Classes of Integral Domains

Factorization

 into irreducibles$$
\text { UFD } \mathrm{F}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \cdot \cdot\right]
$$

Noetherian

$\mathbb{Z}[x], F[x, y]$

PID

Euclidean
 $\mathbb{Z}, \mathrm{F}[\mathrm{x}]$

$$
\mathbb{Z}[\sqrt{ }-5]
$$

Dedekind Domains

$\mathbb{Z}[1 / 2(1+\sqrt{ }-19)]$

$$
\mathbb{Z}[\sqrt{ }-5, x]
$$

F is a field

UFD: irreducibles are prime, gcd exists
PID: gcd can be expressed in the form xa+yb
Euclidean: gcd can be computed with the euclidean algorithm Dedekind Domain: Every Ideal is a product of prime ideals (Rings of algebraic integers in a field extension are Dedekind domains)

