Homework

- **30)** Determine the derivatives of the following functions:
 - 1. $x^4 + 3x^2 x + 1$
 - 2. $\cos(x+1)$
 - 3. bla(5x) (with bla'(x) = (exp(x) 1)/x)
 - 4. $\sqrt[3]{2x+2}$
 - 5. $\sin(x) \cdot \exp(x)$
 - 6. $\frac{5x^4+2}{3x^2-x+1}$
 - 7. $bla(sin(x^2 + 2))$
 - 8. $(\sin(x) + x)^4$
- **31)** Calculate the second derivative of $x^2 \cdot \sin(x)$.

32) For a function $f: \mathbb{R} \to \mathbb{R}$ the following information about its derivatives is known: $f'(x_0) = 0$ for $x_0 = 1, 3, 5, 7$. $f''(x_0) = 0$ for $x_0 = 2, 4, 5, 6$. And f'(0) > 0

a) Classify the critical points of f on being (local) maximum, minimum, or saddle.

b) Determine the turning points of f that are not saddle.

- c) Sketch a graph for f under the assumption that f(0) = 10.
- d) Sketch a graph for f under the assumption that f(0) = -10.

33) For each of the following functions, find the critical points and turning points. Classify the critical points according to being local maximum/minimum/saddle.

- a) $6x^2 x^3$. b) $\frac{x}{x^2+1}$
- b) $\frac{x}{x^2+1}$ c) $-x^4 + 6x^2 - 4$.

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".