Number Systems

\(\mathbb{N} \): Set of Natural Numbers, 1, 2, 3,\ldots
\(\mathbb{Z} \): Set of Integers, 0, \pm 1, \pm 2, \pm 3,\ldots
\(\mathbb{Q} \): Set of Rational Numbers, \(\frac{m}{n} \), where \(m, n \) are integers (with no common divisor) and \(n \neq 0 \)
\(\mathbb{R} \): Set of Real Numbers

Set Notation (see Text, Appendix)

\(x \in S \): where \(S \) is a set of objects (normally numbers), means: “\(x \) is an element of \(S \)”
\(x \notin S \): \(x \) is “some element” but not in \(S \)

Examples:
\(1 \in \mathbb{N} \), \(\frac{1}{2} \in \mathbb{Q} \), \(\frac{1}{2} \notin \mathbb{N} \), \(\sqrt{2} \in \mathbb{R} \), \(\sqrt{2} \notin \mathbb{Q} \).
\(S \subset T \): \(S \) is a (true) subset of \(T \)
\(S \subseteq T \): \(S \subset T \) or \(S = T \)

Containments of number sets: \(\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \)

Specifying Sets: (Notation: \{variable : property\})

\(\{1,2,3,4,5\} = \{n : n \in \mathbb{N} \text{ and } n \leq 5\} = \{n \in \mathbb{N} : n \leq 5\} \)

\(\{1,3,5,7,\ldots\} = \{n \in \mathbb{N} : n \text{ is odd}\} = \{n : n = 2m - 1 \text{ for some } m \in \mathbb{N}\} \)

Set Operations: (with two sets \(S \) and \(T \))

\(S \setminus T = \{x \in S : x \notin T\} \)
\(S \cap T = \{x : x \in S \text{ and } x \in T\} \)
\(S \cup T = \{x : x \in S \text{ or } x \in T\} \)

\(\{1,2\} \cap \{3,4\} = \emptyset \), where \(\emptyset \) is the empty set that contains no element.

Note: \(\emptyset \subseteq S \) for any set \(S \).

Notation from Logic

\(A \Rightarrow B \): “\(A \) implies \(B \)” or “If \(A \) holds then \(B \) holds” or “\(B \) is a necessary condition for \(A \)” or “\(A \) is a sufficient condition for \(B \)”

\(A \iff B \): “\(A \) implies \(B \) and \(B \) implies \(A \)” or “\(B \) holds if and only if \(A \) holds” or “\(B \) is a necessary and sufficient condition for \(A \)”

\(\forall \): ”For all” (e.g. \(\forall n \in \mathbb{N} : n > 0 \))

\(\exists \): “There exists” (e.g.: If \(p, q \in \mathbb{Q} \) and \(p < q \), then \(\exists r \in \mathbb{R} \) such that \(p < r < q \)