MATH 180A5

Homework

calculate

We define the sequence f_n of Fibonacci numbers recursively by 19)

$$f_0 = 0,$$
 $f_1 = 1,$ $f_{n+2} = f_{n+1} + f_n.$

- a) Calculate f_{10} .
- b) Show that this recursion is satisfied by the formula

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).$$

That means, you must show that:

- 1. The formula gives the correct values for f_0 and f_1 .
- 2. Plug n + 1 and n + 2 in the formula and evaluate f_{n+1} and f_{n+2} .
- 3. Show that (with the formulas for f_{n+1} and f_{n+2} you just got) $f_{n+2} = f_{n+1} + f_n$ holds for every n.

20) Consider the sequence $a_n = \frac{5n+2}{n+5}$. a) Show that the sequence is monotonically increasing (that is, show that $a_{n+1} > a_n$ for every n).

b) Show that this sequence a_n is bounded from above.

21) Consider the following sequences. Using increasingly larger values of n, try to determine their limits, as $n \to \infty$. Based on these (and maybe more), can you make a guess on what the limit of a sequence given by a rational function in n should be?

a)
$$\frac{3n+2}{4n-17}$$

b) $\frac{5n^2+7n-1}{8n^2+3n+1}$
c) $\frac{5n^3+7n-1}{8n^2+3n+1}$
d) $\frac{5n^2+7n-1}{8n^3+3n+1}$
e) $\frac{3n^4+5n^3+1}{5n^4+12n-7}$

 b_{20} .

Consider the sequence $a_i = \frac{2^{i+1}}{i+3}$. Its first values are 22) $1, 8/5, 8/3, 32/7, 8, \ldots$

We want to *reindex* this sequence so that it starts at the value for
$$a_3$$
, that is we want do define a new sequence $b_i = a_{i+2}$. Give a formula for the value of b_i , depending only on *i*. Using this formula, calculate

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".