & 48 & -232 \\ -9 & 9 & -6 & 36 \\ -21 & 21 & -18 & 80 \end{pmatrix} \]

Determine the Smith Normal Form of \(A \) as well as transforming matrices \(P \) and \(Q \).

b) Let \(\mathbf{b} := (-76, 15, 23)^T \). Determine all integer solutions to the system \(A \mathbf{x} = \mathbf{b} \).

2) Let \(A \) be a diagonal matrix with entries \(d_1, d_2, \ldots, d_m \). What is the Smith Normal Form of \(A \)?

3) Let \(A \in \mathbb{R}^{m \times n} \) be a matrix and \(S = P \cdot A \cdot Q \) its Smith Normal Form (which is unique). Show that the transforming matrices \(P \) and \(Q \) are not unique. (Hint: Consider for a square \(A \) a centralizing matrix \(B \) with \(A = B^{-1}AB \).)

4) a) Let \(D \in \mathbb{Z}^{n \times n} \) and \(\mathbf{c} \in \mathbb{Z}^n \). Show that the system \(D \mathbf{y} = \mathbf{c} \) has an integer solution, if and only if for every \(\mathbf{v} \in \mathbb{Q}^n \), such that \(\mathbf{v}D \) is an integer vector, (the inner product) \(\mathbf{v} \cdot \mathbf{c} \) is an integer.

b) (This is a theorem due to van der Waerden) Let \(A \in \mathbb{Z}^{m \times n} \) and \(\mathbf{b} \in \mathbb{Z}^n \). Show that the system \(A \mathbf{x} = \mathbf{b} \) has an integer solution, if and only if for every \(\mathbf{u} \in \mathbb{Q}^n \), such that \(\mathbf{u}A \) is an integer vector, (the inner product) \(\mathbf{u} \cdot \mathbf{b} \) is an integer.

5*) Let \(F \) be a field and \(R = F[x] \) the polynomial ring. Take \(M \in F^{n \times n} \). We form the characteristic matrix \(A = M - x \cdot I \). Let \(S \) be the SNF of \(A \) over \(R \) and \(m_M(x) \) be the last nonzero diagonal entry of \(S \) (i.e. all other nonzero diagonal entries divide \(m_M(x) \)). We call \(m_M(x) \) the minimal polynomial of \(M \). It clearly is a divisor of the characteristic polynomial.

a) Show that every eigenvalue of \(M \) is a root of \(m_M(x) \).

b) Let \(M = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \). Determine \(m_M(x) \).

c) Suppose that \(M \) has block form \(M = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \), where \(B, C \) are square matrices. Show that \(m_M(x) = \text{lcm}(m_B(x), m_C(x)) \).

(With some extra work one can show now that \(m_M(x) \) is a generator of the ideal of polynomials, for which \(p(M) = 0 \).)

6*) Get accustomed with GAP. (Nothing needs to be handed in.)

Problems marked with a * are bonus problems for extra credit.