34) a) Verify that

$$
2^{x}=\exp \left(\log \left(2^{x}\right)\right)=\exp (x \cdot \log (2))
$$

b) Calculate $\frac{\mathrm{d}}{\mathrm{d} x} 2^{x}$, using the formula from a).
c) Calculate $\frac{\mathrm{d}}{\mathrm{d} x} x^{x}$.
35) Using Newton's method and a start value of 0 , determine a zero of the function $\exp (x)+x$ through 5 iterations.
36) A cylinder of radius r and height h has volume $V=\pi \cdot r^{2} h$ and surface area $A=2 \pi r \cdot h+2 \pi r^{2}$.
a) Express the height h as a function of the radius r and the volume. Use this to determine (for fixed volume $V=1$) the surface area as a function $A(r)$ of the radius r.
b) Find the value for r that minimizes surface area for fixed volume $V=1$.

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".

