
Mathematics 466 Groups Generated by Elements A. Hulpke

We have seen so far two ways of specifying subgroups: By listing explicitly all elements, or by spec-

ifying a de�ning property of the elements. In some cases neither variant is satisfactory to specify

certain subgroups, and it is preferrable to specify a subgroup by generating elements.

De�nition: Let G be a group and a1, a2, . . . , an ∈ G. �e set

⟨a1, a2, . . . , an⟩ = {bє11 ⋅ b
є2
2 ⋅ ⋯ ⋅ bєkk ∣ k ∈ N0 = {0, 1, 2, 3, , . . .}, bi ∈ {a1, . . . , an}, єi ∈ {1,−1}}

(with the convention that for k = 0 the product over the empty list is e) is called the subgroup of G
generated by a1, . . . , an.

Note: IfG is �nite, we can – similarly to the subgroup test – forget about inverses in the exponents.

Example: Let G = S4 and a1 = (1, 2)(3, 4), a2 = (1, 4)(2, 3). �en

⟨a1, a2⟩ = {(), a1, a2, a1 ⋅ a1 = (), a1 ⋅ a2 = (1, 3)(2, 4), a2 ⋅ a−11 = (1, 3)(2, 4), a1 ⋅ a2 ⋅ a1 = a2, . . .}

(Careful: In this particular case a1 ⋅ a2 = a2 ⋅ a1, though S4 is not abelian.) We �nd that regardless

how long we form products, we never get elements other than (), a1, a2, a1 ⋅ a2. Similarly, it is not

hard to see that S4 = ⟨(1, 2), (1, 2, 3, 4)⟩

Note: If you had already linear algebra you know this idea of “generation” in the form of spanning

sets and bases.While the concept for groups is very similar, it is not possible to translate the concept

of “dimension”:Di�erent (even “independent”) generating sets for a subgroup in generalwill contain

a di�erent number of generators.

We now want to show that ⟨a1, a2, . . . , an⟩ is always a subgroup:

�eorem: Let G be a group and a1, a2, . . . , an ∈ G. �en H ∶= ⟨a1, a2, . . . , an⟩ ≤ G.
Proof: For k = 0we get the identity, thus e ∈ H and thusH /= ∅. Now use the criterion for subgroups:

Let x , y ∈ H. �en (by the de�nition of H) there exist k, l ∈ N0 and elements bi , c j ∈ {a1, . . . , an},
єi , δ j ∈ {±1} such that:

x = bє11 ⋅ b
є2
2 ⋅ ⋯ ⋅ bєkk , y = cδ11 ⋅ cδ22 ⋅ ⋯ ⋅ cδ ll .

Note that y−1 = c−δ ll ⋅ c−δ l−1l−1 ⋅ ⋯ ⋅ c−δ11 . �us

x ⋅ y−1 = bє11 ⋅ b
є2
2 ⋅ ⋯ ⋅ bєkk ⋅ c−δ ll ⋅ c−δ l−1l−1 ⋅ ⋯ ⋅ c−δ11 ,

which has the form of an element of H. �us H is a subgroup.

Note: If S ≤ G is a subgroup with a1, . . . , an ∈ S, then certainly all those products must be

elements of S (as S is closed under multiplication). �us ⟨a1, a2, . . . , an⟩ is the smallest subgroup
of G containing all the elements a1, a2, . . . , an.

Special Case: A special case is that of (sub)groups that can be generated by one generator. We call

such a group cyclic. �en we have in the de�nition that ⟨a⟩ = {bє11 ⋅ b
є2
2 ⋅ ⋯ ⋅ bєkk } with bi ∈ {a}. We

can now use the rules for exponents and write everything as a single power of a. �us we get:

⟨a⟩ = {ax ∣ x ∈ Z} = {a0, a1, a−1, a2, a−2, a3, a−3, . . .}

is the set of all powers of a which agrees with the de�nition from the book.

Note that a cyclic group might be given by multiple (irredundant) generators. For example we have

that

⟨(1, 2), (3, 4, 5)⟩ = ⟨(1, 2)(3, 4, 5)⟩

is cyclic.

How to calculate elements In some circumstances, it can be desirable to obtain an element list

from generators. Since the operation in a group is associative, we have that

bє11 ⋅ b
є2
2 ⋅ ⋯ ⋅ bєkk = (bє11 ⋅ b

є2
2 ⋅ ⋯ ⋅ bєk−1k−1) ⋅ b

єk
k .

We can therefore obtain the elements by the following process in an recursive way:

Starting with the identity, multiply all elements “so far” with all generators (and their

inverses) until nothing new is obtained.

�e following description of the algorithm is more formal:

1. Write down a “start” mark.

2. Write down the identity e (all products of length 0).

3. Mark the (current) end of the list with an “end”mark. Let x run through all elements in this list between

the “start” and “end” mark.

4. Let y run through all the generators a1,⋯an.
5. Form the products x ⋅ y and x ⋅ y−1. If the result is not yet in the list, add it at the end.

6. If you have run through all x, y, and you �nd that you added new elements to the end of the list (a�er

the “end” mark), make the “end” mark the “start” mark and go back to step 3.

7. Otherwise you have found all elements in the group.

If the group is �nite at some point longer products must give the same result as shorter products (which have

been computed before), thus the process will terminate.

Example: Let G = U(48) = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47} and a1 = 5, a2 = 11.

We calculate that a−11 = 29, a−12 = 35.

We start by writing down the identity (S and E are start and end mark respectively):

S , 1, E

Now we form the products of all written down elements with a1, a2, a−11 and a−12 :

1 ⋅ 5 = 5, 1 ⋅ 11 = 11, 1 ⋅ 29 = 29, 1 ⋅ 35 = 35,

So our list now is 1, S , 5, 11, 29, 35, E. Again (back to step 3) we run through all elements written

down so far, and form products:

5 ⋅ 5 = 25, 5 ⋅ 11 = 7, 5 ⋅ 29 = 1, 5 ⋅ 35 = 31, 11 ⋅ 5 = 7, 11 ⋅ 11 = 25, 11 ⋅ 29 = 31, 11 ⋅ 35 = 1,

29 ⋅ 5 = 1, 29 ⋅ 11 = 31, 29 ⋅ 29 = 25, 29 ⋅ 35 = 7, 35 ⋅ 5 = 31, 35 ⋅ 11 = 1, 35 ⋅ 29 = 7, 35 ⋅ 35 = 25

�e underlined entries are not new and thus did not get added again. Our new list therefore is

1, 5, 11, 29, 35, S , 25, 7, 31, E. Again we form products:

25 ⋅ 5 = 29, 25 ⋅ 11 = 35, 25 ⋅ 29 = 5, 25 ⋅ 35 = 11, 7 ⋅ 5 = 35, 7 ⋅ 11 = 29, 7 ⋅ 29 = 11, 7 ⋅ 35 = 5,

31 ⋅ 5 = 11, 31 ⋅ 11 = 5, 31 ⋅ 29 = 35, 31 ⋅ 35 = 29

Now no new elements were found. �us we got all elements of the subgroup, and we have ⟨5, 11⟩ =

{1, 5, 7, 11, 25, 29, 31, 35}. (�e ordering of elements now is unimportant, as we list the subgroup as

a set.)

Expression as words If we are giving a group by generators this means that each of its elements

can be written – not necessarily uniquely – as a product of generators (and inverses).�e process of

enumerating all elements in fact gives such an expression. For example we trace back that 31 = 5⋅11−1.

For larger groups this of course can become very tedious, but it is a method that can easily be

performed on a computer.

Example: (GAP calculation) Consider the permutation group generated by (1, 2, 3, 4, 5) and (1, 2)(3, 4):

gap> a1:=(1,2,3,4,5);

(1,2,3,4,5)

gap> a2:=(1,2)(3,4);

(1,2)(3,4)

gap> G:=Group(a1,a2);

Group([(1,2,3,4,5), (1,2)(3,4)])

gap> Elements(G);

[(), (3,4,5), (3,5,4), (2,3)(4,5), (2,3,4), (2,3,5), (2,4,3), (2,4,5),

(2,4)(3,5), (2,5,3), (2,5,4), (2,5)(3,4), (1,2)(4,5), (1,2)(3,4),

(1,2)(3,5), (1,2,3), (1,2,3,4,5), (1,2,3,5,4), (1,2,4,5,3), (1,2,4),

(1,2,4,3,5), (1,2,5,4,3), (1,2,5), (1,2,5,3,4), (1,3,2), (1,3,4,5,2),

(1,3,5,4,2), (1,3)(4,5), (1,3,4), (1,3,5), (1,3)(2,4), (1,3,2,4,5),

(1,3,5,2,4), (1,3)(2,5), (1,3,2,5,4), (1,3,4,2,5), (1,4,5,3,2), (1,4,2),

(1,4,3,5,2), (1,4,3), (1,4,5), (1,4)(3,5), (1,4,5,2,3), (1,4)(2,3),

(1,4,2,3,5), (1,4,2,5,3), (1,4,3,2,5), (1,4)(2,5), (1,5,4,3,2), (1,5,2),

(1,5,3,4,2), (1,5,3), (1,5,4), (1,5)(3,4), (1,5,4,2,3), (1,5)(2,3),

(1,5,2,3,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,4)]

gap> Length(Elements(G));

60

gap> Order(G);

60

If we wanted to express an element of the group as a word in the generators, we could use the

command Factorization. (�is command in fact internally enumerates all elements and stores

word expressions for each. the word returned therefore is as short as possible. �e functionality

however is limited by the available memory – if we cannot store all group elements it will fail.)

For example for the same group as before we express a (random) element and check that the result

is the same:

gap> Factorization(G,(1,5)(3,4));

x1^-2*x2*x1^2

gap> a1^-2*a2*a1^2;

(1,5)(3,4)

Application: Sort the sequence E ,D, B,C ,A by performing only swaps of adjacent elements:

Considering the positions, wewant to perform the permutation (1, 5)(2, 4, 3).�e swaps of adjacent

elements are the permutations a1 = (1, 2), a2 = (2, 3), a3 = (3, 4), a4 = (4, 5). Using GAP, we
calculate:

gap> a1:=(1,2);

(1,2)

gap> a2:=(2,3);

(2,3)

gap> a3:=(3,4);

(3,4)

gap> a4:=(4,5);

(4,5)

gap> G:=Group(a1,a2,a3,a4);

Group([(1,2), (2,3), (3,4), (4,5)])

gap> Factorization(G,(1,5)(2,4,3));

x1*x2*x1*x3*x2*x4*x3*x2*x1

�ismeans swap positions (in this order) 1/2, 2/3, 1/2, 3/4, 2/3, 4/5, 3/4, 2/3. 1/2 and you get the right

arrangement (try it out!)

Puzzles Many puzzles can be described in this way: Each state of the puzzle corresponds to a

permutation, the task of solving the puzzle then corresponds to expressing the permutation as a

product of generators. Example 7 on p.107 in the book is an example of this.

�e 2×2×2Rubik’s Cube inGAP As an example of a more involved puzzle consider the 2×2×2

Rubik’s cube. We label the facelets of the cube in the following way:

21

43

109

1211

2221

2423

65

87

1413

1615

1817

2019

top

left right back

bottom

front

We now assume that we will �x the bottom right corner (i.e. the corner labelled with 16/19/24) in

space – this is to make up for rotations of the whole cube in space. We therefore need to consider

only three rotations, front, top and le�. �e coresponding permutations are (for clockwise rotation

when looking at the face):

gap> top:=(1,2,4,3)(5,17,13,9)(6,18,14,10);;

gap> left:=(1,9,21,20)(5,6,8,7)(3,11,23,18);;

gap> front:=(3,13,22,8)(4,15,21,6)(9,10,12,11);;

gap> cube:=Group(top,left,front);

Group([(1,2,4,3)(5,17,13,9)(6,18,14,10),(1,9,21,20)(3,11,23,18)(5,6,8,7),

(3,13,22,8)(4,15,21,6)(9,10,12,11)])

gap> Order(cube);

3674160

By de�ning a suitable homomorphism �rst (for the time being consider this command as a black

box – a free group is a group generated by formal symbols) we can choose nicer names – T, L and F

– for the generators:

gap> map:=EpimorphismFromFreeGroup(cube:names:=["T","L","F"]);

[T, L, F] -> [(1,2,4,3)(5,17,13,9)(6,18,14,10),

(1,9,21,20)(3,11,23,18)(5,6,8,7), (3,13,22,8)(4,15,21,6)(9,10,12,11)]

We now can use the command Factorization to express permutations in the group as word in

generators. �e reverse sequence of the inverse operations therefore will turn the cube back to its

original shape. For example, suppose the cube has been mixed up in the following way:

621

2013

2310

1814

52

2412

48

1722

97

161

113

1519

�is corresponds to the permutation

gap> move:=(1,15,20,4,6,2,21)(3,17,8,5,22,7,13)(9,14,11,18,12,23,10)

(1 has gone in the position where 15 was, 2 has gone in the position of 21, and so on.) We express

this permutation as word in the generators:

gap> Factorization(cube,move);

T*F*L*T*F*T

Wecan thus bring the cube back to its original position by turning each counterclockwise top,front,top,le�,front,top.

Larger puzzles If we want to do something similar for larger puzzles, for example the 3 × 3 × 3

cube, the algorithm used by Factorization runs out of memory. Instead we would need to use

a di�erent algorithm, which can be selected by using the map we used for de�ning the name. �e

algorithm used then does not guarantee any longer a shortest word, in our example:

gap> PreImagesRepresentative(map,move);

T*L^-2*T^-1*L*T*L^-2*T^-2*F*T*F^-1*L^-1*F*T^-1*F^-1*L*T*L*

T^-2*F*T*F^-1*T*F*T^-1*F^-2*L^-1*F^2*L

(Note that the code uses some randomization, your mileage may vary.)

Web sites outside the mathematics department at Colorado State University that host this file without written permission by its Author, Alexander Hulpke, agree to pay the author $1

per day of hosting. This includes in particular any “PDF collection”, “homework help“, or “course notes” web sites.

