19) We define the sequence f_{n} of Fibonacci numbers recursively by

$$
f_{0}=0, \quad f_{1}=1, \quad f_{n+2}=f_{n+1}+f_{n}
$$

a) Calculate f_{10}.
b) Show that this recursion is satisfied by the formula

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

That means, you must show that:

1. The formula gives the correct values for f_{0} and f_{1}.
2. Plug $n+1$ and $n+2$ in the formula and evaluate f_{n+1} and f_{n+2}.
3. Show that (with the formulas for f_{n+1} and f_{n+2} you just got) $f_{n+2}=f_{n+1}+f_{n}$ holds for every n.
20) Consider the sequence $a_{n}=\frac{5 n+2}{n+5}$.
a) Show that the sequence is monotonically increasing (that is, show that $a_{n+1}>a_{n}$ for every n).
b) Show that this sequence a_{n} is bounded from above.
21) Consider the following sequences. Using increasingly larger values of n, try to determine their limits, as $n \rightarrow \infty$. Based on these (and maybe more), can you make a guess on what the limit of a sequence given by a rational function in n should be?
a) $\frac{3 n+2}{4 n-17}$
b) $\frac{5 n^{2}+7 n-1}{8 n^{2}+3 n+1}$
c) $\frac{5 n^{3}+7 n-1}{8 n^{2}+3 n+1}$
d) $\frac{5 n^{2}+7 n-1}{8 n^{3}+3 n+1}$
e) $\frac{3 n^{4}+5 n^{3}+1}{5 n^{4}+12 n-7}$
22) Consider the sequence $a_{i}=\frac{2^{i+1}}{i+3}$. Its first values are

$$
1,8 / 5,8 / 3,32 / 7,8, \ldots
$$

We want to reindex this sequence so that it starts at the value for a_{3}, that is we want do define a new sequence $b_{i}=a_{i+2}$. Give a formula for the value of b_{i}, depending only on i. Using this formula, calculate b_{20}.

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".

