Practice

§3.5: 1, 5, 8, 13
§3.6: 2, 7, 9, 10, 18, 20a, 21a, 23a
§3.7: 7, 13, 15, 17

Hand In

30) Using the method of indeterminate coefficients, find general solutions to the following differential equations:
 a) \(y'' + y = xe^{-x} + \cos x \)
 b) \(y'' + y = (10x^5 - x^3 + 23x^2 - x - 17)e^x \sin(x) \)

31) An electric circuit consisting of a resistor \(R \), a capacitor \(C \) and a coil \(L \) is driven by a temporary changing voltage source \(v_s \).
 By Kirchhoff’s Law, we have \(V_L + V_R + V_C = v_s(t) \), where \(V_L \), \(V_R \), \(V_C \) respectively are the voltage changes measured over coil, resistor and capacitor, respectively. We also have a current \(I \) in the circuit that is equal at every place.
 By Ohm’s law, we have that \(V_R = I \cdot R \), and Lenz’ law gives that \(V_L = L \cdot I' \). Finally, the capacitor determines the current by the law \(I = C \cdot V'_C \).

 a) Write down a differential equation for the voltage \(v(t) = V_C(t) \) measured at the capacitor.
 b) Assume the driving voltage fulfills \(v_s(t) = \cos(\omega t) \). Determine a general solution for the differential equation in a).

32) Using the method of variation of parameters, determine a solution to the initial value problem:
 \[
 \frac{d^2 y}{dt^2} + 4y = 4 \tan(2x), \quad y(0) = 10, \quad y'(0) = -2
 \]