
Mathematics 466 Solving Rubik’s Cube A. Hulpke

In this note, we want to determine a strategy for solving the 2 × 2 × 2
Rubik’s cube by hand. (Again, similar approaches work for other puzzles,
this one is just small enough to be feasible in class.)
Remember that we label the faces of the cube as shown and �x the piece
(16/19/24) in space. �e group of symmetries then is

G = ⟨ top = (1, 2, 4, 3)(5, 17, 13, 9)(6, 18, 14, 10),
le� = (1, 9, 21, 20)(5, 6, 8, 7)(3, 11, 23, 18),
front = (3, 13, 22, 8)(4, 15, 21, 6)(9, 10, 12, 11) ⟩

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

�e basic idea now is to place pieces in the right position (e.g. in “layers” of the cube), and then continue with movements
that leave these correctly placed pieces unmoved. Moving the �rst pieces is usually easy; the hard work is to �nd suitable
elements in the stabilizer or the positions �lled so far.

We will choose the positions to be �lled in a way that guarantees that many of the original generators �x the chosen
points. �is will automatically make for some stabilizer generators being represented by short words. Concretely, we
will �ll the positions starting in the order (23,22,21) and then work on the top layer.

We start by computing the orbit of 23. �is is done in a similar way as we would enumerate all group elements: We
calculate the image of all points processed so far under all generators, until no new images arise. We also keep track of
group elements which map 23 to the possible images.

It is possible to do these slightly tedious calculations with GAP. �e following set of commands will calculate the orbit and keep track
of words that yield the same image. (We work with words, as they are easier to read than images.)

map:=EpimorphismFromFreeGroup(cube:names:=["T","L","F"]);

gens:=GeneratorsOfGroup(cube);

letters:=GeneratorsOfGroup(Source(map)); # corresponding letters

orb:=[23]; # the orbit being built

words:=[One(letters[1])]; # words that produce the right images

for x in orb do

for i in [1..Length(gens)] do

img:=x^gens[i];

if not img in orb then

Add(orb,img);

p:=Position(orb,x);

Add(words,words[p]*letters[i]);

fi;

od;

od;

As a result we get the following orbit and representatives:

Orbit 23 18 14 3 10 1 11 13 6 12 2
Rep e L LT L2 LT2 L2T L3 L2F LT3 LT2F L2T2

Orbit 9 22 8 4 5 21 7 15 17 20
Rep L2TL L2F2 LT3L LT3F L2TLT L2TL2 LT3L2 LT3F2 L2TLT2 L2TL3

�e crucial idea for stabilizer elements (apart from the obvious ones, such as top rotation here) now is the following:
Suppose that the image of an orbit element x under a generator g gives an old orbit element y. �en Repx ⋅ g ⋅ Rep−1

y



moves the starting element (here 23) to itself and therefore lies in the stabilizer. (One can show1, that all of these elements
generate the stabilizer.)
In our example, we �nd that 23T = 23, so e ⋅T ⋅ e−1 = T must lie in the stabilizer. Similarly 11F = 9, so L3 ⋅ F ⋅ (L2TL) lies
in the stabilizer, and so on.
By computing group orders we �nd that we just need a few elements for generation, namely

C1 ∶= StabG(23) = ⟨T , F , L−1TL⟩

(It is worth noticing that the construction process tends to produce elements of the form ABA−1. If you consult any
printed solution strategy, this kind of shape indeed abounds.) As far as solving the cube is concerned, it is very easy to
get a few initial positions right. �erefore we don’t aim for a systematic strategy yet, but keep the stabilizer generators
for the next level.

�e next position we work with is 22, similarly as above (again, there is a nontrivial calculation involved in showing
that these three elements su�ce, if one takes just a few random elements there is no a-priori guarantee that they would
do) we get

C2 ∶= StabG(22, 23) = ⟨T , L−1TL, FTF−1⟩
Next (this is completing the bottom layer), we stabilize 21. �is is where the stabilizer
becomes interesting, as far as continuing to solve the puzzle is concerned. A repeated
application gets

C3 ∶= StabG(21, 22, 23) = ⟨T , LT−1L−1T−1F−1LF⟩

�e second generator here is chosen amongst many other possibilities as being of short-
est possible length. Its action on the cube is the permutation (1, 17, 5, 14, 18, 2)(4, 10, 13),
i.e. two pieces are swapped (and turned) and one piece is turned. If we only consider
the positions (but not rotations) of the top four pieces, it is not hard to see (homework)
that together with the top rotation this will let us place every piece in its right position
up to rotation. (�is means, we are stabilizing the sets {1, 5, 18}, {2, 14, 17}, {3, 6, 9} and
{4, 10, 13} — formally we are considering a di�erent group action here, namely one on
the cubies.)
What is le� now is to orient the top 4 pieces suitably. By looking through stabilizer
generators we �nd the element L−1FL−1FT−1L−1T2F2LT with the permutation
(3, 6, 9)(4, 13, 10). It rotates the top two front cubies in opposite directions. Clearly
similar movements are possible to the top cubies on the other sides, by rotating the
whole cube in space. By applying these moves for front, le� and back, we can determine
the placement of three of the top cubies arbitrarily.

(1,17,5,14,18,2)(4,10,13)

(3,6,9)(4,13,10)

We now claim that this will actually solve the cube completely. We know that [G ∶ C1] = ∣orbG(23)∣ = 24 − 3 = 21
(on the whole cube, the piece in position 23 can be moved in all positions, short of the three �xed ones). Similarly,
when stabilizing position 23, we can (this can be easily checked by trying out the moves permitted in C1) move the
piece in position 22 to all places, but the 3 �xed ones (16/19/24) and the three that share a cubie with 23 (7/20/23), so
[C1 ∶ C2] = 18. By a similar argument [C2 ∶ C3] = 15.
Under the stabilizer C3 we have seen that we can correctly place the four cubies in all possible permutations, thus the
group stabilizing the cubie positions has index 24 in C3. Using that ∣G∣ = 3674160, we thus get that the group which only
turns (but not permutes) the top cubies, and leaves the bottom layer �xed has order

3674160
21 ⋅ 18 ⋅ 15 ⋅ 24

= 27 = 33

But this means that turning only three cubies correctly must also place the fourth cubie in the right position.
1�is is called Schreier’s lemma, see for example Holt: Handbook of Computational Group �eory


