30) Determine the derivatives of the following functions:
1. $x^{4}+3 x^{2}-x+1$
2. $\cos (x+1)$
3. bla $(5 x)\left(\right.$ with $\left.\operatorname{bla}^{\prime}(x)=(\exp (x)-1) / x\right)$
4. $\sqrt[3]{2 x+2}$
5. $\sin (x) \cdot \exp (x)$
6. $\frac{5 x^{4}+2}{3 x^{2}-x+1}$
7. $\mathrm{bla}\left(\sin \left(x^{2}+2\right)\right)$
8. $(\sin (x)+x)^{4}$
31) Calculate the second derivative of $x^{2} \cdot \sin (x)$.
32) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ the following information about its derivatives is known: $f^{\prime}\left(x_{0}\right)=0$ for $x_{0}=1,3,5,7 . f^{\prime \prime}\left(x_{0}\right)=0$ for $x_{0}=2,4,5,6$. And $f^{\prime}(0)>0$
a) Classify the critical points of f on being (local) maximum, minimum, or saddle.
b) Determine the turning points of f that are not saddle.
c) Sketch a graph for f under the assumption that $f(0)=10$.
d) Sketch a graph for f under the assumption that $f(0)=-10$.
33) For each of the following functions, find the critical points and turning points. Classify the critical points according to being local maximum/minimum/saddle.
a) $6 x^{2}-x^{3}$.
b) $\frac{x}{x^{2}+1}$
c) $-x^{4}+6 x^{2}-4$.

You are explicitly forbidden to share course material with people outside the class, or with any websites that allow such access. This includes "homework help" sites or "test/homework data banks".

