Instructions

Please work these problems on a separate sheet. The solutions must include some kind of justification (such as the steps how to obtain it, or explanations).
37) Show that $x \log (x)=\mathcal{O}\left(x^{4}\right)$.
38) a) Compute the Taylor polynomial for $\cos (x)$ of degree 6 , centered at $a=0$.
b) Compute the Taylor polynomial for $\log (x)$ (natural logarithm) of degree 4, centered at $a=1$.
c) Compute the Taylor polynomial for $\exp (x)$ of degree 3, centered at $a=1$. Expand the terms $(x-1)^{i}$. Compare with the Taylor polynomial centered at $a=0$.
39) a) Compute the error estimate for the Taylor polynomial for $\cos (x)$ of degree 6 , centered at $a=0$, when $-1 \leq x \leq 1$. (Use as estimate that $|\sin (x)|,|\cos (x)| \leq M=1$).
b) Compute the error estimate for the Taylor polynomial for $\log (x)$ (natural logarithm) of degree 4, centered at $a=1$ when $1 / 2 \leq x \leq 3 / 2$. You may use that $\log (x)$ and all its derivatives are bounded by $M=1$ on this interval.
40) Determine the Taylor series (around 0) for the following functions. (Use and modify Taylor series you know already, rather than computing them new from scratch):
a) $x^{2} \cdot \exp \left(x^{3}\right)$.
b) $\sin (x)+\cos (x)$
c) $x^{5}+3 x+17$
d) $\frac{1}{3+x}$ (Hint: Write $x=-3 y$ and consider a series in y)
41) A function (called arctan, it is the inverse of tangent) is given by the power series (=Taylor series)

$$
f(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i+1}}{(2 i+1)}
$$

a) Determine the Taylor series for $f^{\prime}(x)$.
b) Using geometric series, find a formula (not involving an infinite sum) for $f^{\prime}(x)$.

Hint: Consider $-x^{2}$ as your variable q

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".

