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Preface

These materials are being developed with support from National Science Founda-
tion Award no. 0126650 entitled A Mathematical Modeling Program for Undergrad-

uates in Science, Mathematics, Engineering and Technology.
The objective of this project is the development of innovative educational

materials that incorporate a novel educational approach and perspective to enhance
the teaching and learning of mathematics for the purposes of knowledge discovery.
The general undergraduate educated with these materials will possess a readily
applicable toolbox of mathematical ideas for quantifying real world problems as
well as problem solving skills, and possibly the most importantly, the ability to
interpret results and further understanding.

Our pedagogical perspective consists of the observation that mathematical
modeling is often taught backwards. An application of interest is presented and
then appropriate mathematical tools are subsequently invoked. The beginner is
left with the obvious concern. How does one decide which method to use on a new
problem? Our proposed solution to this dilemma is to teach mathematics first and
then show why a given mathematical methodology can be applied to the modeling
problem. We will be successful if the student completes their modeling course based
on these materials with a good sense of what makes various mathematical methods
inherently different. Furthermore, students that are aware of the fundamental dis-
tinguishing characteristics of the array of methodologies should now be equipped to
address this question of central importance in modeling, i.e., which method when!

This text is the first of two planned works to establish ”proof of concept” of
a new approach to teaching mathematical modeling. The scope of the text is the
basic theory of modeling from a mathematical perspective. A second applications
focussed text will build on the basic material of the first volume.

It is typical that students in a mathematical modeling class come from a wide
variety of disciplines. In addition, their preparation and mathematical sophistica-
tion can vary as widely as their areas of interest. This heterogeneity makes the
teaching and learning of mathematical modeling a significant challenge. One of the
main student prototypes is a intelligent although possibly mathematically naive
student that must learn mathematically modeling to make progress in an area of
research. If a course or textbook does not provide the necessary information for
these good students to bridge educational gaps students everyone suffers. Indeed,
most textbooks fail to be accessible to such audiences.

With enhancing accessibility as our motivation, we propose to implement a
simple pedagogical device to facilitate the use of the text by students of widely
varying backgrounds. This device consists of graded levels of presentation denoted
by (E) for elementary, (I) for intermediate and (A) for advanced.

• (E) Mathematical beginners will find much of interest in the elementary sec-
tions as well as foundation material for further study. The diligent student
can use this self-contained treatment to pave the way to reading of more
advanced sections. The basic properties of mathematical techniques will be
presented with an emphasis on how methods lead to specific applications.

5



6 Preface

• (I) Intermediate material builds on the elementary material and extends the
students expertise. Often intermediate material will involve computer exper-
iments to stimulate more theoretical discussions in the advanced material.
A good understanding of intermediate material should permit a student to
develop new applications of central mathematical ideas.

• (A) Advanced material will provide mathematically mature students with a
solid theoretical foundation for the subject. Mastery of this subject mat-
ter should provide the student with the insight required to further develop
mathematical models.

If a section is labeled as (E) then all its subsections are at the same level. If it
is not labelled, then each individual subsection will be labelled for level of difficulty.

These texts will be pilot tested at Colorado State University during the course
of development and will incorporate a fundamentally new approach to modeling
through general mathematical principles rather than ad hoc lists of methods and
techniques. These methods will be demonstrated within the context of on-going
state-of-the-art interdisciplinary research projects. (Such an approach will have
the added advantage of broadening students perspectives and appreciation for the
nature of basic university research.) The basic aim of the materials is to present an
innovative approach to inform and educate students about the power and impor-
tance of basic mathematics and mathematical modeling in the process of knowledge
discovery.

Michael Kirby
Gerhard Dangelmayr



C H A P T E R 1

Mathematical Modeling

Mathematical modeling is becoming an increasingly important subject as comput-
ers expand our ability to translate mathematical equations and formulations into
concrete conclusions concerning the world, both natural and artificial, that we live
in.

1.1 EXAMPLES OF MODELING

Here we do a quick tour of several examples of the mathematical process. We
present the models as finished results as opposed to attempting to develop the
models.

1.1.1 Modeling with Difference Equations

Consider the situation in which a variable changes in discrete time steps. If the
current value of the variable is an then the predicted value of the variable will be
an+1. A mathematical model for the evolution of the (still unspecified) quantity
an could take the form

an+1 = αan + β

In words, the new value is a scalar multiple of the old value offset by some constant
β. This model is common, e.g., it is used for modeling bank loans. One might
amend the model to make the dependence depend on more terms and to include
the possibility that every iteration the offset can change, thus,

an+1 = α1an + α2a
2
n + βn

This could correpsond to, for example, a population model where the the migration
levels change every time step. In some instances, it is clear that information required
to predict a new value goes back further than the current value, e.g.,

an+1 = an + an−1

Note now that two initial values are required to evolve this model. Finally, it may
be that the form of the difference equations are unknown and the model must be
written

an+1 = f(an, an−1, an−M−1)

Determining the nature of f and the step M is at the heart of model formulation
with difference equations. Often observed data can be employed to assist in this
effort.

1.1.2 Modeling with Ordinary Differential Equations

Although modeling with ordinary differential equations shares many of the ideas of
modeling with the difference equations discussed above, there are many fundamen-
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8 Chapter 1 Mathematical Modeling

tal differences. At the center of these differences is the assumption that time is a
continuous variable.

One of the simplest differential equations is also an extremely important
model, i.e.,

dx

dt
= αx

In words, the rate of change of the quantity x depends on the amount of the
quantity. If α > 0 then we have exponential growth. If α < 0 the situation is
exponetial decay. Of course additional terms can be added that fundamentally
alter the evolution of x(t). For example

dx

dt
= α1x + α2x

2

The model formulation again requires the development of the appropriate right-
hand side.

In the above model the value x on the right hand side is implicitly assumed to
be evaluated at the time t. It may be that there is evidence that the instantaneous
rate of change at time t is actually a function of a previous time, i.e.,

dx

dt
= f(x(t)) + g(x(t − τ))

This is referred to as a delay differential equation.

1.1.3 Modeling with Partial Differential Equation

In the previous sections on modeling the behaviour of a variable as a function of
time we assumed that there was only one independent variable. Many situations
arise in practice where the number of independent variables is larger than two. For
spatio-temporal models we might have time and space (hence the name!), e.g.,

∂f

∂t
= α

∂2f

∂x2

or
∂2f

∂t2
=

∂2f

∂x2
+

∂2f

∂y2

1.1.4 Optimization

In many modeling problems the goal is to compute the ”best” solution. This may
correspond to maximizing profit in a company, or minimizing loss in a conflict. It
is no surprise that optimization techniques take a central seat in the mathematical
modeling literature.

Now one may allow x ∈ R
n and require that

x∗ = arg min f(x)

The quantity f(x) is referred to as the objective function while the vector x con-
sists of decision variables. Because x sits in R

n the problem is referred to as
unconstrained.



Section 1.2 The Modeling Process 9

Alternatively, one might require that the solution x have all positive compo-
nents. If we refer to this set as S then the optimization problem is constrained

x∗ = arg min
x∈S

f(x)

If the objective function as well as the equations that define the constraint set
are linear, than the optimization problem is called a linear programming problem.
Otherwise, the problem is referred to as a nonlinear programming problem. As we
shall see, solution methods for linear and nonlinear programming problems are very
different.

1.1.5 Modeling with Simulations

Many problems may afford a mathematical formulation yet be analytically in-
tractable. In these situations a computer can implement the mathematics literally
and repetitively often times to extreme advantage.

Simulating Games.

• What is the probability that you can win a game of solitaire?

• What is the best strategy for playing blackjack?

• Given a baseball team consisting of certain players, in what order should they
hit?

On the other hand, computer simulations can be employed to model evolution
equations. Applications in the realm of fluid dynamics and weather prediction are
well established. A striking new example of such simulation modeling is attempting
to model electrical activity in the brain.

1.1.6 Function Fitting: Data Modeling

Often data is available from a process to assist in the modeling. How can functions
be computed that reflect the relationships between variables in the data. Produce
a model

y = f(x;w)

and using the set of input output pairs compute the parameters w. In some cases
the form of f may be guessed. In other cases a model free approach can be used.

1.2 THE MODELING PROCESS

The goal in all modeling problems is added value. Something novel must be learned
from the modeling process or one has completed an exercise in futility, or mathe-
matical wheel spinning, depending on your perspective. There are many obvious
questions the answers to which have inherent added value. For example:

• Should a stock be bought or sold?

• Is the earth becoming warmer?



10 Chapter 1 Mathematical Modeling

• Does creating a law have a positive or negative societal effect?

• What is the most valuable property in monopoly?

Clearly this is a very small start to an extremely long list.

1.2.1 An Algorithm for Modeling?

The modeling process has a sequence of common steps that serve as an abstraction
for the modeler:

• Identify the problem and questions.

• Identify the relevant variables in a problem.

• Simplify until tractable.

• Relate these variables mathematically.

• Solve.

• Does the solution provide added value?

• Tweak model and compare solutions.

1.3 THE DELICATE SCIENCE OF ERRORS

If one had either infinite time or infinite computing power error analysis would pre-
sumably be a derelict activity: all models would be absolutely accurate. Obviously,
in reality, this is not the case and a well-accepted modus operandi in modeling is
committing admissible errors. Of course, in practice, the science is more ad hoc. If
terms in an equation introduce computational difficulties the immediate question
arises as to what would happen if those terms are ignored? In theory we would
rather keep them but in practice we can’t afford to. Thus the delicate science of
modeling concerns retaining just enough features to make the model useful but not
so many as too make it more expensive to compute than necessary to get out the
desirable information.

We illustrate this concept by examining the seemingly innocuous junior high
school problem

ǫx2 + x + 1 = 0

Of course we can solve this problem exactly using the quadratic formula1

x = − 1

2ǫ
±

√
1 − 4ǫ

2ǫ
(1.1)

For a moment, let us assume that the quadratic term were actually an unknown
term, e.g.,

ǫf(x) + x + 1 = 0

1If you don’t recall this, then the famous Science Fiction write Robert Heilein suggested you
not be allowed to vote.
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and that actually computing f might be rather expensive. We might argue that if
ǫ were very small that this term could safely be ignored. Now let us return to the
simple case of f(x) = x2. If ǫ is taken as zero then clearly it follows that

x = −1

is the unique solution. However, we know from our quadratic equation however
that if ǫ = 0.0000001 (any non-zero number would do), then there are two solutions
rather than one. So we have actually lost a potentially important solution by
ignoring what appeared to be a small quantity. In addition, we may also have
introduced inaccuracies into the obtained solution and this issue must be explored.

In essence we are concerned with how quickly the solution changes about the
point ǫ = 0. A quick graph of Equation (1.1) reveals that the solution changes
rather quickly.

To see how this solution changes as a function of ǫ consider the series expansion

x = a0 + a1ǫ + a2ǫ
2 + a3ǫ

3 + . . .

Substituting this expansion into the original quadratic results in the new equation

a0 + 1 + (a2
0 + a1)ǫ + (2a0a1 + a2)ǫ

2 + · · · = 0

Setting the coefficients of the different powers of ǫ to zero gives the series solution
for x as

x = −1 − ǫ − 2ǫ2 + . . . (1.2)

So if ǫ ≈ 0.01 we can conclude the error is on the order of 1% and the error will
grow quickly with ǫ.

This problem is explored further in the exercises and function iteration is
introduced to track down the 2nd solution in the quadratic equation. For further
discussion of these ideas see [4].

1.4 PURPOSE OF THIS COURSE

The primary goal of this course is to assist the student to develop the skills nec-
essary to effectively employ the ideas of mathematics to solve problems. At the
simplest level we seek to promote an understanding of why mathematics is useful
as a language for characterizing the interaction and relationships among quantifiable
concepts, or in mathematical terms, variables. Throughout the text we emphasize
the notion of added value and why it is the driving force behind modeling. For a
given mathematical model to be deemed a success something must be learned that
was not obvious without the modeling procedure. Very often added value comes
in the form of a prediction. In the absence of added value the modeling procedure
becomes an exercise not unrelated to digging a ditch simply to fill it back up again.

The emphasis in this course is on learning why certain mathematical concepts
are useful for modeling. We proceed from mathematics to models rather than the
popular reverse approach and downplay interdisciplinary expertise required in many
specific contexts. We firmly believe that by focusing on mathematical concepts
the ability to transfer knowledge from one setting to another will be significantly
enhanced. Hence, we emphasize the efficacy of certain mathematics for constructing
models.
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PROBLEMS

1.1. Name three problems that might be modeled mathematically. Why do you think
mathematics may provide a key to each solution. What is the added value in
each case?

1.2. Consider the differential equation

dx

dt
= x

Translate this model to a difference equation. Compare the solutions and discuss.
1.3. Consider the equation

x2 + ǫx− 1 = 0

for small ǫ. How does ignoring the middle term ǫx change your solution? Is this
a serious omission?

1.4. Using a Taylor series expansion express the solution to the quadratic equation
in Equation 1.1 as a series. Include terms up to cubic order.

1.5. Find the cubic term in the expansion in Equation (1.2).
1.6. One approach to determining zeros of a general function, i.e., computing roots

to f(x) = 0, is to rewrite the problem as f(x) = x − g(x) and to employ the
iteration xn+1 = g(xn).
(a) If we take

g(x) = − 1

x

show that the iteration can be written

xn+1 = −1

ǫ
(1 +

1

xn
)

(b) Let x0 = −1/ǫ and compute x1. By considering the Taylor series of the so-
lution of the quadratic equation argue that this is a two term approximation
to the missing solution.

(c) Compute x2.
1.7. (a) Substitute x = y/ε into the equation

εx2 + x+ 1 = 0 (1.3)

and multiply the resulting equation for y by ε. Show that this leads to

y2 + y + ε = 0. (1.4)

When ε = 0, the equation (1.4) has two solutions: y = 0 and y = −1. This
suggests that (1.4) allows us to compute both solutions of (1.3) through a
perturbation analysis.

(b) Reproduce the solution to (1.3) given by Eq. (1.2) by computing a solution
of the form

y = b1ε+ b2ε
2 + b3ε

3 + . . .

for (1.4).
(c) Proceed similarly using the form

y = −1 + c1ε+ c2ε
2 + . . .

to find the expansion of the missing solution to (1.3).



C H A P T E R 2

Qualitative Modeling with
Functions

It is often surprising that very simple mathematical modeling ideas can produce
results with added value. Indeed, the solutions may be elegant and provide quality
of understanding that obviates further exploration by more technical or complex
means. In this chapter we explore a few simple approaches to qualitatively modeling
phenomena with well-behaved functions.

2.1 MODELING SPECIES PROPAGATION

This problem concerns the factors that influence the number of species existing on
an island. The discussion is adapted from [1].

One might speculate that factors affecting the number of species could include

• Distance of the island from the mainland

• Size of the island

Of course limiting ourselves to these influences has the dual effect of making a
tractable model that needs to be recognized as omitting many possible factors.

The number of species may increase due to new species discovering the island
as a suitable habitat. We will refer to this as the migration rate. Alternatively,
species may become extinct due to competition. We will refer to this as the ex-

tinction rate. This discussion will be simplified by employing an aggregate total for
the number of species and not attempting to distinguish the nature of each species,
i.e., birds versus plants.

Now we propose some basic modeling assumptions that appear reasonable.

The migration rate of new species decreases as the number of species on

the island increases.

The argument for this is straight forward. The more species on an island the smaller
the number of new species there is to migrate. See Figure 2.1 (a) for a qualitative
picture.

The extinction rate of species increases as the number of species on the

island increases.

Clearly the more species there are the more possibilities there are for species to die
out. See Figure 2.1 (b) for a qualitative picture.

If we plot the extinction rate and the migration rate on a single plot we
identify the point of intersection as an equilibrium, i.e., the migration is exactly
offset by the extinction and the number of species on the island is a constant. We

13



14 Chapter 2 Qualitative Modeling with Functions
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FIGURE 2.1: Qualitative form of the migration and extinction curves.

will assume in this discussion that we are considering islands for which the number
of species is roughly constant over time, i.e., they are in a state of equilibrium.

Now we consider whether this simple model provides any added value. In
particular, can it be used to address our questions posed at the outset.

First, what is the effect of the distance of the island from the mainland on the
number of bird species? One can characterize this effect by a shift in the migration
curve. The further the island is away from the mainland, the less likely a species
is to successfully migrate. Thus the migration curve is shifted down for far islands
and shifted up for near islands. Presumably, this distance of the island from the
mainland has no impact on the extinction curve. Thus, by examining the shift in
the equilibrium, we may conclude that the number of species on an island decreases
as the island’s distance from the mainland increases. See Figure 2.2.

Note in this model we assume that the time-scales are small enough that new
species are not developed via evolution. While this may seem reasonable there
is evidence that in some extreme climates, such as those found in the Galapagos
Islands, variation may occur over shorter periods. There have been 140 different
species of birds

2.2 SUPPLY AND DEMAND

In this section we sketch a well-known concept in economics, i.e., supply and de-
mand. We shall see that relatively simple laws, when taken together, afford inter-
esting insight into the relationship between producers and consumers. Furthermore,
we may use this framework to make predictions such as

• What is the impact of a tax on the sale price?

• What is the impact an increase in employees wages on sales price? Can the
owner of the business pass this increase on to the consumer?

Law of Supply: An increase in the price of a commodity will result in
an increase of the amount supplied.
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FIGURE 2.2: The effect of distance of the island from the mainland is to shift the migration curve.
Consequently the equilibrium solution dictates a smaller number of species will be supported for islands
that are farther away from the mainland.

Law of Demand: If the price of a commodity increases, then the quantity
demanded will decrease.

Thus, we may model the supply curve qualitatively by a monotonically in-
creasing function. For simplicity we may assume a straight line with positive slope.
Analogously, we may model the demand curve qualitatively by a monotonically
decreasing function, which again we will take as a straight line.

A flat demand curve may be interpreted as consumers being very sensitive to
the price of a commodity. If the price goes up just a little, then the quantity in
demand goes down significantly. Steep and flat supply and demand curves all have
similar qualitative interpretations (see the problems).

2.2.1 Market Equilibrium

Given a supply curve and a demand curve we may plot them on the same axis
and note their point of intersection (q∗, p∗). This point is special for the following
reason:

• The seller is willing to supply q∗ at the price p∗

• The demand is at the price p∗ is q∗

So both the supplier(s) and the purchaser(s) are happy economically speaking.
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FIGURE 2.3: (a) Qualitative form of supply and demand curves.
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2.2.2 Market Adjustment

Of course, in general markets do not exist in the perfect economic utopia described
above. We may model the market adjustment as a sequence of points on the demand
and supply curves.

Based on market research it is estimated that consumers will demand a quan-
tity q1 at a price p1. The supply and demand curves will permit a prediction of
how the market will evolve. For simplicity, we will assume that the initial point
(q1, p1) is on the demand curve to the right of the equilibrium point.

At the price p1 the supplier looks to his supply curve and proposes to sell a
reduced quantity q2. Thus we move from right to left horizontally. Note that moving
vertically to the supply curve would not make sense as this would correspond to
offering the quantity q1 at an increased price. These goods will not sell at this price.

From the point (q1, p2) the consumer will respond to the new reduced quantity
q2 by being willing to pay more. This corresponds to moving vertically upward to
the new point (q2, p2) on the supply curve.

Now the supplier adjusts to the higher price being paid in the market place
by increasing the quantity produced to q3. This process then continues, in theory,
until an equilibrium is reached. It is possible that this will never happen, at least
not without a basic adjustment to the shape of either the supply of demand curves,
for example through cost cutting methods such as improved efficiency, or layoffs.

2.2.3 Taxation

The effect of a new tax on a product is to shift the demand curve down because
consumers will not be willing to pay as much for the product (before the tax).
Note that this leads to a new equilibrium point which reduces the price paid to
the seller per item and reduces the quantity supplied by the producer. Thus one
may conclude from this picture that the effect of a tax on alcohol is to reduce
consumption as well as profit for the supplier. See Figure 2.5.

2.3 MODELING WITH PROPORTION AND SCALE

In the previous sections we have considered how simple functions may be employed
to qualitatively model various situations and produce added value. Now we turn to
considerations that assist in determining the nature of these functional dependencies
in more complex terms.

2.3.1 Proportion

If a quantity y is proportional to a quantity x then we write

y ∝ x

by which is meant

y = kx

for some constant of proportionality k.
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EXAMPLE 2.1

In 1678 Robert Hooke proposed that the restoring force F of a spring is proportional
to its elongation e, i.e.,

F ∝ e

or,

F = ke

where k is the stiffness of the spring.

Note that the property of proportionality is symmetric, i.e.,

y ∝ x → x ∝ y (2.1)

and transitive, i.e.,

y ∝ x and z ∝ y → z ∝ x (2.2)

EXAMPLE 2.2

If y = kx + b where k, b are constants, then

y 6∝ x

but

y − b ∝ x

Inverse proportion. If y ∝ 1/x then y is said to be inversely proportional to
x.

EXAMPLE 2.3

If y varies inversely as the square-root of x then

y =
k√
x

Joint Variation. The volume of a cylinder is given by

V = πr2h

where r is the radius and h is the height. The volume is said to vary jointly with
r2 and h, i.e.,

V ∝ r2 and V ∝ h
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EXAMPLE 2.4

The volume of a given mass of gas is proportional to the temperature and inversely
proportional to the pressure, i.e., V ∝ T and V ∝ 1/P , or,

V = k
T

P

EXAMPLE 2.5

Frictional drag due to the atmosphere is jointly proportional to the surface area S
and the velocity v of the object.

Superposition of Proportions. Often a quantity will vary as the sum of pro-
portions.

EXAMPLE 2.6

The stopping distance of a car when an emergency situation is encountered is the
sum of the reaction time of the driver and the amount of time it takes for the breaks
to dissipate the energy of the vehicle. The reaction distance is proportional to the
velocity. The distance travelled once the breaks have been hit is proportional to
the velocity squared. Thus,

stopping distance = k1v + k2v
2

EXAMPLE 2.7

Numerical error in the computer estimation of the center difference formula for the
derivative is given by

e(h) =
c1

h
+ c2h

2

where the first term is due to roundoff error (finite precision) and the second term
is due to truncation error. The value h is the distance δx in the definition of the
derivative.

Direct Proportion. If
y ∝ x

we say y varies in direct proportion to x. This is not true, for example, if y ∝
r2. On the other hand, we may construct a direct proportion via the obvious
change of variable x = r2. This simple trick always permits the investigation of the
relationship between two variables such as this to be recast as a direct proportion.
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Section 2.3 Modeling with Proportion and Scale 23

2.3.2 Scale

Now we explore how the size of an object can be represented by an appropriate
length scale if we restrict our attention to replicas that are geometrically similar.
For example, a rectangle with sides l1 and w1 is geometrically similar to a rectangle
with sides l2 and w2 if

l1
l2

=
w1

w2
= k (2.3)

As the ratio κ = l1/w1 characterizes the geometry of the rectangle it is referred
to as the shape factor. If two objects are geometrically similar, then it can be
shown that they have the same shape factor. This follows directly from multiplying
Equation (2.3) by the factor l2/w1, i.e.,

l1
w1

=
l2
w2

= k
l2
w1

Characteristic Length.
Characteristic length is useful concept for characterizing a family of geomet-

rically similar objects. We demonstrate this with an example.
Consider the area of a rectangle of side l and width w where l and w may

vary under the restriction that the resulting rectangle be geometrically similar to
the rectangle with length l1 and width w1. An expression for the area of the varying
triangle can be simplified as a consequence of the constraint imposed by geometric
similarity. To see this

A = lw

= l(
w1l

l1
)

= κl2

where κ = w1/l1, i.e., the shape factor. See Figure 2.7 for examples of characteristic
lengths for the rectangle.

EXAMPLE 2.8

Watering a farmer’s rectangular field requires an amount of area proportional to
the area of the field. If the characteristic length of the field is doubled, how much
additional water q will be needed, assuming the new field is geometrically similar
to the old field? Solution: q ∝ l2, i.e., q = kl2. Hence

q1 = kl21

q2 = kl22

Taking the ratio produces
q1

q2
=

l21
l22
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h

w

d

FIGURE 2.7: The height l1, the width l2 and the diagonal l3 are all characteristic lengths for the
rectangle.

Now if q2 = 100 acre feet of water are sufficient for a field of length l2 = 100, how
much water will be required for a field of length l1 = 200? Sol.

q1 = q2
l21
l22

= 100
2002

1002
= 400 acre feet �

EXAMPLE 2.9

Why are gymnasts typically short? It seems plausible that the ability A, or natural
talent, of gymnast would be proportional to strength and inversely proportional to
weight, i.e.,

A ∝ strength

and

A ∝ 1

weight

and taken jointly

A ∝ strength

weight

One model for strength is that the strength of a limb is proportional to the cross-
sectional area of the muscle. The weight is proportional to the volume (assuming
constant density of the gynmast). Now, assuming all gymnasts are geometrically
similar with characteristic length l

strength ∝ muscle area ∝ l2



Section 2.3 Modeling with Proportion and Scale 25

and
weight ∝ volume ∝ l3

so the ability A follows

A ∝ l2

l3
∝ 1

l

So shortness equates to a talent for gymnastics. This problem was originally intro-
duced in [2]. �

EXAMPLE 2.10

Proportions and terminal velocity. Consider a uniform density spherical object
falling under the influence of gravity. The object will travel will constant (terminal)
velocity if the accelerating force due to gravity Fg = mg is balance exactly by the
decelerating force due to atmospheric friction Fd = kSv2; S is the cross-sectional
surface area and v is the velocity of the falling object. Our equilibrium condition
is then

Fg = Fd

Since surface area satisfies S ∝ l2 it follows l ∝ S1/2. Given uniform density
m ∝ w ∝ l3 so it follows l ∝ m1/3. Combining proportionalities

m1/3 ∝ S1/2

from which it follows by substitution into the force equation that

m ∝ m2/3v2

or, after simplifying,
v ∝ m1/6

�

EXAMPLE 2.11

In this example we will attempt to model observed data displayed in Table 2.1 that
relates the heart rate of mammals to there body weight. From the table we see
that we would like to relate the heart rate as a function of body weight. Smaller
animals have a faster heart rate than larger ones. But how do we estimate this
proportionality?

We begin by assuming that all the energy E produced by the body is used
to maintain heat loss to the environment. This heat loss is in turn proportional to
the surface area s of the body. Thus,

E ∝ s

The energy available to the body is produced by the process of respiration and is
assumed to be proportional to the oxygen available which is in turn proportional
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mammal body weight (g) pulse rate
shrew2 3.5 782

pipistrelle bat1 4 660
bat2 6 588

mouse1 25 670
hamster2 103 347
kitten2 117 300
rat1 200 420
rat2 252 352

guinea pig1 300 300
guinea pig1 437 269

rabbit2 1,340 251
rabbit1 2,000 205

oppossum2 2,700 187
little dog1 5,000 120

seal2 22,500 100
big dog1 30,000 85

goat2 33,000 81
sheep1 50,000 70
human1 70,000 72
swine2 100,000 70
horse2 415,000 45
horse1 450,000 38
ox1 500,000 40

elephant1 3,000,000 48

TABLE 2.1: Superscript 1 data source A.J. Clark; superscript 2 data source Altman and Dittmer. See
also [1] and [2].
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to the blood flow B through the lungs. Hence, B ∝ s If we denote the pulse rate
as r we may assume

B ∝ rV

where V is the volume of the heart.
We still need to incorporate the body weight w into this model. If we take W

to be the weight of the heart assuming constant density of the heart it follows

W ∝ V

Also, if the bodies are assumed to be geometrically similar then w ∝ W so by
transitivity w ∝ V and hence

B ∝ rw

Using the geometric similarity again we can relate the body surface area s to
its weight w. From characteristic length scale arguments

v1/3 ∝ s1/2

so

s ∝ w2/3

from which we have rw ∝ w2/3 or

r = kw−1/3

To validate this model we plot w−1/3 versus r for the data Table 2.8. We see
that for the larger animals with slower heart rates that this data appears linear
and suggests this rather crude model actually is supported by the data. For much
smaller animals there appear to be factors that this model is not capturing and the
data falls off the line.

2.4 DIMENSIONAL ANALYSIS

In this chapter we have explored modeling with functions and proportion. In some
instances, such as the mammalian heart rate, it is possible to cobble enough infor-
mation together to actually extract a model; in particular, to identify the functional
form for the relationship between the dependent and independent variables. Now
we turn to a surprisingly powerful and simple tool known as dimensional analysis1.

Dimensional analysis operates on the premise that equations contain terms
that have units of measurement and that the validity of these equations, or laws,
are not dependent on the system of measurement. Rather these equations relate
variables that have inherent physical dimensions that are derived from the funda-
mental dimensions of mass, length and time. We label these dimensions generically
as M,L and T , respectively.

As we shall see, dimensional analysis provides an effective tool for mathemat-
ical modeling in many situations. In particular, some benefits include

1This dimension should not be confused with the usual notion of geometric dimension.
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• determination of the form of a joint proportion

• reduce number of variables in a model

• enforcement of dimensional consistency

• ability to study scaled versions of models

2.4.1 Dimensional homogeneity

An equation is said to be dimensionally homogeneous if all the terms in the equation
have the same physical dimension.

EXAMPLE 2.12

All the laws of physics are dimensionally homogeneous. Consider Newton’s law

F = ma

The units on the right side are

M · L

T 2

so we conclude that the physical dimension of a force must be MLT−2. �

EXAMPLE 2.13

The equation of motion of a linear spring with no damping is

m
d2x

dt2
+ kx = 0

What are the units of the spring constant? Dimensionally we can recast this equa-
tion as

MLT−2 + MaLbT cL = 0

Matching exponents for each dimension permits the calculation of a, b and c.

M : a = 1

L : 1 = b + 1

T : − 2 = c

Thus we conclude that the spring constant has the dimensions MT−2. �

EXAMPLE 2.14

Let v be velocity, t be time and x be distance. The model equation

v2 = t2 +
x

t

is dimensionally inconsistent.
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EXAMPLE 2.15

An angle may be defined by the formula

θ =
s

r

where the arclength s subtends the angle θ and r is the radius of the circle. Clearly
this angle is dimensionless.

2.4.2 Discovering Joint Proportions

If in the formulation of a problem we are able to identify a dependent and one
or more independent variables, it is often possible to identify the form of a joint
proportion. The form of the proportion is actually constrained by the fact that the
equations must be dimensionally consistent.

EXAMPLE 2.16 Drag Force on an Airplane

In this problem we consider the drag force FD on an airplane. As our model we
propose that this drag force (dependent variable) is proportional to the independent
variables

• cross-sectional area A of airplane

• velocity v of airplane

• density ρ of the air

As a joint proportion we have

FD = kAavbρc

where a, b and c are unknown exponents. As a consequence of dimensional consis-
tency we have

MLT−2 = (M0L0T 0)(L2)a(
L

T
)b(

M

L3
)c

= M cL2a−3c+bT−b

From the M exponent we conclude c = 1. From the T exponent b = 2 and
from the L exponent it follows that 1 = 2a − 3c + b, whence a = 1. Thus the only
possibility for the form of this joint proportion is

FD = kAv2ρ

Note that if the density of were a constant it would be appropriate to simplify this
dependency as

F = k̃Av2

but now the constant k̃ actually has dimensions. �
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2.4.3 Procedure for Nondimensionalization

Consider the nonlinear model for a pendulum

d2θ

dt2
= −g

l
sin θ

Based on the terms in this model we may express the solution very generally as a
relationship between these included terms, i.e.,

φ(θ, g, l, t) = 0

Note that the angle in this model is dimensionless but the other variables all
have dimensions. We can convert this equation into a new equation where none
of the terms have dimensions. This will be referred to, for obvious reasons, as a
dimensional form of the model.

To accomplish this, let

τ =
t

√

l/g
.

The substitution of variables may be accomplished by noting that

d2θ

dt2
=

d2θ
l
g dτ2

Thus, after cancelation, the dimensionless form for the nonlinear pendulum model
is

d2θ

dτ2
= − sin θ

Now the solution has the general form

f(θ, τ) = 0,

or equivalently,

f(θ,

√

l

g
t) = 0

This is a special case of a more general theory.
The Buckingham π-theorem. Any dimensionally homogeneous equation with

physical variables x1, . . . , xm expressed

φ(x1, . . . , xm)

may be rewritten in terms of its associated dimensionless variables π1, . . . , πn as

f(π1, . . . , πn) = 0

where

πk = xak1

1 . . . xakm

m
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2.4.4 Modeling with Dimensional Analysis

Now we consider two examples of the application of the ideas described above
concerning dimensional analysis. In each of these examples there is more than one
dimensionless parameter and it is appropriate to apply the Buckingham π-theorem.

The Pendulum. In this example the goal is to understand how the period
of a pendulum depends on the other parameters that describe the nature of the
pendulum. The first task is to identify this set of parameters that act as the
independent variables on which the period P depends.

Obvious candidates include From this list we are motivated to write

variable symbol dimensions
mass m M
length l L
gravity g LT−2

angle θ0 M0L0T 0

period P T

TABLE 2.2: Parameters influencing the motion of a simple pendulum.

P = φ(m, l, g, θ0)

As we shall see, attempting to establish the form of φ directly is unnecessarily
complicated. Instead, we pursue the idea of dimensional analysis.

To begin this modeling procedure, we compute the values of a, b, c, d and e
that make the quantity

π = malbgcθd
0P e

a dimensionless parameter. Again, this is done by equating exponents on the fun-
damental dimensions

M0L0T 0 = MaLb(LT−2)c(M0L0T 0)dT e

From M0: 0 = a.
From L0: 0 = b + c.
From T 0: 0 = −2c + e.
From this we may conclude that

π = m0l−cgcθd
0P 2c

or, after collecting terms,

π = θd
0

(gP 2

l

)c

where π is dimensionless for any values of d and c. Thus we have found a complete
set of dimensionless parameters

π1 = θ0
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and

π2 =

√

g

l
P

Since the period P of the pendulum is based on dimensionally consistent
physical laws we may apply the Buckingham π-theorem. In general,

f(π1, π2) = 0

which we rewrite as
π2 = h(π1)

which now becomes

P =

√

l

g
h(θ0)

We may draw two immediate conclusions from this model.

• The period depends on the square root of the length of the pendulum.

• The period is independent of the mass

Of course we have not really shown these conclusions to be ”true”. But now we have
something to look for that can be tested. We could test these assertions and if they
contradict our model then we would conclude that we are missing an important
factor that governs the period of the pendulum. Indeed, as we have neglected drag
forces due to friction it seems our model will have limited validity.

The functional form of h may now be reasonable calculated as there is only
one independent variable θ0. If we select several different initial displacements θ0(i)
and measure the period for each one we have a set of domain–range values

h(θ0(i)) = Pi

√

g

l

to which a data fitting procedure may now be applied.

The damped pendulum. We assumed that there was no damping of this
pendulum above due to air resistance. We can include a drag force FD by aug-
menting the list of relevant parameters to

m, l, g, θ0, P, FD

Now our dimensionless parameter takes the form

π = malbgcθd
0P eF f

D

Converting to dimensions

M0L0T 0 = MaLb(LT−2)c(M0L0T 0)dT e(MLT−2)f

As
0 = a + f
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it is no longer possible to immediately conclude that a = 0. In fact, it is not. (See
problems).

Fluid Flow. Consider the parameters governing the motion of an oil past
a spherical ball bearing. Let’s assume they include:

variable symbol dimensions
velocity v LT−1

density ρ ML−3

gravity g LT−2

radius l L
viscosity µ ML−1T−1

TABLE 2.3: Parameters influencing the motion of a fluid around a submerged body.

The dimensionless combination has the form

π = vaρblcgdµe

Using the explicit form of the physical dimensions for each term we have

M0L0T 0 = (LT−1)a(ML−3)b(L)c(LT−2)d(ML−1T−1)e

Again, matching exponents
M : 0 = b + e

L : 0 = a − 3b + c + d − e

T : 0 = −a − 2d − e

Sinc there are three equations and five unknowns the system is said to be unde-
termined. Given these numbers, we anticipate that there we can solve for three
variable in terms of the other two. Of course, we can solve in terms of any of the
two variables. For example,

a = −2d − e

b = −e

c = d − e

Plugging these constraints into our expression for π gives

π =
(v2

lg

)−d(ρlv

µ

)−e

Thus, our two dimensionless parameters are the Froude number

π1 =
v2

lg

and the Reynolds number

π2 =
vρl

µ

For further discussion see Giordano, Wells and Wilde, UMAP module 526.
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PROBLEMS

2.1. By drawing a new graph, show the effect of the size of the island on the

• extinction curve

• migration curve

Now predict how island size impacts the number of species on the island. Does
this seem reasonable?

2.2. Give an example of a commodity that does not obey the

• law of supply

• law of demand

and justify your claim.
2.3. Translate into words the qualitative interpretation of the slope of the supply and

demand curves. In particular, what is the meaning of a

• flat supply curve?

• steep supply curve?

• steep demand curve?

2.4. Consider the table of market adjustments below. Assuming the first point is
on the demand curve, compute the equations of both the demand and supply
curve. Using these equations, find the missing values A,B,C,D. What is the
equilibrium point? Do you think the market will adjust to it?

quantity price
3 0.7

0.14 0.7
0.14 0.986

0.1972 0.986
A =? B =?
C =? D =?

2.5. Using the cobweb plot show an example of a market adjustment that oscillates
wildly out of control. Can you describe a qualitative feature of the supply and
demand curves that will ensure convergence to an equilibrium?

2.6. Consider the effect of a price increase on airplane fuel (kerosene) on the airline
industry. What effect does this have on the supply curve? Will the airline
industry be able to pass this cost onto the flying public? How does your answer
differ if the demand curve is flat versus steep?

2.7. Prove properties 2.1 and 2.2.
2.8. Is the temperature measured in degrees Fahrenheit proportional to the temper-

ature measured in degrees centigrade?
2.9. Consider the Example 2.6 again. Demonstrate the proportionalities stated. For

the case of the breaking distance equate the work done by the breaks to the
dissipated kinetic energy of the car.

2.10. Items at the grocery store typically come in various sizes and the cost per unit is
generally smaller for larger items. Model the cost per unit weight by considering
the superposition of proportions due to the costs of

• production

• packaging
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• shipping

the product. What predictions can you make from this model. This problem
was adapted from Bender [1].

2.11. Go to your nearest supermarket and collect data on the cost of items as a function
of size. Do these data behave in a fashion predicted by your model in the previous
problem?

2.12. In this problem take the diagonal of a rectangle as it’s length scale l. Show by
direct calculation that this can be used to measure the area, i.e.,

A = αl2

Determine the constant of proportionality α in terms of the shape factor of the
rectangle.

2.13. Consider a radiator designed as a spherical shell. If the characteristic length
of the shell doubles (assume the larger radiator is geometrically similar to the
smaller radiator) what is the effect on the amount of heat loss? What if the
design of the radiator is a parallelpiped instead?

2.14. How does the argument in Example 2.10 change if the falling object is not spher-
ical but some other irregular shape?

2.15. Extend the definition of geometric similarity for

• parallelpipeds

• irregularly shaped objects

Can you propose a computer algorithm for testing whether two objects are ge-
omtrically similar?

2.16. Consider the force on a pendulum due to air friction modeled by

FD = κv2

Determine the units of κ.
2.17. Newton’s law of gravitation states that

F =
Gm1m2

r2

where F is the force between two objects of masses m1,m2 and r is the distance
between them.
(a) What is the physical dimension of G?
(b) Compute two dimensionless products π1 and π2 and show explicitly that

they satisfy the Buckingham π-theorem.
2.18. This problem concerns the pendulum example described in subsection 2.4.4. Re-

peat the analysis to determine the dimensionless parameter(s) but now omit the
gravity term g. Discuss.

2.19. This problem concerns the pendulum example described in subsection 2.4.4. Re-
peat the analysis for determining all the dimensionless parameters but now in-
clude a parameter κ associated with the drag force of the form FD = κv. Hint:
first compute the dimensions of κ.

2.20. Convert the equation governing the distance travelled by a projectile,

d2x

dt2
=

−gR2

(x+R)2
,
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to the form
d2y

dτ2
=

−1

(y + 1)2
,

where y and τ are dimensionless.
2.21. Reconsider the example in subsection 2.4.4. Instead of solving for a, b, c in terms

of d, e solve for c, d, e in terms of a and b. Show that now

π
′

1 =
v√
lg

and

π
′

2 =
ρl3/2g1/2

µ

Show also that both π
′

1 and π
′

2 can be written in terms of π1 and π2.
2.22. Consider an object with surface area A traveling with a velocity v through a

medium with kinematic viscosity µ and density ρ.
(a) Assuming the effect of µ is small compute the drag force due to the density

Fρ.
(b) Assuming the effect of ρ is small compute the drag force due to the kinematic

viscosity Fµ.

c) Compute the dimensionless ratio of these drag forces and discuss what pre-
dictions you can make.

2.23. Assume a drag force of the form

Fd = κv2

acts on a pendulum in addition to the gravity force. Use dimensional analysis to
show that the solution of the pendulum equation can be written in the form

θ = ψ(t
√

l/g, lκ/m).

2.24. How does the required power P of a helicopter engine depend on the length of the
rotors l? The rotors are pushing air so presumable the density ρ as well as the
weight of the helicopter w = mg are variables that affect the power requirement.
Draw a sketch of your result plotting P versus l. See [3] for more discussion of
this problem.
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C H A P T E R 3

Linear Programming

Linear programming, like its nonlinear counterpart, is a method for making de-
cisions based on solving a mathematical optimization problem. The general field
of linear programming has been a major area of applied mathematical research in
the last 50 years. A combination of new algorithms, e.g., the simplex method,
and widely available computing power now make this an indispensable tool for the
mathematical modeler.

We begin our discussion of linear programming by presenting the basic math-
ematical formulation and terminology in general terms. We will follow this with
a number of examples of problems that may be formulated in terms of linear pro-
grams. Our goal here is to obtain an abstract understanding of what a linear
program is and to develop an intuition that will assist the modeler in assessing
whether linear programming is the right tool for a given problem.

Consider a linear function of the variables (x1, . . . , xn),

F (x1, . . . , xn) = f1x1 + f2x2 + · · · + fnxn

where the parameters fi are known. We seek to pick the values of all the xi, referred
to as decision variables, so as to maximize F (x1, . . . , xn) which is referred to as the
objective function. Clearly picking each xi = ∞ (or even just one) would provide
a maximum, albeit meaningless. The interest arises when the values of the xi are
constrained, e.g.,

a11x1 + · · · + a1nxn ≤ b1

Based on the application many constraints are possible so we write

ai1x1 + · · · + ainxn ≤ bi

for i = 1, . . . ,m. Note that these constraints are also linear in the decision variables.
We may interpret this system of constraints geometrically as defining a region, i.e., a
continuum of points such that all the constraints are simultaneously satisfied. This
region is referred to as the feasible set S. So we may view the optimization problem
as one to find the maximum value of the objective function over the feasible set S.

We now formulate this optimization problem in terms of vectors and matrices.
Let x = (x1, . . . , xn)T be the (column) vector of the unknown variables, and let
f = (f1, . . . , fn)T be the vector of coefficients of the objective function, F (x) = fT x.
We also introduce the m × n matrix A whose entries are the coefficients in the
inequality constraints, (A)ij = aij . If a and b are vectors of the same length then
we write a ≥ b if ai ≥ bi holds for all components.

Definition 1. A linear program associated with f , A, and b is the minimum
problem

min
x

fT x

39
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or the maximum problem

max
x

fT x

subject to the constraint

Ax ≤ b.

3.1 EXAMPLES OF LINEAR PROGRAMS

In this section we survey a variety of applications that fit exactly into the formulation of
the abstract linear program.

3.1.1 Red or White?

A winemaker would like to decide how many bottles of red wine and how many
bottles of white wine to produce. Given his expertise is in red wine making he can
sell a bottle of red wine for $12 while he can only sell a bottle of white wine for
$7. Clearly the winemaker would seek to maximize his profits, and, having recently
completed a course in mathematical modeling, proceeds to construct the objective
function

F (x1, x2) = 12x1 + 7x2

where the decision variables are the number of bottles of red wine to produce x1

and the number of bottles of white wine to produce, i.e., x2.
Aging wine in wooden or glass-lined vats is an integral component of the

production process, but due to limited space the wine must be aged for a limited
time. The wine maker has determined that red wine should be aged two years per
bottle and white wine one year per bottle and his facilities allow that each batch is
limited to 10,000 bottle-years (5 bottles of red and 3 bottles of white require a total
of 13 bottle years ripening time). Thus the winemaker formulates a constraint

2x1 + x2 ≤ 10000

Also the volume of grapes that may be processed is limited and it takes 3
gallons of grapes to make a bottle of red wine and two gallons of grapes to make
a bottle of white wine. Furthermore, the winery can only process a total of 16,000
gallons of grapes for each batch. Thus, the winemaker produces the additional
constraint

3x1 + 2x2 ≤ 16000

Now the winemaker would like to determine how many bottles of each wine
to produce as well as how much money he will expect to make. Note that we must
also require that negative bottles of wine are not allowed so

x1 ≥ 0

and

x2 ≥ 0
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3.1.2 How Many Fish?

A child with a new 29 gallon fish tank asks her daddy to put as many fish in the
tank as possible. Sensing that too many fish is not a good thing, the dad asks the
pet shop owner how many fish can go into a tank. The answer was more complex
than anticipated. ”You can put one inch of fish in per gallon of water.” The little
girl then added that she wanted only the big orange fish (Gouramis) and the small
stripy fish (Zebra Danios).

As the child seeks to maximize the total number of fish her objective function
is

F (x1, x2) = x1 + x2

where x1 is the number of Gouramis and x2 is the number of Zebra Danios.
Additionally, a full grown Gourami is two inches long while a Danio is just

one inch long. The constraint of not exceeding 29 inches of total fish length can
now be written

2x1 + x2 ≤ 29

Danios are very active fish and actually require twice as much food as Gouramis.
Each Danio eats 4 grams/day of fish flakes while the slower Gourami eats 2 grams/day.
The dad decides that he would prefer not to go broke buying fish food and thus
wants to limit the tank to 50 grams/day. Thus, we have the constraint

2x1 + 4x2 ≤ 50

The pet shop owner adds, by the way, that Danios need to live in schools of
at least 5 fish or they don’t do well. Thus

x2 ≥ 5

Additionally, the little girl stipulates that she must have at least two Gouramis
as they are known to kiss (hence the term Kissing Gouramis) so we add

x1 ≥ 2

How many Gouramis and Danios can the little girl have in her tank?

3.2 GEOMETRIC SOLUTION OF A 2D LINEAR PROGRAM

Let us now solve the winemaker’s linear programming problem using graphical
techniques. Recalling the problem:

• Objective function: F (x1, x2) = 12x1 + 7x2

• Constraint 1: 3x1 + 2x2 ≤ 16000

• Constraint 2: 2x1 + x2 ≤ 10000

• Constraint 3: x1 ≥ 0

• Constraint 4: x2 ≥ 0
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FIGURE 3.1: Geometric picture of the linear programming problem.
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First, let us identify the feasible set. Again, this is the intersection of all
the regions defined by the constraints. (Note that this set is independent of the
objective function.) The boundary of the first constraint is defined by the equality

x2 = 8000 − 3

2
x1

The constraint may be viewed as a half-plane with this line dividing the region
of allowed points from the unallowed points. It is easy to identify which region
is the allowed region by considering a single point. For example, is the origin a
point that satisfies the first constraint? Since the answer is clearly yes we know
that the set of points that satisfies constraint 1 consists of the halfplane defined by
x2 = 8000 − 3

2x1 that contains origin.
Similarly, the second constraint defines a halfplane of points containing the

origin and bounded by the line

x2 = 10000 − 2x1

The intersection of constraints 3 and 4 is the first quadrant of the x1x2 plane.
The intersection of all of these constraints as shown in Figure 3.1 constitutes

the feasible set. Now we must pick the point in the feasible set that maximizes the
objective function.

We can define an isoprofit line to be

12x1 + 7x2 = c

For all points on this line the profit is the same. We can see that as c decreases
the line shifts towards the origin. So the goal is to pick the isoprofit line with the
largest value of c such that x1, x2 is a point in the feasible set. Graphically we
see that the first point the descending isoprofit line will touch is the vertex of the
intersection of constraints 1 and 2. This is easily calculated to be (4000, 2000).

Thus, the solution to the winemaker’s linear programming problem is that he
should produce 4000 bottles of red and 2000 bottles of white and that this will lead
to a maximum profit of $62,000.

3.3 SENSITIVITY ANALYSIS

Often the coefficients in a linear programming model are known only approximately.
Thus, it is interesting to know what the impact of modifying the terms present in
the model. How is the objective function impacted? How does the optimal solution
change? These questions are the subject of sensitivity analysis.

3.3.1 Price Sensitivity

First we examine how changing the price of a bottle of white wine impacts the
optimal solution. Letting the price of the white wine be a variable w we now have
the linear program

• Objective function: F (x1, x2) = 12x1 + wx2

• Constraint 1: 3x1 + 2x2 ≤ 16000
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• Constraint 2: 2x1 + x2 ≤ 10000

• Constraint 3: x1 ≥ 0

• Constraint 4: x2 ≥ 0

From our graphical solution we know that any isoprofit line with slope between -2
and -3/2 will produce the same optimal solution of (4000, 2000). Since the slope of
the isoprofit line is −12/w this condition is

−2 <
12

w
< −3

2

from which we conclude that the price of the white wine may vary as

6 < w < 8

with the solution unchanged as (4000, 2000). Further examination produces Table
3.1. The double arrows here mean that any point on the isoprofit curve containing
these points produces the same profit.

cost of white wine optimal solution
6 < w < 8 (4000, 2000)

w = 6 (4000, 2000) ↔ (5000, 0)
w = 8 (4000, 2000) ↔ (0, 8000)
w < 6 (5000, 0)
w > 8 (0, 8000)

TABLE 3.1: The effect of pricing the white wine on the optimal solution.

3.3.2 Resource Sensitivity

Now we let the number of gallons of grapes, α, and the number of bottle-years
storage capacity, β, be variable. Now the linear program becomes

• Objective function: F (x1, x2) = 12x1 + 7x2

• Constraint 1: 3x1 + 2x2 ≤ α

• Constraint 2: 2x1 + x2 ≤ β

• Constraint 3: x1 ≥ 0

• Constraint 4: x2 ≥ 0

The relative values of α and β determine the geometry of the solution. For ex-
ample, if α/2 > β then constraint 1 becomes irrelevant. When the intersection of
constraints 1 and 2 determines the optimal solution it is readily shown that

x1 = −α + 2β
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and
x2 = 2α − 3β

Hence the optimal solution to the objective function can be expressed as

f(x1, x2) = 2α + 3β

Consequently, if α is increased by one unit then f(x1, x2) is increased by 2, while if β
is increased by one unit then f(x1, x2) is increased by 3. So if a winemaker considers
expanding his winery he realizes that the cost of increasing grape processing must
be less than $2 and the expense of increasing wine storage must be less than $3.
Otherwise expansion will lose money.

3.3.3 Constraint Coefficient Sensitivity

Now we consider the problem of adjusting one of the coefficients in one of the
constraint equations. In particular consider the amount of time γ we age a bottle
of red wine to be allowed to vary.

• Objective function: F (x1, x2) = 12x1 + 7x2

• Constraint 1: 3x1 + 2x2 ≤ 16000

• Constraint 2: γx1 + x2 ≤ 10000

• Constraint 3: x1 ≥ 0

• Constraint 4: x2 ≥ 0

To simplify the discussion, let’s examine the effect of reducing the amount of time
we age the red wine from 2 years to 1.95 years. The solution to the resulting linear
program suggests that now 4444 bottles of red can be sold while 1333 bottles of
white can be sold for a total profit of $62,659, increasing the income by almost
$700. Of course, for this to be advisable it must be true that all the bottles of
this ”younger” red wine can still be sold at the same price, i.e., the taste has not
suffered enough to reduce its popularity.

3.4 LINEAR PROGRAMS WITH EQUALITY CONSTRAINTS

In the examples treated so far the constraints defining the feasible sets have been
inequalities. However, in practice it is often the case that further constraints in the
form of equalities have to be met.

Definition 2. Let f be a column vector of length n, b a column vector of
length m, and beq a column vector of length k. Let further A and Aeq be
m × n and k × n matrices, respectively. A linear program associated with f ,
A, b, Aeq and beq is the minimum problem

min
x

fT x (3.1)

or the maximum problem
max

x
fT x (3.2)
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subject to the constraints

Ax ≤ b
Aeqx = beq.

(3.3)

3.4.1 A Task Scheduling Problem

A steel manufacturer produces four different sizes Si, 1 ≤ i ≤ 4 (small, medium,
large, and extra large), of beams. These beams can be produced on any one of
three machines Mj , 1 ≤ j ≤ 3. Machine Mj produces lij feet of the beams of size
Si per hour. Each machine can be used up to 50 hours per week and the hourly
operating cost of machine Mj is $cj . The manufacturer has to produce ki feet of
beams of size Si per week. We assume that lij , cj and ki are given numbers.

Clearly the manufacturer wants to minimize the total operating costs. To
formulate this minimization problem as a linear program, let xij be the number of
hours per week machine Mj produces the beams of size Si. The total operating
costs are

F (x) =

3
∑

j=1

4
∑

i=1

cjxij =







c1(x11 + x21 + x31 + x41)
+c2(x12 + x22 + x32 + x42)
+c3(x13 + x23 + x33 + x43)

(3.4)

and this function has to be minimized subject to the following constraints:

• Each machine can operate at most 50 hours per week. Thus the variables xij

have to satisfy the inequalities

x1j + x2j + x3j + x4j ≤ 50 (1 ≤ j ≤ 3). (3.5)

• Since xij cannot be negative we have to introduce twelve further inequality
constraints

−xij ≤ 0 (1 ≤ i ≤ 4, 1 ≤ j ≤ 3). (3.6)

• The number of feet of the beams of size Si produced per week by machine
Mj is lijxij . Thus the total number of feet of this size produced in a week is
∑

j lijxij , and this must be equal to

li1xi1 + li2xi2 + li3xi3 = ki (1 ≤ i ≤ 4). (3.7)

We now have a linear program with fifteen inequality constraints and four equality
constraints.

To match the steel manufacturer problem to Definition 2, we write the twelve
variables in a column vector,

x = [x11, x21, x31, x41, x12, x22, x32, x42, x13, x23, x33, x43]
T .

The inequality constraints (3.5) and (3.6) have to be written in matrix vector
form as Ax ≤ b. Let us denote by A1 and b1 the 3×12–matrix and the column vector
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of length 3, respectively, such that the inequalities (3.5) take the form A1x ≤ b1,
i.e.

A1 =





1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1



 , b1 =





50
50
50



 .

The inequalities (3.6) can be written as A2x ≤ b2, where A2 = −I with I the
12 × 12–identity matrix, and b2 the column vector of length twelve whose entries
are all zero. Thus the diagonal entries of A2 are −1 and the other entries are zero.

The full 15 × 12–matrix A is then obtained by appending the twelve rows of
A2 below the three rows of A1 and similarly for b,

A =





















































1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 −1





















































, b =





















































50
50
50
0
0
0
0
0
0
0
0
0
0
0
0





















































.

Likewise, setting

Aeq =









l11 0 0 0 l12 0 0 0 l13 0 0 0
0 l21 0 0 0 l22 0 0 0 l23 0 0
0 0 l31 0 0 0 l32 0 0 0 l33 0
0 0 0 l41 0 0 0 l42 0 0 0 l43









, beq =









k1

k1

k3

k4









,

the equality constraints (3.7) can be written in the form Aeqx = beq.

3.4.2 Transportation Problems

Transportation problems are typical applications of linear programming. Assume
a company has storage depots at m different locations A1, . . . , Am in which k dif-
ferent products P1, . . . , Pk are stored. Let Mij be the total amount of product Pj

stored in depot Ai. The company has customers C1, . . . , Cr in r different cities
and has to deliver the amount Nlj of product Pj to customer Cl. We assume fixed
transportation costs Tilj per unit amount of product Pj if transported to customer
Cl from storage deposit Ai.

Let xilj be the amount of product Pj delivered to customer Cl from deposit
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Ai. The problem is to minimize the total transportation costs

m
∑

i=1

r
∑

l=1

k
∑

j=1

Tiljxilj = min

subject to the constraints

xilj ≥ 0 for 1 ≤ l ≤ r, 1 ≤ j ≤ k, 1 ≤ i ≤ m (3.8)
r

∑

l=1

xilj ≤ Mij for 1 ≤ i ≤ m, 1 ≤ j ≤ k (3.9)

m
∑

i=1

xilj = Nlj for 1 ≤ l ≤ r, 1 ≤ j ≤ k. (3.10)

This is clearly a linear programming problem with inequality constraints (3.8) and
(3.9) and equality constraints (3.10). If m, k, r and the numbers Tilj ,Mij , Nlj are
given, the vectors and matrices f,A, b, Aeq, beq can be constructed similarly as in
Subsection 3.4.1.

3.5 A TARGETING PROBLEM

Consider the following problem of launching a rocket to a fixed altitude h in a given
time T , while expending a minimum amount of fuel. Let a(t) be the acceleration
exerted, y(t) the rocket altitude, and v(t) the rocket velocity at time t. The problem
can be formulated as follows.

Minimize
∫ T

0
|a(t)|dt

Subject to dv(t)
dt = a(t) − g, dx(t)

dt = v(t)
y(T ) = h
y(t) ≥ 0 (0 ≤ t ≤ T )
y(0) = 0, v(0) = 0
|a(t)| ≤ a0 (0 ≤ t ≤ T ),

(3.11)

where a0 is the maximal acceleration that can applied due to power limitations.
Clearly in order that the rocket can leave the ground a0 must be greater than the
earth acceleration g.

Note that the maximum altitude hmax to which the rocket can be launched
is reached if a(t) = a0 for 0 ≤ t ≤ T . If h > hmax then (3.11) has no solution. By
integrating the equations for dv(t)/dt and dy(t)/dt in (3.11) we find

hmax = (a0 − g)T 2/2.

3.5.1 Discretization and Solution of the Equations of Motion

Equation (3.11) belongs to the class of continuous optimization problems which does
not fit a priori into the class of linear programming problems. In order to make the
problem amenable to linear programming, we discretize time and assume that

a(t) = ai = const for ti−1 < t < ti, (3.12)
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where
ti = iτ τ = T/n,

and n is a positive integer. The discretized problem is described by n variables
(a1, . . . , an) which have to be determined.

Within each of the n sub-intervals into which the interval 0 ≤ t ≤ T is divided,
the rocket encounters a constant acceleration,

dv(t)

dt
= ai − g,

dx(t)

dt
= v(t) if ti−1 ≤ t ≤ ti. (3.13)

After integration these equations lead to the well known linear and quadratic time
dependence of velocity and altitude in each sub-interval,

v(t) = (ai − g)(t − ti−1) + v(ti−1) (3.14)

y(t) =
1

2
(ai − g)(t − ti−1)

2 + v(ti−1)(t − ti−1) + y(ti−1). (3.15)

We now set
vi = v(ti), yi = y(ti) (1 ≤ i ≤ n),

and evaluate the equations (3.14) and (3.14) at t = ti to obtain

vi = (ai − g)τ + vi−1

yi = 1
2 (ai − g)τ2 + vi−1τ + yi−1.

(3.16)

Equation (3.16) is a linear system of first order difference equations for the (vi, yi).
The initial values are (v0, y0) = (0, 0). Methods for solving difference equations are
discussed in Chapter 6, and we will show there that the solution of (3.16) is given
by

vi = τ
(

i
∑

j=1

aj − ig
)

(3.17)

yi = τ2
(

i
∑

j=1

(1

2
+ i − j

)

aj −
i2g

2

)

. (3.18)

These equations form the solution of the discretized equations of motion for any
given set of acceleration values (a1, . . . , an).

3.5.2 Formulation as Linear Program

Now we formulate the discretized optimization problem as linear programming
problem with inequality and equality constraints. The equations of motion

dv(t)

dt
= a(t) − g,

dx(t)

dt
= v(t), y(0) = 0, v(0) = 0 (3.19)

have been solved already, so we only need to consider the equality and inequality
constraints

y(T ) = h, |a(t)| ≤ a0, y(t) ≥ 0 (0 < t < T ).
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From equation (3.18) we infer that the discretized forms of the equality and in-
equality constraints for y(t) (note that y(T ) = yn) can be written as

n
∑

j=1

(1

2
+ n − j

)

aj =
n2g

2
+

h

τ2
(3.20)

i
∑

j=1

(1

2
+ i − j)aj ≥ i2g

2
, (1 ≤ i ≤ n − 1), (3.21)

and the constraint for a(t) becomes

|ai| ≤ a0 (1 ≤ i ≤ n). (3.22)

The objective function which has to be minimized in the discretized problem is

n
∑

i=1

|ai| = min, (3.23)

and the minimization is subject to the constraints (3.20)– (3.22).

Note that (3.22) and (3.23) involve the absolute values of the variables ai and
hence are not described by linear functions. For inequalities this is not a problem,
however there is no way to rewrite the objective function (3.23) as a linear function
∑

i fiai. To solve this problem we treat the absolute values as extra variables. Our
minimization problem then depends on 2n unknown variables which we write again
in a column vector

x = [x1, . . . , xn, xn+1, . . . , x2n]T ,

where

xi = ai, xi+n = |ai| (1 ≤ i ≤ n).

The objective function is now a linear function of x,

F (x) =

2n
∑

i=n+1

xi = min . (3.24)

In order that the conditions xi+n = |xi| are met we have to introduce addi-
tional constraints. Since ai ≤ |ai| and −ai ≤ |ai| we impose

xi ≤ xi+n

−xi ≤ xi+n

}

for 1 ≤ i ≤ n. (3.25)

Clearly the inequalities (3.25) are not equivalent to the condition xi+n = |xi|.
However it can be shown that the solution of any linear programming problem is
located on the boundary of the feasible set, and for our problem this necessarily
implies that for each i one of the two inequalities in (3.25) turns into an equality if
x is an optimal solution.
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The inequality and equality constraints (3.20)–(3.22) are now rewritten in
terms of the xi as

xn+i ≤ a0 for 1 ≤ i ≤ n (3.26)

−
i

∑

j=1

(1

2
+ i − j)xj ≤ − i2g

2
for 1 ≤ i ≤ n − 1 (3.27)

n
∑

j=1

(1

2
+ n − j

)

xj =
n2g

2
+

h

τ2
. (3.28)

The discretized optimization problem is now to minimize the objective function
F (x) in (3.24) subject to the inequality constraints (3.25)–(3.27) and the equality
constraint (3.28). The objective function as well the inequality and equality con-
straints are formulated in terms of linear functions of x and so match the abstract
problem (3.1) subject to the constraints (3.3) of Definition 2. The matrix A is a
(4n − 1) × 2n matrix and Aeq is a 1 × 2n matrix, i.e. a row vector.

Numerical Solutions. In Figure 3.2 we show the optimal acceleration function
a(t) obtained by numerical solution of (3.24)–(3.28) together with v(t) and y(t) for
n = 5 (Figure 3.2 (a)) and n = 25 (Figure 3.2 (b)), and h = 300 and h = 700.
The other paramters are fixed at g = 32, T = 10, and a0 = 48. The optimal
solution has been computed using the linprog command of Matlab. The procedure
for generating the plots in Figure 3.2 can be summarized as follows.

• Generate the matrices and vectors f , A, b, Aeq, and beq of the linear program
according to equations (3.24)–(3.28).

• Apply a numerical solver to find the solution vector x. The first n components
of x are the optimal acceleration values (a1, . . . , an).

• Apply equations (3.17) and (3.18) to compute the velocity and altitude vectors
(v1, . . . , vn) and (y1, . . . , yn).

• Use equations (3.12), (3.14) and (3.15) to compute the piecewise constant,
piecewise linear and piecewise quadratic functions a(t), v(t) and y(t).

• Plot a(t), v(t), y(t).

As can be seen in Figure 3.2 the optimal acceleration and altitude functions
show some distinct features. The acceleration function a(t) starts with a0 and
stays there over a certain number of sub–intervals, then it decreases in the next
sub–interval, and after that a(t) is zero. The altitude function y(t) is monotonically
increasing and reaches the target altitude from below for larger values of h, whereas
for smaller values of h it passes through a maximum and reaches the target altitude
from above. In Section 3.6 we will see that the optimal solution to the discretized
targeting problem is the best approximation of a known analytical solution to (3.11).



52 Chapter 3 Linear Programming

0 2 4 6 8 10
0

10

20

30

40

50

t

a(
t)

h=300 

h=700 

0 2 4 6 8 10
−100

−50

0

50

100

150

t

v(
t)

h=700 

h=300 

0 2 4 6 8 10
0

200

400

600

800

t

y(
t)

h=700 

h=300 

(a)

0 2 4 6 8 10
0

10

20

30

40

50

t

a(
t)

h=300 

h=700 

0 2 4 6 8 10
−100

−50

0

50

100

150

t

v(
t)

h=700 

h=300 

0 2 4 6 8 10
0

200

400

600

800

t

y(
t)

h=700 

h=300 

(b)

FIGURE 3.2: Graphs of a(t), v(t), y(t) obtained by numerical solution of the linear program (3.24)–

(3.28) for g = 32, T = 10, a0 = 48, and two heights h = 300 and h = 700. (a): n = 25, (b):
n = 5.
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3.5.3 Targeting Problem with Air Resistance

Air resistance is modeled by a friction force Fd(v). Since linear programming re-
quires a linear model we assume Fd(v)/m = −kv, where k is a friction coefficient
in which the mass is absorbed. The problem (3.11) remains the same except that
the equation for dv(t)/dt is now replaced by

dv(t)

dt
= a(t) − g − kv(t). (3.29)

Discretization and Solution of the Equations of Motion. Equation (3.29)
is a linear first order differential equation for v(t). In a later chapter we will see
that the solution of (3.29) in the interval ti−1 ≤ t ≤ ti, where a(t) = ai = const, is
given by

v(t) =
ai − g

k
+

(

v(ti−1) −
ai − g

k

)

e−k(t−ti−1). (3.30)

The altitude y(t) still satisfies dy(t)/dt = v(t) and so can be found by integration
of (3.30),

y(t) = y(ti−1) +
ai − g

k

(

t − ti−1

)

+
1

k

(

v(ti−1) −
ai − g

k

)(

1 − e−k(t−ti−1

)

. (3.31)

Evaluating (3.30) and (3.31) at t = ti and letting again vi = v(ti), yi = y(ti) yields

vi = pai − gp + qvi−1

yi = rai − gr + pvi−1 + yi−1,
(3.32)

where we have set

q = e−kτ , p = (1 − q)/k, r = (τ − p)/k.

Equations (3.32) form again a linear system of first order difference equations. This
system is more complicated than (3.16), but still can be solved using the methods
of Chapter 6. The solution is

vi = p
i

∑

j=1

qi−jaj −
gp(1 − qi)

1 − q
(3.33)

yi =

i
∑

j=1

(

r +
p2(1 − qi−j)

1 − q

)

aj −
gp2(i − 1 − iq + qi)

(1 − q)2
− igr. (3.34)

Formulation as Linear Program. The formulation of the discretized targeting
problem with friction as linear program proceeds in the same way as in Subsection
3.5.2. We introduce the vector x of variables xi = ai and xi+n = |ai| (1 ≤ i ≤ n),
the objective function (3.24), and the inequality constraints (3.25)–(3.27). The
constraints yi ≥ 0 for 1 ≤ i ≤ n − 1 and yn = h become

−
i

∑

j=1

(

r +
p2(1 − qi−j)

1 − q

)

xj ≤ −gp2(i − 1 − iq + qi)

(1 − q)2
− igr (3.35)

n
∑

j=1

(

r +
p2(1 − qn−j)

1 − q

)

xj =
gp2(n − 1 − nq + qn)

(1 − q)2
+ ngr + h. (3.36)
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FIGURE 3.3: Graphs of a(t), v(t), y(t) computed from numerical solutions of (3.24)–(3.27), (3.35)–

(3.35) for g = 32, T = 10, a0 = 48, h = 300, k = 0.4 and k = 0.1, and (a): n = 25, (b):
n = 5.

The linear program for the discretized target problem with friction is now to mini-
mize (3.24) subject to the constraints (3.25)–(3.27) and (3.35)–(3.36).

As in the case without friction the maximum possible altitude hmax is reached
if ai = a0 for all i. From (3.31) we find

hmax =
a0 − g

k2

(

kT − 1 + e−kT
)

,

and the problem has no solution if h > hmax.
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Numerical Solutions. In Figure 3.3 we show the graphs of a(t), v(t), and y(t)
computed from numerical solutions of the linear program (3.24)–(3.27), (3.35)–
(3.36) for g = 32, T = 10, a0 = 48, h = 300, k = 0.4 and k = 0.1, and n = 25
and n = 5. The solutions are similar to those for the problem without friction, and
clearly the greater k the greater is the fuel consumption.

3.5.4 Additional Constraints

There is no problem to impose further conditions on the optimal solution of the
targeting problem (with or without friction), provided these conditions can be for-
mulated as linear equality or inequality constraints. We describe two such condi-
tions.

Soft Landing. Soft landing means that the target altitude is reached with veloc-
ity v(T ) = 0. This condition can be build into the linear program by imposing the
additional equality constraint

vn = 0,

where vn is represented in terms of the aj = xj through equations (3.17) for k = 0 or
(3.33) for k > 0. The vector beq then becomes a vector of length 2, and accordingly
Aeq is a 2 × 2n–matrix.

Upper Bound for the Velocity. To avoid damage it may be necessary to re-
strict also the magnitude of the velocity to |v(t)| ≤ v0. For the discretized problem
this requires that |vi| ≤ v0 for 1 ≤ i ≤ n. This inequality is equivalent to the two
linear inequalities

vi ≤ v0, −vi ≤ v0.

When the vi are represented in terms of the xi, these conditions take the form of 2n
additional linear inequality constraints imposed on x. The vector b is then extended
to a vector of length 6n−1, and accordingly A is extended to a (6n−1)×2n–matrix.

Numerical Solutions. In Figure 3.4 the graphs of a(t), v(t), and y(t) computed
from the optimal solution of the targeting problem with the condition of soft landing
are shown for g = 32, T = 20, a0 = 80, h = 400, k = 0.4, and n = 5. Figure 3.4 (b)
was obtained with the additional inequality constraint |v(t)| ≤ 30.

We note that the targeting problem with one of the additional constraints
considered in this subsection does not admit easily accessible analytical solutions.
In contrast, without these additional constraints analytical solutions can be easily
found as will be shown in the next section.

3.6 ANALYSIS OF THE TARGETING PROBLEM

In this section we study the targeting problem (3.11) analytically. The numerical
solutions shown in Figure 3.2 suggest that the optimal acceleration function a(t) is
maximal in a certain initial interval 0 ≤ t ≤ T1 and zero for T1 < t ≤ T , where T1

is adjusted such that the target altitude h is reached in time T . We will see that
for this acceleration function the fuel consumption is indeed minimal.
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FIGURE 3.4: Graphs a(t), v(t), y(t) computed from the optimal solution of the discretized targeting

problem for g = 32, T = 20, a0 = 80, h = 400, k = 0.4, and n = 5, with additional constraints (a):
v(T ) = 0, (b): v(T ) = 0 and |v(t)| ≤ 30.
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3.6.1 Analytical Solution

Let a(t) be an acceleration function of the form

a(t) =

{

a0 if 0 ≤ t ≤ T1

0 if t > T1,
(3.37)

where a0 > g and T1 > 0 are given numbers. For this form the solution of the
equations of motion (3.19) is given by (Exercise 3.12 (a))

v(t) =

{

(a0 − g)t if 0 ≤ t ≤ T1

a0T1 − gt if t ≥ T1,
(3.38)

y(t) =

{

(a0 − g)t2/2 if 0 ≤ t ≤ T1

−a0T
2
1 /2 + a0T1t − gt2/2 if t ≥ T1.

(3.39)

Consider then the problem of launching the rocket to a prescribed altitude h in a
given time T . The condition y(T ) = h leads to the quadratic equation

−1

2
a0T

2
1 + a0T1T − 1

2
gT 2 = h

for T1. The solution with T1 ≤ T is

T1 = T
(

1 −
√

1 − (g + 2h/T 2)/a0

)

, (3.40)

and in order that the expression under the square root be positive we have to require
that

h ≤ (a0 − g)T 2/2. (3.41)

If T1 and a0 are related by (3.40), the fuel consumption measured by C =
∫ T

0
a(t)dt = a0T1 is

C = a0T
(

1 −
√

1 − (g + 2h/T 2)/a0

)

. (3.42)

The following theorem (Exercise 3.12 (c)) shows that C is the minimal fuel con-
sumption that can be achieved if |a(t)| is bounded by a0.

Theorem 3. Let a(t) be an arbitrary piecewise constant acceleration function
such that y(T ) = h for the solution of (3.19), and assume that |a(t)| ≤ a0.
Then (3.41) is satisfied, and

∫ T

0

|a(t)|dt ≥ C,

where C is given by equation (3.42).

Thus the solution of the original (not discretized) targeting problem (3.11) is given
by (3.37) with T1 and a0 related by (3.40), provided the inequality (3.41) is satisfied.
The expression (a0−g)T 2/2 on the right hand side of this inequality is the maximal
altitude to which the rocket can be launched in time T if |a(t)| is bounded by a0.
This altitude is reached if T1 = T , i.e. for the uniform acceleration a(t) = a0 for
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0 ≤ t ≤ T . If h > (a0 − g)T 2/2 then a solution to the targeting problem (3.11)
does not exist.

When a numerical solver is applied to the linear program of Subsection 3.5.2,
the solver seeks to find the best approximation to the analytical solution (3.37),
(3.40). The best approximation is

a(t) =







a0 if 0 ≤ t < mτ
a1 < a0 if mτ ≤ t ≤ (m + 1)τ

0 if t ≥ (m + 1)τ,

where m is the largest integer for which mτ ≤ T1(a0). The value of a1 is adjusted
such that the altitude h is reached from the initial data (v(mτ), y(mτ)) within time
(n−m)τ . In the unlikely case that T1/τ is an integer, the discrete optimal solution
coincides with the exact optimal solution.

3.6.2 Dimensionless Variables

Equation (3.40) depends on the physical variables T1, T, h, g, a0. We could apply
dimensional analysis to reduce the number of variables, but there is a simpler way
to identify the relevant dimensionless combinations. If (3.40) is divided by T , the
equation can be rewritten as

θ = 1 −
√

1 − 1/β, (3.43)

where

θ =
T1

T
≤ 1, β =

a0

g + 2h/T 2
≥ 1. (3.44)

The variable θ is the ratio of T1 and T and so θ ≤ 1. The denominator in β is the
uniform acceleration (active for 0 ≤ t ≤ T ) through which the rocket is launched to
the target altitude h in time T . According to (3.41) h + gT 2/2 ≤ a0, hence β ≥ 1.

A natural dimensionless variable in terms of which the fuel consumption can
be measured is the ratio

γ = C/C0, (3.45)

where C0 is the fuel consumption for the uniform acceleration g + 2h/T 2,

C0 = (g + 2h/T 2)T = a0T/β. (3.46)

After dividing equation (3.42) by C0 we obtain

γ = β −
√

β2 − β, (3.47)

hence the dimensionless acceleration time θ and fuel consumption γ both depend
only on the single dimensionless variable β that measures a0 in units of g + 2h/T 2.

When β increases from β = 1 towards ∞, γ and θ decrease monotonically
from 1 to the limiting values γ∞ = 1/2 and θ∞ = 0, respectively, see Figure 3.5.
Consequently the greater β the smaller are θ and γ. In the limit β → ∞ and hence
a0 → ∞, the accelerating force becomes an impulsive force that instantaneously, in
an infinitesimal time interval, brings the velocity from v(0−) = 0 to v(0+) = v0.
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FIGURE 3.5: Graphs of θ and γ versus β, equations (3.43) and (3.47).

Then for t > 0 the trajectory of the rocket is y(t) = v0t−gt2/2 and v0 is determined
by y(T ) = h, whence

v0 =
1

2
(g + 2h/T 2)T =

1

2
C0.

The limiting value lima0→∞ C(a0) = C0/2 is the minimal fuel consumption if there
is no constraint on |a(t)|.

3.6.3 Maximum Altitude

Now we address the question when the rocket reaches the target height from above
or from below. The altitude function y(t) has a maximum hm = y(Tm) at time
t = Tm determined by v(t) = 0,

Tm =
a0

g
T1, hm =

a0

2
T 2

1

(a0

g
− 1

)

. (3.48)

Since now h and a0 have to be treated independently of each other, we introduce
the dimensionless variables

α =
a0

g
, ξ =

2h

gT 2
, θm =

Tm

T
, (3.49)

and note that β = α/(1 + ξ). The condition that the maximum of y(t) is attained
in the range 0 ≤ t ≤ T is θm ≤ 1. From (3.40) and (3.48) we find that

θm = α −
√

α2 − (1 + ξ)α, (3.50)

and this is less than one if

α ≥ 1

1 − ξ
. (3.51)

Moreover, the condition for a solution to exist at all is β ≥ 1. In terms of α and ξ
this condition becomes

α ≥ 1 + ξ. (3.52)

The boundary lines α = 1/(1 − ξ) and α = 1 + ξ separate the (α, ξ)–plane into
three regions I, II, and III as shown in Figure 3.6. In regions I and II the rocket



60 Chapter 3 Linear Programming

0 1 2

2

4

6

α

ξ

region I region II 

region III 

α=1/(1−ξ) 

α=1+ξ 

FIGURE 3.6: Regions I, II, III in the (ξ, α)–plane.

reaches h from above and below, respectively. In region III the targeting problem
has no solution. We summarize this in terms of the physical variables a0, h, T :

• If h < gT 2(1−g/a0)/2 then the rocket reaches the target altitude from above.

• If gT 2(1 − g/a0)/2 < h ≤ (a0 − g)T 2/2 then the rocket reaches the target
altitude from below.

• If h > (a0 − g)T 2/2 then the targeting problem (3.11) has no solution.
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PROBLEMS

3.1. Think of an optimization problem that can be written as a linear program with
two decision variables. Specify the objective function as well as the constraints.
Avoid constructing a problem the solution to which is such that one of the deci-
sion variables is zero. Can you extend your problem to more decision variables
and constraints?

3.2. Solve graphically the question of how many Zebra Danios and Gouramis should
be purchased for the fish tank modeled in section 3.1.2.

3.3. A new burger chain, the EcoliExpress, has has two new products: the large 1/3
pound ”Big Whoopie” burger and the smaller 1/4 pound ”Wimpy Whoopie”
burger. It has been determined in test market trials that the Big Whoopie can
be sold at a profit of 45 cents per burger and the Wimpy Whoopie at a profit
of 25 cents. Furthermore, a chain knows that it can sell all its burgers if it
uses 100 pounds of meat per week. In addition, the preparation time for a Big
Whoopie is two minutes and for a Wimpy Whoopie is one minute and the chain
has one employee working 40 hours per week preparing both types of Whoopies.
Assuming the owner of the EcoliExpress wishes to maximize profits formulate a
solution using linear programming. Using this model, answer the following:
(a) How many Big Whoopies and Wimpy Whoopies should be sold?
(b) Assuming the unit profit of the Big Whoopie is fixed at 45 cents, for what

range of prices of the Wimpy Whoopie is the solution in a) optimal?
(c) Assuming the unit profit of the Wimpy Whoopie is fixed at 25 cents, how

large does the unit profit for the Big Whoopie have to be to justify making
only this type of burger?

(d) What should the cost of meat be (per pound) to justify purchasing additional
quantities? Hint: the profit must increase.

In Exercises 3.4–3.8 first formulate the problem as linear program. Then use a linear
program solver such as the linprog function of Matlab to find the optimal solution.
3.4. An agricultural mill manufactures feed for cattle, sheep and chickens. This is

done by mixing the following ingredients: corn, limestone, soybeans, and fish
meal. These ingredients contain the following nutrients: vitamins, protein, cal-
cium, and crude fat. The contents of the nutrients in each kilogram of the ingre-
dients is summarized in Table 3.4. The mill contracted to produce 10, 8, and 8

Ingredient Vitamins Protein Calcium Crude Fat
Corn 8 10 6 8

Limestone 6 5 10 6
Soybeans 10 12 6 6
Fish Meal 4 8 6 9

TABLE 3.2:

(metric) tons of cattle feed, sheep feed, and chicken feed. Because of shortages,
a limited amount of the ingredients is available, namely 6 tons of corn, 10 tons
of limestone, 4 tons of soybeans, and 5 tons of fish meal. The price per kilogram
of these ingreients is $0.20, $0.12, $0.24, and $0.12. The minimal and maximal
units of the various nutrients that are permitted is summarized in Table 3.4 for a
kilogram of the cattle feed, the sheep feed, and the chicken feed. Formulate this
mixed–feed problem as a linear program so that the total costs are minimized.

3.5. A tractor factory has supply depots in three cities C1, C2, C3. Two traders T1

and T2 order 22 and 28 tractors of a certain special kind, respectively. The
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Vitamins Protein Calcium Crude Fat
Product Min Max Min Max Min Max Min Max

Cattle Feed 6 ∞ 6 ∞ 7 ∞ 4 8
Sheep Feed 6 ∞ 6 ∞ 6 ∞ 4 6

Chicken Feed 4 6 6 ∞ 6 ∞ 4 6

TABLE 3.3:

transportation costs per tractor (in dollars) from each of the three depots to the
locations of the traders and the total number N of available tractors in each
depot are summarized in Table 3.4. How many tractors should be delivered
from each of the three cities to each of the two traders in order that the total
transportation costs are minimized?

C1 C2 C3

T1 250 80 400
T2 300 100 200
N 15 25 25

TABLE 3.4:

3.6. Solve the scheduling problem of Subsection 3.4.1 for the following data

(lij) =







300 600 880
250 400 700
200 350 600
100 200 300






, (cj) =

[

30
50
80

]

, (ki) =







10000
8000
6000
6000






.

3.7. A confectioner manufactures two kinds of candy bars: “ProteinPlus”, that has
no carbohydrates, and “SugarPlus”, with no fat. ProteinPlus sells for a profit of
40 cents per bar, and SugarPlus sells for a profit of 50 cents per bar. The candy
is proccessed in three main operations: blending, cooking and packaging. The
following table records the average time in minutes required by each bar for each
of the processing operations:

Blending Cooking Packaging
ProteinPlus 1 5 3
SugarPlus 2 4 1

During each production run the blending equipment is available for a maximum
of 12 machine hours, the cooking equipment is available for at most 30 machine
hours, and the packaging equipment for no more than 15 hours. If this machine
time can be allocated to the making of either candy type at all times that is
available, the confectioner wants to know how many boxes of each type should
be produced in order to realize the maximum profit.

Formulate this problem as a linear program. Sketch the feasible region and
the optimal isoprofit line, and find the optimal solution.

3.8. Paul has 2200 per year to invest over the next five years. At the beginning of
each year he can invest in one–, two–, and three–year deposits at interest rates
of 8%, 17% (total) and 27% (total), respectively. If Paul reinvests his money
available each year, how much should he invest in each of the three deposits each
year so that his total cash at the end of the five years is a maximum?
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The following exercises deal with the targeting problem of Sections 3.5 and 3.6.
3.9. Without using software, solve the optimization problem

a1 + a2 + a3 = min

subject to the inequality constraints

32 ≤ a1 ≤ a0

0 ≤ a2 ≤ a0

0 ≤ a3 ≤ a0

3a1 + a2 ≥ 128,

and the equality constraint

5a1 + 3a2 + a3 = 336,

for
(a) a0 = 40,
(b) a0 = 64,
(c) a0 = 96.
Hint: Solve the equality constraint for a3 and substitute this into the objective
function and the inequality constraints to find a problem with only two variables
a1, a2. Solve this two–variable problem graphically.

3.10. Consider the linear program (3.24)–(3.28) with the additional constraints vn = 0
and |vi| ≤ v0 for 1 ≤ i ≤ n (see Subsection 3.5.4).
(a) Identify the vectors and matrices f , A, b, Aeq, beq. For example write fi = p1

for 1 ≤ i ≤ n, fi = p2 for n+ 1 ≤ i ≤ 2n, with p1, p2 to be determined.
(b) Write a Matlab function that receives g, a0, T, h, v0 as input and generates

the matrices in (a) as output.
3.11. Let g = 32, T = 20, a0 = 80, h = 100, and n = 25. Use a linear program solver

to find the optimal acceleration values (a1, . . . , an) for the discretized targeting
problem with friction constant k and the given additional constraints. If the
solver fails to find a solution explain why. If it finds a solution plot the acceler-
ation function a(t), the velocity v(t), and the altitude y(t). Comment on these
plots.
(a) k = 0, no additional constraint.
(b) k = 2, no additional constraint.
(c) k = 0.4, no additional constraint.
(d) k = 0.4, additional constraint |v(t)| ≤ 30 for 0 ≤ t ≤ T .
(e) k = 0.4, additional constraint v(T ) = 0.
(f) k = 0.4, additional constraints v(T ) = 0 and |v(t)| ≤ 30 for 0 ≤ t ≤ T .

3.12. In this exercise you work out some of the details of the analysis of Section 3.6.
(a) Verify equations (3.38) and (3.39).
(b) Verify equation (3.48).
(c) Prove Theorem 3 by induction on n.
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Modeling with Nonlinear
Programming

By nonlinear programming we intend the solution of the general class of problems
that can be formulated as

min f(x)

subject to the inequality constraints

gi(x) ≤ 0

for i = 1, . . . , p and the equality constraints

hi(x) = 0

for i = 1, . . . , q. We consider here methods that search for the solution using
gradient information, i.e., we assume that the function f is differentiable.

EXAMPLE 4.1

Given a fixed area of cardboard A construct a box of maximum volume. The
nonlinear program for this is

min xyz

subject to
2xy + 2xz + 2yz = A

EXAMPLE 4.2

Consider the problem of determining locations for two new high schools in a set of
P subdivisions Nj . Let w1j be the number of students going to school A and w2j

be the number of students going to school B from subdivision Nj . Assume that the
student capacity of school A is c1 and the capacity of school B is c2 and that the
total number of students in each subdivision is rj . We would like to minimize the
total distance traveled by all the students given that they may attend either school
A or B. It is possible to construct a nonlinear program to determine the locations
(a, b) and (c, d) of high schools A and B, respectively assuming the location of each
subdivision Ni is modeled as a single point denoted (xi, yi).

min
P

∑

j=1

w1j

(

(a − xj)
2 + (b − yj)

2

)
1

2

+ w2j

(

(c − xj)
2 + (d − yj)

2

)
1

2

64
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subject to the constraints
∑

j

wij ≤ ci

w1j + w2j = rj

for j = 1, . . . , P .

EXAMPLE 4.3

Neural networks have provided a new tool for approximating functions where the
functional form is unknown. The approximation takes on the form

f(x) =
∑

j

bjσ(ajx − αj) − β

and the corresponding sum of squares error term is

E(aj , bj , αj , β) =
∑

i

(

yi − f(xi)
)2

The problem of minimizing the error function is, in this instance, an unconstrained
optimization problem. An efficient means for computing the gradient of E is known
as the backpropogation algorithm.

4.1 UNCONSTRAINED OPTIMIZATION IN ONE DIMENSION

Here we begin by considering a significantly simplified (but nonetheless important)
nonlinear programming problem, i.e., the domain and range of the function to be
minimized are one-dimensional and there are no constraints. A necessary condition
for a minimum of a function was developed in calculus and is simply

f ′(x) = 0

Note that higher derivative tests can determine whether the function is a max or a
min, or the value f(x + δ) may be compared to f(x).

Note that if we let
g(x) = f ′(x)

then we may convert the problem of finding a minimum or maximum of a function to the
problem of finding a zero.

4.1.1 Bisection Algorithm

Let x∗ be a root, or zero, of g(x), i.e., g(x∗) = 0. If an initial bracket [a, b] is known
such that x∗ ∈ [a, b], then a simple and robust approach to determining the root is
to bisect this interval into two intervals [a, c] and [c, b] where c is the midpoint, i.e.,

c =
a + b

2
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If
g(a)g(c) < 0

then we conclude
x∗ ∈ [a, c]

while if
g(b)g(c) < 0

then we conclude
x∗ ∈ [b, c]

This process may now be iterated such that the size of the bracket (as well as the
actual error of the estimate) is being divided by 2 every iteration.

4.1.2 Newton’s Method

Note that in the bisection method the actual value of the function g(x) was only
being used to determine the correct bracket for the root. Root finding is accelerated
considerably by using this function information more effectively.

For example, imagine we were seeking the root of a function that was a straight
line, i.e., g(x) = ax + b and our initial guess for the root was x0. If we extend this
straight line from the point x0 it is easy to determine where it crosses the axis, i.e.,

ax1 + b = 0

so x1 = −b/a. Of course, if the function were truly linear then no first guess
would be required. So now consider the case that g(x) is nonlinear but may be
approximated locally about the point x0 by a line. Then the point of intersection
of this line with the x-axis is an estimate, or second guess, for the root x∗. The
linear approximation comes from Taylor’s theorem, i.e.,

g(x) = g(x0) + g′(x0)(x − x0) +
1

2
g′′(x0)(x − x0)

2 + . . .

So the linear approximation to g(x) about the point x0 can be written

l(x) = g(x0) + g′(x0)(x − x0)

If we take x1 to be the root of the linear approximation we have

l(x1) = 0 = g(x0) + g′(x0)(x1 − x0)

Solving for x1 gives

x1 = x0 −
g(x0)

g′(x0)

or at the nth iteration

xn+1 = xn − g(xn)

g′(xn)

The iteration above is for determining a zero of a function g(x). To determine
a maximum or minimum value of a function f we employ condition that f ′(x) = 0.
Now the iteration is modified as as

xn+1 = xn − f ′(xn)

f ′′(xn)
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4.2 UNCONSTRAINED OPTIMIZATION IN HIGHER DIMENSIONS

Now we consider the problem of minimizing (or maximizing) a scalar function of
many variables, i.e., defined on a vector field. We consider the extension of Newton’s
method presented in the previous section as well as a classical approach known as
steepest descent.

4.2.1 Taylor Series in Higher Dimensions

Before we extend the search for extrema to higher dimensions we present Taylor
series for functions of more than one domain variable. To begin, the Taylor series
for a function of two variables is given by

g(x, y) =g(x(0), y(0)) +
∂g

∂x
(x − x(0)) +

∂g

∂y
(y − y(0))

+
∂2g

∂x2

(x − x(0))2

2
+

∂2g

∂y2

(y − y(0))2

2
+

∂2g

∂x∂y
(x − x(0))(y − y(0))

+ higher order terms

In n variables x = (x1, . . . , xn)T the Taylor series expansion becomes

g(x) = g(x(0)) + ∇g(x(0))(x − x(0)) +
1

2
(x − x(0))T Hg(x(0))(x − x(0)) + · · ·

where the Hessian matrix is defined as

(

Hg(x)
)

ij
=

∂2g(x)

∂xi∂xj

and the gradient is written as a row vector, i.e.,

(

∇g(x)
)

i
=

∂g(x)

∂xi

4.2.2 Roots of a Nonlinear System

We saw that Newton’s method could be used to develop an iteration for determining
the zeros of a scalar function. We can extend those ideas for determining roots of
the nonlinear system

g1(x1, . . . , xn) = 0

g2(x1, . . . , xn) = 0

...

gn(x1, . . . , xn) = 0

or, more compactly,
g(x) = 0.

Now we apply Taylor’s theorem to each component gi(x1, . . . , xn) individually, i.e.,
retaining only the first order terms we have the linear approximation to gi about
the point x(0) as

li(x) = gi(x
(0)) + ∇gi(x

(0))(x − x(0))
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for i = 1, . . . , n. We can write these components together as a vector equation

l(x) = g(x(0)) + Jg(x(0))(x − x(0))

where now
(

Jg(x))
)

ij
=

∂gi(x)

∂xj

is the n × n–matrix whose rows are the gradients of the components gi of g. This
matrix is called the Jacobian of g.

As in the scalar case we base our iteration on the assumption that

l(x(k+1)) = 0

Hence,

g(x(k)) + Jg(x(k))(x(k+1) − x(k)) = 0

and given x(k) we may determine the next iterate x(k+1) by solving an n×n system
of equations.

4.2.3 Newton’s Method

In this chapter we are interested in minimizing functions of several variables. Anal-
ogously with the scalar variable case we may modify the above root finding method
to determine maxima (or minima) of a function f(x1, . . . , xn). To compute an
extreme point we require that ∇f = 0, hence we set

g(x) =
(∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn

)T
.

Substituting

gi(x) =
∂f(x)

∂xi

into

g(x(k)) + Jg(x(k))(x(k+1) − x(k)) = 0

produces

∇f(x(k)) + Hf(x(k))(x(k+1) − x(k)) = 0

where
(

Hf(x)
)

ij
=

(

Jg(x)
)

ij
=

∂gi(x)

∂xj
=

∂2f(x)

∂xi∂xj

Again we have a linear system for x(k+1).

4.2.4 Steepest Descent

Another form for Taylor’s formula in n-variables is given by

f(x + th) = f(x) + t∇f(x)h + higher order terms
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where again (∇f(x))i = ∂f(x)/∂xi. Now t is a scalar and x+ th is a ray emanating
from the point x in the direction h. We can compute the derivative of the function
f(x + th) w.r.t. t as

df

dt
(x + th) = ∇f(x + th)h.

Evaluating the derivative at the point t = 0 gives

df

dt
(x + th)|t=0 = ∇f(x)h

This quantity, known as the directional derivative of f , indicates how the function is
changing at the point x in the direction h. Recall from calculus that the direction of
maximum increase (decrease) of a function is in the direction of the gradient (neg-
ative gradient). This is readily seen from the formula for the directional derivative
using the identity

∇f(x)h = ‖∇f(x)‖‖h‖ cos(θ)

where θ is the angle between the vectors ∇f(x) and h. Here ‖a‖ denotes the
Euclidean norm of a vector a. We can assume without loss of generality that h is
of unit length, i.e., ‖h‖ = 1. So the quantity on the right is a maximum when the
vectors h and ∇f(x) point in the same direction so θ = 0.

This observation may be used to develop an algorithm for unconstrained func-
tion minimization. With an appropriate choice of the scalar step-size α, the itera-
tions

x(k+1) = x(k) − α∇f(x(k)) (4.1)

will converge (possibly slowly) to a minimum of the function f(x).

4.3 CONSTRAINED OPTIMIZATION AND LAGRANGE MULTIPLIERS

Consider the constrained minimization problem

min f(x)

subject to

ci(x) = 0

i = i, . . . , p. It can be shown that a necessary condition for a solution to this
problem is provided by solving

∇f = λ1∇c1 + · · · + λp∇cp

where the λi are referred to as Lagrange multipliers. Consider the case of f, c being
functions of two variables and consider their level curves. In Section 4.4 we will
demonstrate that an extreme value of f on a single constraint c is given when the
gradients of f and c are parallel. The equation above generalizes this to several
constraints ci: an extreme value is given if the gradient of f is a linear combination
of the gradients of the ci.

We demonstrate a solution via this procedure by recalling our earlier example.
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EXAMPLE 4.4

Given a fixed area of cardboard A construct a box of maximum volume. The
nonlinear program for this is

min xyz

subject to
2xy + 2xz + 2yz = A

Now f(x, y, z) = xyz and c(x, y, z) = 2xy +2yz +2xz−A. Substituting these
functions into our condition gives

∇f = λ∇c

which produces the system of equations

yz − λ(2y + 2z) = 0

xz − λ(2x + 2z) = 0

xy − λ(2y + 2x) = 0

These equations together with the constraints provide four equations for (x, y, z, λ).
If we divide the first equation by the second we find x = y. Similarly, if the second
equation is divided by the third we obtain y = z. From the constraint it follows
then that 6x2 = A, hence the solution is

x = y = z =

√

A

6
.

In this special case the nonlinear system could be solved by hand. Typically this is
not the case and one must resort to numerical techniques such as Newton’s method
to solve the resulting (n + m) × (n + m) system

g(x1, . . . , xn, λ1, . . . , λm) = 0.

4.4 GEOMETRY OF CONSTRAINED OPTIMIZATION

4.4.1 One Equality Constraint

Consider a two variable optimization problem

min f(x, y)

subject to
c(x, y) = 0.

Geometrically the constraint c = 0 defines a curve C in the (x, y)–plane, and the
function f(x, y) is restricted to that curve. If we could solve the constraint equation
for y as y = h(x), the problem would reduce to an unconstrained, single variable
optimization problem

min f(x, h(x)).
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From calculus we know that a necessary condition for a minimum is

d

dx
f(x, h(x)) =

∂f

∂x
(x, h(x)) +

∂f

∂y
(x, h(x))h′(x) = 0. (4.2)

Since c(x, h(x)) = 0, we also have

d

dx
c(x, h(x)) =

∂f

∂x
(x, h(x)) +

∂c

∂y
(x, h(x))h′(x) = 0. (4.3)

A necessary condition for equations (4.2) and (4.3) to hold simultaneously is

∂f

∂x

∂c

∂y
− ∂f

∂y

∂c

∂x
= 0. (4.4)

From elementary linear algebra we know that if an equation ad− bc = 0 holds then
the vectors (a, b) and (c, d) are linearly dependent, i.e. collinear, and so one of them
is a multiple of the other. Thus there exists a constant λ such that

∇f = λ∇c. (4.5)

Now let’s look more closely at the curve C. The tangent of the curve y = h(x)
at a point (x0, y0) = (x0, h(x0)) is given by

y = (x − x0)h
′(x0) + y0.

We set x − x0 = t and write this equation in vector form as
[

x
y

]

=

[

x0

y0

]

+ t

[

1
h′(x0)

]

.

The vector T = [1, h′(x0)]
T points into the direction of the tangent line and is

called a tangent vector of C at (x0, y0). Equation (4.3) tells that T is orthogonal to
∇c(x0, y0). Thus at every point on C the gradient ∇c is orthogonal to the tangent
of C.

For level contours f(x, y) = f0 at level f0 (an arbitrary constant) the situation
is analogous, i.e., at each point on the contour the gradient ∇f is orthogonal to the
tangent. Moreover, it is shown in multivariable calculus that ∇f points into the
region in which f is increasing as illustrated in Figure 4.1. Note that the vector
(∂f/∂y,−∂f/∂x) is orthogonal to ∇f and so is a tangent vector.

At a point (x0, y0) on C for which (4.5) holds, the level contour of f0 =
f(x0, y0) intersects the curve C. Since the gradients of f and c are collinear at this
point, the tangents of the contour f = f0 and the curve c = 0 coincide, hence the
two curves meet tangentially. Thus the condition (4.5) means geometrically that
we search for points at which a level contour and the constraint curve C have a
tangential contact.

EXAMPLE 4.5

Consider the problem of finding all maxima and minima of

f(x, y) = x2 − y2
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0
) 

∇  f 

T 

contour f=f
0
 

tangent line 

f>f
0
 

f<f
0
 

FIGURE 4.1: The gradient of f is orthogonal to the tangent of a level contour and points into the
region of increasing f .

subject to
x2 + y2 = 1. (4.6)

The equation (4.5) becomes

2x = 2λx (4.7)

2y = −2λy, (4.8)

and (4.6)–(4.8) are three equations for (x, y, λ). Equation (4.7) has the solution
x = 0 and the solution λ = 1 if x 6= 0. If x = 0, (4.6) leads to y = ±1 giving
the solution points (0,±1) with values f(0,±1) = −1. If x 6= 0 and λ = 1, (4.8)
implies y = 0 and so x = ±1 from (4.6). This leads to the solution points (±1, 0)
with values f(±1, 0) = 1. Hence the points (0,±1) yield minima and (±1, 0) yield
maxima.

In Figure 4.2 (a) some level contours of f and the constraint circle (4.6) are
shown. The contours f = 1 and f = −1 are the only contours that meet this circle
tangentially. The points of tangency are the maximum and minimum points of f
restricted to the unit circle.

A slightly more complicated objective function is

f(x, y) = x3 + y2.

Again we seek all maxima and minima of f subject to the constraint (4.6). The
equation (4.5) now results in

3x2 = 2λx (4.9)

2y = 2λy. (4.10)

Equation (4.9) has the solution x = 0 and λ = 3x/2 if x 6= 0. If x = 0 we find y = ±1
from (4.6) giving the solutions (0,±1) with values f(0,±1) = 1. If λ = 3x/2 6= 0,
equation (4.10) has the solutions y = 0 and λ = 1 if y 6= 0. Now if y = 0 we find
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FIGURE 4.2: Unit circle x2 + y2 = 1 (dashed) and level contours of (a): f(x, y) = x2 − y2, (b):
f(x, y) = x3 + y2. The points of tangency are the extreme points of f(x, y) restricted to the unit
circle.

x = ±1 from (4.6) giving the solutions (±1, 0) with values f(±1, 0) = ±1. If y 6= 0
it follows that λ = 1, hence x = 2/3, and so y = ±

√
5/3 from (4.6). The f -values of

the solution points (2/3,±
√

5/3) are both 23/27 < 1. Thus there is a single global
minimum f = −1 at (−1, 0), and three global maxima f = 1 at (0,±1) and (1, 0).

Some level contours of f and the constraint curve (4.6) are shown in Figure
4.2 (b). Note that the zero contour forms a cusp, y = ±(−x)3/2, x ≤ 0. The
points of tangency of a level contour and the constraint curve are again identified
with extreme points. Since the points (2/3,±

√
5/3) are located between the global

maximum points they must correspond to local minima.

In three dimensions the equation ∇f = λ∇c, resulting from an optimization
problem with a single constraint, implies that at a solution point a level surface
f(x, y, z) = f0 is tangent to the constraint surface c(x, y, z) = 0.

EXAMPLE 4.6

Find the maxima and minima of

f(x, y, z) = 5x + y2 + z

subject to
x2 + y2 + z2 = 1. (4.11)

The equation ∇f = λ∇c now leads to

5 = 2λx (4.12)

2y = 2λy (4.13)

1 = 2λz. (4.14)
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From (4.12) and (4.14) we infer that x = 5z, and (4.13) has the solutions y = 0 and
λ = 1 if y 6= 0. Assume first y = 0. The constraint (4.11) implies x2+z2 = 26z2 = 1,
hence z = ±1/

√
26, x = ±5/

√
26, and f(±5/

√
26, 0,±1/

√
26) = ±

√
26.

Now assume y 6= 0, hence λ = 1, and so x = 5/2, z = 1/2. The constraint
(4.11) then yields 26/4 + y2 = 1 which has no solution. Thus there is a unique
maximum at (5/

√
26, 0, 1/

√
26) and a unique minimum at (−5/

√
26, 0,−1/

√
26).

EXAMPLE 4.7

Find the maxima and minima of

f(x, y, z) = 8x2 + 4yz − 16z (4.15)

subject to the constraint
4x2 + y2 + 4z2 = 16. (4.16)

Note that (4.16) defines an ellipsoid of revolution. The equation ∇f = λ∇c yields

16x = 8λx (4.17)

4z = 2λy (4.18)

4y − 16 = 8λz. (4.19)

From (4.18) we find z = λy/2 and then from (4.19) 4y − 16 = 4λ2y, i.e.

y =
4

1 − λ2
, z =

2λ

1 − λ2
.

Equation (4.17) has the solutions x = 0 and λ = 2 if x 6= 0. Assume first x = 0.
Substituting y, z and x = 0 into (4.16) yields a single equation for λ which can be
manipulated to λ2(3 − λ2) = 0, i.e. λ = 0 or λ2 = 3. Setting λ = 0 leads to y = 4,
z = 0, and f(0, 4, 0) = 0. For λ = ∓

√
3 we find y = 2 and z = ±

√
3, with values

f(0,−2,±
√

3) = ∓24
√

3.
If x 6= 0 we have λ = 2 and so y = z = −4/3. The missing value of x is again

found from (4.16) as x = ±4/3. The values of f at these points are both 128/3.
Thus the maxima and minima of f are

fmax = f(±4/3,−4/3,−4/3) = 128/3, fmin = f(0,−2,
√

3) = −24
√

3.

The level surfaces for the minimum and maximum values of f and the constraint
ellipsoid are shown in Figure 4.3. We see in this figure that the solution points are
points of tangency of a level surface and the constraint surface.

4.4.2 Several Equality Constraints

If several constraints are present, the situation is trivial when the number of (in-
dependent) constraints equals the number of variables. In this case all constraints
typically are satisfied only by a finite number of points, if any, and one merely
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FIGURE 4.3: Level surfaces f = fmin ≈ −41.6 and f = fmax ≈ 42.7 for f(x, y, z) defined by
equation (4.15). Both level surfaces have a tangential contact with the constraint ellipsoid (4.16).

has to evaluate the objective function at these points to find the global maxima
or minima. Lagrange multiplies are needed if the number of constraints is smaller
than the number of variables.

Consider for simplicity the case of three variables (x, y, z) and two constraints
c1(x, y, z) = 0, c2(x, y, z) = 0. Each of the two constraints defines a surface in
three dimensional (x, y, z)–space, and both constraints together define a curve C,
the intersection of the two constraint surfaces. (Two non–parallel planes in three
dimensional space intersect in a straight line. Likewise, two curved surfaces typically
intersect in a curve.) Now a level set f(x, y, z) = f0 also defines a surface, and the
condition for f to have an extreme point when restricted to C is again that a level
surface and C meet tangentially at some point (x0, y0, z0). This condition means
that the tangent line of C at the point of contact is entirely in the tangent plane
of the level surface. Since the tangent line of C is the intersection of the tangent
planes of the two constraint surfaces, the tangency condition means that all three
tangent planes intersect in a line. This is a special condition because in general
three planes in three dimensional space have only a single point in common.

As in two dimensions, the gradient ∇f(x0, y0, z0) is orthogonal to the tangent
plane of the level surface f(x, y, z) = f(x0, y0, z0) at (x0, y0, z0). The same holds
for the tangent planes of the constraint surfaces c1 = 0 and c2 = 0. The condition
that these planes intersect in a line implies that the three gradient vectors to which
they are orthogonal are all located in the normal plane of that line and hence are
linearly dependent as illustrated in Figure 4.4. Thus one of these gradient vectors
is a linear combination of the other two, which we write as ∇f = λ1∇c1 + λ2∇c2.
For more variables and constraints the situation is similar.
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FIGURE 4.4: At a solution point of a three–variable optimization problem with two constraints the
tangent plane of the level surface of f and the tangent planes of the two intersecting constraint surfaces

c1 = 0 and c2 = 0 intersect in the tangent of the constraint curve C. As a consequence all three
gradients are in the normal plane of C and so are linearly dependent.

EXAMPLE 4.8

Find the maxima and minima of

f(x, y, z) = x2 + y2 − z

subject to

x2 + y2 = 1

x2 + z2 = 1.

Here we can find a parametric representation of the constraint curve C. Substi-
tuting x2 = 1 − z2 from the second constraint equation into the first constraint
equation yields y2 = z2, i.e. z = ±y. The first constraint defines a circle which
we parametrize as x = cos ϕ, y = sin ϕ, where −π ≤ ϕ ≤ π. Thus the constraints
define two curves

C± : (x, y, z) = (cos ϕ, sin ϕ,± sin ϕ).

Note that the two curves intersect if z = 0, i.e., at ϕ = 0 and ϕ = π.
To solve the constrained optimization problem we substitute the parametric

representation of C± into f and set

f±(ϕ) = 1 ∓ sin ϕ.

The extreme points are determined by df±/dϕ = ∓ cos ϕ = 0, hence ϕ = ±π/2, with
values f±(∓π/2) = 2 and f±(±π/2) = 0. Thus there are two maxima at (0,±1,−1)
and two minima at (0,±1, 1) with values 2 and 0, respectively. The intersecting
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FIGURE 4.5: Intersecting constraint cylinders and level surfaces for Example 4.8.

constraint cylinders and the level surfaces for the maximum and minimum values
are shown in Figure 4.5. It can be easily verified a posteriori that the gradient of
f and the gradients of the two constraint functions are linearly dependent at the
four extreme points.

4.4.3 Inequality Constraints

Finally consider the case of inequality constraints for a problem with n variables.
Inequality constraints define a feasible region S in n–dimensional space, and the
objective function is restricted to S. Extreme points can be located in the interior
of S as well as on the boundary. If there are no solutions to ∇f = 0 in the interior,
all extreme points are on the boundary. Assume that c(x) ≥ 0 is one of the
inequality constraints. The boundary of this constraint is the hypersurface defined
by c(x) = 0. Finding an extreme point on this boundary amounts to solving an
optimization problem with a single equality constraint (and possibly an additional
set of inequality constraints). If two inequality constraints c1 ≥ 0, c2 ≥ 0 are
present, the optimal solution may also be located on the intersection of the two
boundary hypersurfaces c1 = c2 = 0 which leads to a problem with two equality
constraints etc. The situation is naturally much more complicated than in linear
programming. Linear programming problems do not have solutions in the interior
of the feasible region.

EXAMPLE 4.9

Consider the problem of minimizing the objective function

f(x, y) =
x4

4
− x2

2
+

y2

2
.
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FIGURE 4.6: (a): Three dimensional plot of f(x, y) = x4/4 − x2/2 + y2/2. (b): Level contours of
f . (c): Contours of f in the right half plane and the constraint boundary x + y = 2.

Unconstrained optimization leads to the equations

∂f

∂x
= x3 − x = 0 ⇒ x = 0 or x = ±− 1

∂f

∂y
= y = 0.

To check the types of the extreme points (0, 0) and (±1, 0) we compute the Hessean
matrices,

Hf(0, 0) =

[

−1 0
0 1

]

, Hf(±1, 0) =

[

1 0
0 1

]

.

From the form of these matrices it follows that (±1, 0) are minimum points (f =
−1/4), and (0, 0) is a saddle point (f = 0). A three–dimensional surface plot of f
is shown in Figure 4.6 (a), and some level contours are displayed in Figure 4.6 (b).

Now consider the problem of minimizing f(x, y) subject to the inequality
constraint

c(x, y) = x + y ≥ 2.
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Since c(±1, 0) < 2, the global minima of f are not in the feasible region, hence
the optimal solution must be on the boundary. We are then led to the problem of
minimizing f subject to the equality constraint

x + y = 2.

The equation (4.5) leads to

x3 − x = λ, y = λ ⇒ x3 − x − y = 0.

Substituting y = 2 − x from the constraint equation into this equation gives x3 −
2 = 0, with the solution x = 21/3 = 1.2600, and hence y = 2 − 21/3 = 0.7401.
The numerical value of f at this point is 0.11012. Note that the equation for x
also follows directly from the unconstrained, single variable optimization problem
associated with f(x, 2 − x).

In Figure 4.6 (c) the constraint line and some level contours are shown. The
solution point is again revealed as point of tangency.

4.5 MODELING EXAMPLES

EXAMPLE 4.10

A manufacturerer of colored TV’s is planning the introduction of two new products:
a 19–inch stereo color set with a manufacturerer’s suggested retail price of $339 per
year, and a 21–inch stereo color set with a suggested retail price of $339 per year.
The cost of the company is $195 per 19–inch set and $225 per 21–inch set, plus
additional fixed costs of $400, 000 per year. In the competitive market the number
of sales will affect the sales price. It is estimated that for each type of set, the sales
price drops by one cent for each additional unit sold. Furthermore, sales of the
19–set will affect sales of the 21–inch set and vice versa. It is estimated that the
price for the 19–inch set will be reduced by an additional 0.3 cents for each 21–inch
sold, and the price for 21–inch sets will decrease for by 0.4 cents for each 19–inch set
sold. The company believes that when the number of units of each type produced
is consistent with these assumptions all units will be sold. How many units of each
type of set should be manufactured such the profit of the company is maximized?

The relevant variables of this problem are:

s1: number of units of the 19–inch set produced per year,
s2: number of units of the 21–inch set produced per year,
p1: sales price per unit of the 19–inch set ($),
p2: sales price per unit of the 21–inch set ($),
C: manufacturing costs ($ per year),
R: revenue from sales ($ per year),
P : profit from sales ($ per year).
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The market estimates result in the following model equations,

p1 = 339 − 0.01s1 − 0.003s2

p2 = 399 − 0.04s1 − 0.01s2

R = s1p1 + s2p2

C = 400, 000 + 195s1 + 225s2

P = R − C.

The profit then becomes a nonlinear function of (s1, s2),

P (s1, s2) = −400, 000 + 144s1 + 174s2 − 0.01s2
1 − 0.007s1s2 − 0.01s2

2. (4.20)

If the company has unlimited resources, the only constraints are s1, s2 ≥ 0.

Unconstrained Optimization. We first solve the unconstrained optimization
problem. If P has a maximum in the first quadrant this yields the optimal solution.
The condition for an extreme point of P leads to a linear system of equations for
(s1, s2),

∂P

∂s1
= 144 − 0.02s1 − 0.007s2 = 0

∂P

∂s2
= 174 − 0.007s1 − 0.02s2 = 0.

The solution of these equations is s∗1 = 4735, s∗2 = 7043 with profit value P ∗ =
P (s∗1, s

∗
2) = 553, 641. Since s∗1, s

∗
2 are positive, the inequality constraints are satis-

fied. To determine the type of the extreme point we inspect the Hessean matrix,

HP (s∗1, s
∗
2) =

[

−0.02 −0.007
−0.007 −0.02

]

.

A sufficient condition for a maximum is that (HP )11 < 0 and det(HP ) > 0. Both
of these conditions are satisfied and so our solution point is indeed a maximum,
in fact a global maximum. In Figure 4.7 (a) a three–dimensional plot of P (s1, s2)
is shown. Some level contours are displayed in Figure 4.7 (b). The level contours
play here the role of isoprofit lines. Because P is a nonlinear function, the isoprofit
lines form closed curves that surround the maximum at (s∗1, s

∗
2).

Constrained Optimization. Now assume the company has limited resources
which restrict the number of units of each type produced per year to

s1 ≤ 5, 000, s2 ≤ 8, 000, s1 + s1 ≤ 10, 000.

The first two constraints are satisfied by (s∗1, s
∗
2), however s∗1 + s∗2 = 11, 778. The

global maximum point of P is now no longer in the feasible region, thus the optimal
solution must be on the boundary. We therefore solve the constrained optimization
problem

max P
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FIGURE 4.7: (a): Three dimensional plot of P (s1, s2), equation (4.20). (b): Level contours of P .
(c): Level contours of P and feasible region for the constrained optimization problem.

subject to
c(s1, s2) = s1 + s2 − 10, 000 = 0.

We can either substitute s2 or s1 from the constraint equation into P and solve
an unconstrained one–variable optimization problem, or use Lagrange multipliers.
Choosing the second approach, the equation ∇P = λ∇c becomes

144 − 0.02s1 − 0.007s2 = λ

174 − 0.007s1 − 0.02s2 = λ,

which reduces to a single equation for s1, s2. Together with the constraint equation
we then have again a system of two linear equations,

−0.013s1 + 0.013s2 = 30

s1 + s2 = 10, 000.

The solution is s∗1 = 3846, s∗2 = 6154, with profit value P ∗ = 532, 308. In Figure
4.7 (c) the feasible region and some contour levels are shown. The optimal solution
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FIGURE 4.8: Geometry of the problem of Example 4.11.

is revealed as point of tangency of the isoprofit line P = P ∗ and the constraint line.
It is also clear from the figure that the solution point cannot be located on one of
the two other boundary lines s1 = 5, 000 or s2 = 8, 000.

EXAMPLE 4.11

A fish farm has a fish lake on a square area. The length of the diagonal of the
square is 2L. The fish lake has the shape of an ellipse with semi–axes a and b.
The center of the lake is at the center of the square and the semi–axes are on
the diagonals. The owner of the fish farm has fencing material of length l where
l < 4

√
2L. She wants to surround the lake by a fence in the form of a quadrilateral

whose corner points are on the diagonals of the square. In order that the owner has
enough space to work at the lake, the distance between fence and lake must not be
smaller than a given distance dm. What is the position of the corner points of the
fence such that the enclosed area is maximal?

To formulate this problem as a nonlinear program, we introduce a (x, y)–
coordinate whose origin is at the center of the square. The corner points of the
square are (±L, 0) and (0,±L). The equation of the fish lake’s boundary is

x2

a2
+

y2

b2
= 1.

The corner points of the fence’s quadrilateral have coordinates (s1, 0), (0, s2),
(−s3, 0), and (0,−s4) (0 ≤ sj ≤ L) with (s1, s2, s3, s4) to be determined, see Figure
4.8.

To invoke the distance restriction, we have to compute the minimal distance
between the ellipse and the four edges of the quadrilateral. Consider the edge in
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the first quadrant. The equation of this edge is y = (s2/s1)(s1 − x). Some thought
reveals that the minimal distance between this straight line and the ellipse is given
by

(s1s2 − d(s1, s2))/
√

s2
1 + s2

2, (4.21)

where

d(s1, s2) =
√

a2s2
2 + b2s2

1,

provided s1s2 ≥ d(s1, s2). Thus the minimum distance condition for this edge can
be formulated as

s1s2 − d(s1, s2) ≥ dm

√

s2
1 + s2

2.

The minimum distance conditions for the other three edges are obtained by replac-
ing (s1, s2) in this inequality by (s3, s2), (s3, s4), and (s1, s4), respectively.

The area enclosed by the fence is

A(s1, s2, s3, s4) =
1

2
(s1s2 + s2s3 + s3s4 + s4s1).

Now the optimization problem can be formulated as

max A(s1, s2, s3, s4)

subject to the inequality constraints

s1s2 − d(s1, s2) ≥ dm

√

s2
1 + s2

2

s3s2 − d(s3, s2) ≥ dm

√

s2
3 + s2

2

s3s4 − d(s3, s4) ≥ dm

√

s2
3 + s2

4

s1s4 − d(s1, s4) ≥ dm

√

s2
1 + s2

4

sj ≤ L (1 ≤ j ≤ 4),

and the equality constraint

√

s2
1 + s2

2 +
√

s2
2 + s2

3 +
√

s2
3 + s2

4 +
√

s2
4 + s2

1 = l.

Note that we don’t need to impose the constraints s1 ≥ a and s2 ≥ b. The
minimum distance requirement for (s1, s2) implies s1ss ≥ d(s1, s2) and this can be
only satisfied if s1 ≥ a and s2 ≥ b.
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PROBLEMS

4.1. Extend Example 4.2 for a collection of S schools.
4.2. Show how Newton’s method for root finding can be used to calculate

√
3. Com-

pute numerically an iterated sequence that converges to this value. Stop the
iteration if |xn+1 − xn| ≤ 10−5. What is the effect of changing the initial condi-
tion?

4.3. Use Newton’s method to find the positive root of

g(x) = x− tanh(2x) = 0

up to five decimal places.
4.4. Plot f(x) = x sin(x) in 0 ≤ x ≤ 15 and convince yourself that f(x) has three

local maxima in that range. Compute these maxima up to five decimal places
using Newton’s method.

4.5. Let

f(x, y) = x4 + y3 + xy2 + x2 − y + 1.

Find the quadratic approximation of f(x, y) at the points
(a) x0 = y0 = 0,
(b) x0 = 1, y0 = 0,
(c) x0 = y0 = 2.

4.6. Compute the Jacobian of

g(x) =





x1x2 − x1 − 1
x1x2x3 − 2x2

e−x2

1 − 3x3 − 1





at x0 = [0, 0, 0, ]T and x0 = [1, 1, 1]T .
4.7. Minimize the objective function

f(x1, x2) = 7x2
1 + 2x1x2 + x2

2 + x4
1 + x4

2

using 50 iterations of
(a) Newton’s method
(b) Steepest Descent
with starting value x0 = (3, 3)T . Plot the values of the iterates for each method
on the same graph. You may experiment with the value of α in Equation (4.1).
Hint: start small.

4.8. Consider the system of equations

g1(x, y) ≡ x3 + y3 − 1 = 0,
g2(x, y) ≡ ye−x − sin(y) − a = 0.

Apply Newton’s method to find two different solutions for each of the values
a = 0.5 and a = 1. Use at most 101 iterations and truncate the computation if

ε ≡ |g1(x, y)| + |g2(x, y)| < 10−10.

Provide the solutions, the starting values, the numbers of iterations, and the final
values of ε in your answer.
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4.9. Find the minimum of the function

f(x, y) = 7x2 + 2xy + y2 + x4 + y4 + x− y

using Newton’s method. Use at most 101 iterations and truncate the computa-
tion if

ε ≡ |∂f(x, y)

∂x
| + |∂f(x, y)

∂y
| < 10−10.

Provide the solution, the starting value, the number of iterations, and the final
value of ε in your answer.

4.10. Find the minimum of f(x, y) given in Problem 4.9 using the steepest descent
method with α = 0.04, α = 0.06, α = 0.08, α = 0.1 and α = 0.12. Choose
(x0, y0) = (1, 1) as starting value. Summarize the final values of ε as defined
in Problem 4.21 and the approximate solutions for each of the five values of α
in a table. What is the effect of the magnitude of α on the performance of the
steepest descent method?

4.11. Assume a farmer has L feet of fencing for a rectangular area with lengths x and
y. Determine these lengths such that the enclosed area is a maximum.

4.12. Consider an ellipse with semi-axes a ≥ b. The area enclosed by the ellipse is

A = πab and the circumference is L = 4aE(a), where e =
√

1 − b2/a2 is the
eccentricity and E(e) is the complete elliptic integral of the second kind – a
given function of e. Show that the constrained optimization problem

max(πab)

subject to

4aE(e) = L

leads to the following equation for e,

e

1 − e2
= −2E′(e)

E(e)
,

where E′(e) = dE(e)/de. Note: It turns out that the only solution of this equation
is e = 0, i.e. a = b. Thus the area of an ellipse with prescribed circumference is
a maximum if the ellipse degenerates to a circle.

4.13. Find all extreme points (local maxima and minima) of

f(x, y) = x3 + y2

subject to

y2 − x2 = 1.

Make a sketch showing the constraint curve, some level curves of f , and the
extreme points as points of tangencies.

4.14. Find the minimum distance of the surface

2x2 + y2 − z2 = 1

to the origin.
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4.15. Find the points on the unit sphere

x2 + y2 + z2 = 1,

for which the function

f(x, y, z) = 2x2 + y2 − z2 − x

has a global maximum and a global minimum, respectively.
4.16. A manufacturer of personal computers currently sells 10, 000 units per month of

a basic model. The manufacture cost per unit is $700 and the current sales price
is $950. During the last quarter the manufacturer lowered the price by $100 in
a few test markets, and the result was a 50% increase in orders. The company
has been advertising its product nationwide at a cost of $50, 0000 per month.
The advertising agency claims that increasing the advertising budget by $10, 000
per month would result in a sales increase of 200 units per month. Management
has agreed to consider an increase in the advertising budget to no more than
$100, 000 per month.

Determine the price and the advertising budget that will maximize the profit.
Make a table comparing the maximal profit and the corresponding values of the
price, the advertising budget, and the number of sales to their current values,
and to the optimal values that would result without advertisement.
Hint: Let N be the number of sales per month. Write N = N0 + ∆Np + ∆Na,
where N0 is the current value of N , ∆Np is the increase of N due to price
reduction, and ∆Na is the increase of N due to increasing the advertising budget.
Note: If you don’t find a solution in the interior of the feasible region, the optimal
solution is on a boundary.

4.17. A local newspaper currently sells for $1.50 per week and has a circulation of
80, 000 subscribers. Advertising sells for 250/page, and the paper currently sells
350 pages per week (50 pages/day). The management is looking for ways to
increase profit. It is estimated that an increase of 10 cents/week in the sub-
scription price will cause a drop of 5, 000 subscribers. Increasing the price of
advertising by $100/page will cause the paper to lose approximately 50 pages of
advertising in a week. The loss of advertising will also affect circulations, since
one of the reasons people by the newspaper is the advertisement. It is estimated
that a loss of 50 pages of advertisement per week will reduce circulation by 1, 000
subscribers.
(a) Find the weekly subscription price and advertisement price that will maxi-

mize the profit.
(b) Same as (a), but now with the constraint that the advertising price cannot

be increased beyond $400.
Hint: LetM be the number of advertising pages per week. WriteM = M0+∆Ma,
where M0 is the current value of M , and ∆Ma is the change caused by increasing
the advertising price. Proceed similarly for N , the number of subscribers. Here
you have to consider two causes of change.

4.18. Verify the expression (4.21) in Example 4.11.
In Exercises 4.19–4.25 use an optimization software such as the fmincon function of
Matlab to find the optimal solution.
4.19. Redo the problem of Example 4.10, but now choose as objective function the

marginal profit, i.e., the ratio (R−C)/C of the profit and the total manufacturing
costs.
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4.20. Maximize the volume xyz of a cardboard subject to the equality constraint xy+
xz + yz = 4 and the inequality constraints

0 ≤ x ≤ 0.5

2 ≤ y ≤ 3

z ≥ 1.

4.21. Find the (unconstrained) minimum of

f(x, y, z) = x6 + x2 ∗ y2 + y4 + z4 + e−z2

sin(x+ y).

4.22. Find the minimum and maximum of

f(x, y) = x3 + y2 − xy

subject to
x2 + 4y2 ≤ 2.

4.23. Find the minimum of

f(x, y, z) = sin(x+ y) + cos(y + z) − e−x2

subject to
(a)

x2 + y2 = 1, z2 ≤ 1, x2 ≥ y2.

(b) constraints as in (a) and in addition

x ≥ 0, y ≤ 0.

4.24. Solve the fencing problem of Example 4.11 for L = 4, a = 1.5, b = 2.5, and
(a) l = 20, dm = 0.3,
(b) l = 20, dm = 0.4,
(c) l = 17, dm = 0.1.
Hint: A good starting value for s1 is (a+ L)/2.

4.25. Solve the school problem of Example 4.2 for five districts with coordinates

xj 0 0 0 −100 100
yj 0 100 −100 0 0

,

and
(a) r1 = 200, r2 = 300, r3 = 200, r4 = 500, r5 = 300, c1 = 1500, c2 = 1500,
(b) r1 = 200, r2 = 400, r3 = 200, r4 = 500, r5 = 300, c1 = 700, c2 = 2000.
Hint: A reasonable starting value for wij is rj/2. For the coordinates (a, b, c, d)
you may try (0, 0, 0, 0), (100, 0,−100, 0), or (50, 50,−50,−50).



C H A P T E R 5

Empirical Modeling with Data
Fitting

In this chapter the model building is empirical in nature, i.e., the functional form
of the relationship between the dependent and independent variables is found by
direct examination of data related to the process.

Data fitting problems have several common elements. The model has the
general form

y = f(x1, . . . , xN ;w1, . . . , wM )

and the parameters wi are determined empirically from the observations

{(x(i), y(i))}P
i=1

by requiring f to be such that

y(i) = f(x
(i)
1 , . . . , x

(i)
N ;w)

or at least that the error function E(w) defined by

S(w) =
∑

i

(y(i) − f(x
(i)
1 , . . . , x

(i)
N ;w1, . . . , wM ))2

be small. This error function seeks to minimize the sum of squares of the residuals.

As we shall see, other error functions are possible but least squares is certainly
the most widely used and we will focus on this approach at the outset. Later
in this chapter in Section 5.3 we will also consider the important case of uniform
approximation.

EXAMPLE 5.1

A Radial basis function model has the form

f(x;w, c) = w0 +

Nc
∑

k=1

wkφ(‖x − ck‖)

where the wk are the weights and the ck are the centers of the basis functions. An
example of a radial basis function is

φ(r) = exp(−r2)

The norm ‖ · ‖ is generally taken to be the Euclidean distance.

88
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5.1 LINEAR LEAST SQUARES

In this section we begin by revisiting an example from the previous chapter followed by a
general formulation of linear least squares and some simple extensions to exponential fits.

5.1.1 The Mammalian Heart Revisited

Recall from Example 2.11 in Subsection 2.3.2 that a sequence of proportionalities
produced the model

r = kw−1/3

where w is the body weight of a mammal and r is its heart rate. The data on
Figure 2.8 corresponds to observations

{(w−1/3
i , ri)}

collected for various measured rates and weights. The residual error for the ith
measurement is

ǫi = ri − kw
−1/3
i

and the total squared error is

E =

P
∑

i=1

ǫ2i

We rewrite this error as a function of the unknown slope parameter k as

E(k) =

P
∑

i=1

(ri − kw
−1/3
i )2

To minimize E as a function of k we compute the derivative of E w.r.t. k, i.e.,

dE

dk
=

P
∑

i=1

2(ri − kw
−1/3
i ) · (−w

−1/3
i ) = 0

From which it follows that

k =

∑P
i=1 riw

−1/3
i

∑P
i=1 w

−2/3
i

Thus we can obtain an estimate for the slope of the line empirically from the data.

5.1.2 General Formulation

In this section we focus our attention to one of the most widely used models

f(x;m, b) = mx + b

To clean-up the notation we now use subscripts to label points for domain data that
is one dimensional; we used superscripts in the previous section when the dimension
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FIGURE 5.1: Linear least squares. The line y = mx + b is determined such that the residuals ǫ2i are

minimized.

of the domain could exceed one. For a set of observations {(xi, yi)}, i = 1, . . . , P ,
the total squared error is given by

E(m, b) =
P

∑

i=1

(yi − mxi − b)2 (5.1)

Now because there are two parameters that determine the error function the nec-
essary condition for a minimum is now

∂E

∂m
= 0

∂E

∂b
= 0

Solving the above equations gives the slope of the line as

m =
(
∑

yi)(
∑

xi) − P
∑

yixi

(
∑

xi)2 − P
∑

x2
i

and its intercept to be

b =
−(

∑

yi)(
∑

x2
i ) + (

∑

xi)(
∑

yixi)

(
∑

xi)2 − P
∑

x2
i
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Interpolation Condition. In this section we present another route to the
equations for m and b produced in the previous section. Again, the input data
is taken as {xi}, the output data is {yi} and the model equation is y = mx + b.
Applying the interpolation condition for each observation we have

y1 = mx1 + b

y2 = mx2 + b

y3 = mx3 + b

...

yP = mxP + b

In terms of matrices










1 x1

1 x2

...
...

1 xP











(

b
m

)

=











y1

y2

...
yP











In terms of matrices we can summarize the above as

Xb = y

We can reveal the relationship between the previous approach using calculus and
this approach with the interpolation condition by hitting both sides of the above
matrix equation with the transpose XT

(

1 1 . . . 1
x1 x2 . . . xP

)











1 x1

1 x2

...
...

1 xP











(

b
m

)

=

(

1 1 . . . 1
x1 x2 . . . xP

)











y1

y2

...
yP











In terms of the matrices,

XT Xb = XT y

Multiplying out produces the equations that are seen to be the same as those in
the above section, i.e.,

(

P
∑

xi
∑

xi

∑

x2
i

)(

b
m

)

=

( ∑

yi
∑

xiyi

)

In linear algebra these equations are referred to as the normal equations.

There are many algorithms in the field of numerical linear algebra developed
precisely for solving the problem

Xb = y

We will consider these more in the problems.
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5.1.3 Exponential Fits

We have already seen models of the form

y = kxn

where n was given. How about if n is unknown? Can it be determined empirically
from the data? Note now that the computation of the derivative of the error
function w.r.t. n is now quite complicated. This problem is resolved by converting
it to a linear least squares problem now in terms of logarithms. Specifically,

ln y = ln(kxn)

= ln k + lnxn

= ln k + n ln x

This is now seen to be a linear least squares problem

y′ = nx′ + k′

where we have made the substitutions y′ = ln y, k′ = ln k and x′ = lnx. Now one
can apply the standard least squares solution to determine n and k′. The value of
k can be found as well by

k = exp(k′)

5.1.4 Fitting Data with Polynomials

In the previous section we consider the basic linear model f(x; c0, c1) = c0 + c1x.
The simplest extension to this is the second order polynomial

f(x; c0, c1, c2) = c0 + c1x + c2x
2

Note first that adding the term c2x
2 will change the least square fit values of the

coefficients c0, c1 obtain from the linear model and hence all the coefficients c0, c1

and c2 must be computed. The least squares procedure follows along lines similar
to the previous section. We assume a set of observations {(xi, yi)} and define the
sum of the squares of the model residuals to be the error function, i.e.,

E(c0, c1, c2) =

P
∑

i=1

(yi − c0 − c1xi − c2x
2
i )

2 (5.2)

Now requiring

∂E

∂c0
= 0

∂E

∂c1
= 0

∂E

∂c2
= 0
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The resulting necessary conditions, written in terms of matrices, are then





P
∑

xi

∑

x2
i

∑

xi

∑

x2
i

∑

x3
i

∑

x2
i

∑

x3
i

∑

x4
i









c0

c1

c2



 =





∑

yi
∑

xiyi
∑

yix
2
i



 (5.3)

As for the linear model, it is possible to solve for the parameters c0, c1 and c2

analytically, i.e., in closed form. It is less cumbersome to write Equation (5.3) as

Xc = z

where c is the column vector made up of the elements (c0, c1, c2) and z is the column
vector comprised of the elements (

∑

yi,
∑

xiyi,
∑

yix
2
i ) and X is the 3× 3 matrix

on the left of Equation (5.3). Now a computer package can be used to easily solve
the resulting matrix equation.

Lagrange Polynomials. Consider the first degree polynomial defined by

P1(x) =
x − x2

x1 − x2
y1 +

x − x1

x2 − x1
y2

By construction, it is clear that

P1(x1) = y1

and

P1(x2) = y2

So we have found the unique line passing through the points {(x1, y1), (x2, y2)}.
This procedure may be continued analogously for more points. A second

degree polynomial passing through three prescribed points is given by

P2(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
y1 +

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
y2 +

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
y3

By construction, it again may be verified that

P2(x1) = y1,

P2(x2) = y2,

and

P2(x3) = y3.

A pattern has emerged that makes it apparent that this simple procedure may
be employed to fit a polynomial of degree n through a set of n + 1 points.
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FIGURE 5.2: Comparative polynomial approximation to a 10 point data set.
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FIGURE 5.3: Degree 4 and degree 8 polynomials applied to the data (w
−1/3

i , ri).

5.1.5 Interpolation versus Least Squares

Dangers of Higher Order Polynomials. It is clear from the preceding section
that we can always find a polynomial of degree n to exactly fit (i.e., satisfy the
interpolation condition) n+1 points. So why not simply use high order polynomials?
To answer this question consider the model

f(x) = c20x
20 + c19x19 + · · · + c1x1 + c0

If one of the coefficients is perturbed by a small value ǫ the resulting model may
predict wildly different results. For example, let

g(x) = (c20 + ǫ)x20 + c19x19 + · · · + c1x1 + c0

Then

g(x) = ǫx20 + f(x)

So, even if ǫ is small the difference between f(x) and g(x) is potentially very large.
This is a manifestation of ill-conditioning of high degree polynomials, i.e., small
changes in parameters may result in large changes in the function.

See Figure 5.3 for an example of the oscillations that appear with higher order
polynomials.
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5.2 SPLINES

One obvious procedure for reducing the need for higher order polynomials is to
restrict each polynomial for the description of limited contiguous data subsets.
This is the central idea behind splines. A spline is a piecewise defined function

S(x) =















































S1(x) if x1 ≤ x < x2,

S2(x) if x2 ≤ x < x3,
...

...

Sj(x) if xj ≤ x < xj+1,
...

...

Sn(x) if xn ≤ x < xn+1

(5.4)

that satisfies the interpolation conditions for all the data points

S(xj) = yj = Sj(xj) (5.5)

Furthermore, the piecewise defined models may be joined by enforcing auxil-

iary conditions to be described. We begin with the simplest case.

5.2.1 Linear Splines

For linear splines the piecewise function takes the form

Sj(x) = cj
0 + cj

1x

and this is valid over the interval xj ≤ x < xj+1. (See Figure 5.4.)
For x1 ≤ x < x2 the function S1(x) is the line passing through the points

(x1, y1) and (x2, y2). The interpolation condition S1(x1) = y1 requires

c1
0 + c1

1x1 = y1.

The matching condition

S1(x2) = S2(x2) = y2

requires

c1
0 + c1

1x2 = y2

This system of two equations in two unknowns has the solutions

c1
0 =

x2y1 − x1y2

x2 − x1

and

c1
1 =

−y1 + y2

x2 − x1

Similarly for S2(x)

S2(x) = c2
0 + c2

1x
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The parameters c2
0 and c2

1 are then determined by conditions

{

S2(x2) = y2

S2(x3) = S3(y3) = y3

(5.6)

which can be found to be

c2
0 =

x3y2 − x2y3

x3 − x2

and

c2
1 =

−y2 + y3

x3 − x2

In general, it follows
{

Sj(xj) = yj

Sj(xj+1) = Sj+1(xj+1) = yj+1

(5.7)

which can be found to be

cj
0 =

xj+1yj − xjyj+1

xj+1 − xj

and

cj
1 =

−yj + yj+1

xj+1 − xj

5.2.2 Cubic Splines

Notice that with linear splines that the function matches at interpolation points,
i.e.,

Sj(xj+1) = Sj+1(xj+1)

but that in general the derivative does not match, i.e.,

S
′

j(xj+1) = S
′

j+1(xj+1)

This potential problem may be overcome by employing cubic splines (quadratic
splines do not provide enough parameters).

For cubic splines the piecewise function takes the form

Sj(x) = cj
0 + cj

1x + cj
2x

2 + cj
3x

3

and this is valid over the interval xj ≤ x < xj+1. To simplify notation we will only
consider two segments of S(x)

S(x) =

{

S1(x) if x1 ≤ x < x2,

S2(x) if x2 ≤ x < x3

(5.8)

Now
S1(x) = c1

0 + c1
1x + c1

2x
2 + c1

3x
3

and
S2(x) = c2

0 + c2
1x + c2

2x
2 + c2

3x
3
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FIGURE 5.4: Linear splines.

And we observe that there are 8 parameters.
Three equations are obtained by employing the interpolation conditions











S1(x1) = y1

S2(x2) = y2

S2(x3) = y3

(5.9)

The matching condition for the function value is

S1(x2) = S2(x2) = y2

Given there are 8 parameters and only 4 equations specified we require 4 more
relations.

We will require that first and second derivatives match at the interior points,
{

S
′

1(x2) = S
′

2(x2)

S′′
1(x2) = S′′

2(x2)
(5.10)

The additional two parameters may be obtained by applying conditions on
the derivatives at the endpoints x1 and x3. One possibility is to require

{

S
′′

1 (x1) = 0

S
′′

2 (x3) = 0
(5.11)
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FIGURE 5.5: Cubic splines.

Since no data matching is involved these are called natural splines.
For a comparison of how linear and cubic splines fit a simple data set see

Figure 5.5.

5.3 DATA FITTING AND THE UNIFORM APPROXIMATION

The topic of fitting a model to a data set can also be put into the framework of
a linear program. Again, if we have a data set of domain (input) values {xi} and
associated range (output) values {yi} we would like to determine the parameters
{w1, . . . , wk} such that

yi = f(xi;w1, . . . , wk)

An alternative to requiring that the sum of the squares of the residuals be
zero is to simply minimize the maximum residual. This approach is known as the
uniform approximation, or Chebyshev criterion. Since large negative residuals would
make this meaningless we minimize the maximum absolute value of the residual.

To implement this idea, we first compute each residual ǫi as

ǫi = yi − f(xi;w1, . . . , wk)

and from all these determine the largest

ǫmax = max
i

|ǫi|
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which will serve as our objective function. So the programming problem is

min
i

ǫmax

where based on the definition of ǫmax we have the side constraints

|ǫi| ≤ ǫmax

So, for a linear model, f(x) = ax + b we have

ǫi = yi − axi − b

so the constraints become
|yi − axi − b| ≤ ǫmax

or
−ǫmax ≤ yi − axi − b ≤ ǫmax

Thus the linear program is to

min ǫmax

subject to the constraints

−ǫmax − yi + axi + b ≤ 0

−ǫmax + yi − axi − b ≤ 0

where i = 1, . . . , P .
In matrix notation we may rewrite the constraints as





























−x1 −1 −1
x1 +1 −1
...

...
...

−xi −1 −1
xi +1 −1
...

...
...

−xP −1 −1
xP +1 −1

































a
b

ǫmax



 ≤





























−y1

+y1

...
−yi

+yi

...
−yP

+yP





























Now solving this linear program to implement the uniform approximation
approach on the uniform noise data of Table 5.1 produces the linear model equation

y = 0.9937x − 0.275,

while the least squares error criterion produces the model

y = 0.8923x − 0.5466.

For the uniform noise data the squared error was found to be 11.543 for the uniform
approximation model while for the least squares model it is 9.998. Please see the
errors in Table 5.1 and the comparative plot of the two models in Figure 5.6.
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FIGURE 5.6: Least squares and uniform approximation to a linear trend with uniformly distributed

additive noise.

xi yi ǫi uniform ǫi least squares
1 2.3525 1.6338 0.9136
2 0.0786 -1.6338 -2.2527
3 3.7251 1.0191 0.5016
4 3.5179 -0.1818 -0.5979
5 6.3272 1.6338 1.3190
6 6.0113 0.3242 0.1108
7 7.8379 1.1571 1.0451
8 7.7156 0.0411 0.0305
9 8.2185 -0.4496 -0.3589
10 8.7586 -0.9032 -0.7111

TABLE 5.1: The data to be fit comprise the first two columns. The point-wise error for the uniform

approximation and least squares approximation are in columns three and four, respectively. The
underlined errors are those with maximum magnitude for each model. As expected, the uniform

approximation has a smaller maximum error.
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5.3.1 Error Model Selection?

Now we have seen that there is no unique way to compute the coefficients that fit
a given model to data. The model is dependent on the way we measure the error
(note that if our model is exact–e.g., the interpolation condition is satisfied–then
the coefficients are unique and the error is zero). So the natural question arises:
given a collection of data what is the appropriate error measure. The answer to this
question lies partly in the nature of the data. If your data is very accurate, then
a uniform approximation is indeed appropriate. If your data contains statistical
outliers or lots of noise, a least squares approximation may be more robust.

The ultimate decision factor in what error term to use is in the added value
of the model. If the predictive value of the model is superior in one error measure
than another the choice is clear. Establishing superiority can often be challenging
in practice.
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PROBLEMS

5.1. Find the parameters a and b such that the models

y = ax

and
y = bx2

fit the data {(0, 0), (1, 1), (2, 3)} according to the least squares criterion and com-
pare the errors of the models. Without doing the calculation, can you predict
what the model error would be for the model

y = cx+ dx2

Give your reasoning. Hint: You need not explicitly calculate c and d; considering
the equations that produce them will be sufficient.

5.2. Find the line y = b+mx of best fit through the data

{(.1, .2), (.2, .3), (.3, .7), (.5, .2), (.75, .8)}

using the least squares criterion.
5.3. Consider the model

f(x; c0, c1) = c0x
−3/2 + c1x

5/2

Use the least squares approach to determine equations for c0 and c1 in terms of
available data (xi, yi)

P
i=1.

5.4. Consider the mammalian pulse rate data (ri, wi)
24
i=1 provided in Table 2.1 in

Subsection 2.3.2. Match the data to the models
(a) r = b+mw−1/3

(b) r = kwn

using least squares and compute the corresponding error terms given by Equation
(5.1). You may use the Matlab least square codes provided, but you will first
need to take appropriate transformations of the data.

5.5. Write MATLAB code to fit a second order polynomial

f(x; c0, c1, c2) = c0 + c1x+ c2x
2

to the linearized mammalian heart data consisting of components {(w−1/3
i , ri)}.

Compute the total squared error E(c0, c1, c2) given by Equation (5.2) and com-
pare with the error term E(m, b) found in Problem 5.4 (a). You may modify the
code provided for this problem.

5.6. Derive the matrix Equation (5.3).
5.7. Rederive the matrix Equation (5.3) using the interpolation approach of Subsec-

tion 5.1.2.
5.8. Derive the 4 × 4 system of equations required to fit the model

f(x; c0, c1, c2, c3) = c0 + c1x+ c2x
2 + c3x

3

Put this system into matrix form and compare with the result in Equation (5.3).
Can you extend this pattern to write down the matrix form of the least squares
equations for the model

f(x) = c0 + c1x+ c2x
2 + · · · + c9x

9

No exact derivation is required for this last part.
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5.9. Reread Section 5.1.4 and propose a formula for a polynomial of degree 3, P3(x),
such that the interpolation conditions P3(x1) = y1, P3(x2) = y2, P3(x3) = y3,
and P3(x4) = y4 are satisfied.

5.10. Find the linear spline through points {(0, 0), (2, 1), (3,−2), (5, 2)}.
5.11. Apply MATLAB’s cubic spline routine to the Fort Collin’s daily temperature

data provided on odd days in September 2002; see Table 5.2. Use this model to
predict the temperature on the even days. Compare your predictions with the
actual temperature values provided in Table 5.3. Plot your results.

Day 5pm temperature
1 87.0
3 83.3
5 89.7
7 82.3
9 65.6
11 59.8
13 65.5
15 77.1
17 69.1
19 63.8
21 51.1

TABLE 5.2: Fort Collins’ temperatures on odd days in September, 2002. All temperatures recorded
at 5pm. Use this data to build spline model.

Day 5pm temperature
2 80.3
4 87.1
6 90.1
8 79.2
10 64.4
12 60.2
14 71.2
16 73.9
18 58.4
20 73.5

TABLE 5.3: Fort Collins’ temperatures on even days in September, 2002. All temperatures recorded
at 5pm. Use this data to test spline model.

5.12. Consider the data model
f(x) = aσ(bx+ c)

where the sigmoidal function is given by

σ(x) =
1

1 + exp(−x)

Given a data set of input output pairs (xi, yi) write down the least squares
optimization criterion for the unknown model parameters a, b, c. Show that the



Section 5.3 Data Fitting and the Uniform Approximation 105

resulting system for a, b, c is nonlinear. Describe briefly how would you solve for
them (without actually doing it).

5.13. Using the model in Exercise 5.12 compute a, b and c for the sample data set
{(−.3,−.5), (−.1,−.2), (0, .1), (.2, .3), (.6, .6)}. Is this a good model for the data?
How might you improve it?



C H A P T E R 6

Modeling with Discrete
Dynamical Systems

6.1 INTRODUCTION

One of the most exciting areas of modeling concerns predicting temporal evolution.
The main question that is posed in this setting is how do variables of interest change
over time? This type of problem is everywhere to be found, for example in areas as
diverse as science, engineering and finance. Prediction means that given the values
of the variables at a certain instant of time we can predict, i.e. compute their values
at any future time. A system of equations that allows such a prediction is called a
Dynamical System.

In this chapter we consider discrete dynamical systems. The mathematical
assumption is that the time variable n is incremented discretely and corresponds
to the integers {0, 1, 2, 3, 4, . . . }. The value of a variable x of interest is then a
sequence {x0, x1, x2, x3, x4, . . . }. Now the problem of modeling is to determine an
equation of the form

xn+1 = xn + ∆xn

and this is done by estimating how the variable xn changes as n is incremented
from time n to time n + 1.

We develop this topic along the following four complementary lines:

• numerical solutions,
• analytical solutions,
• qualitative behavior,
• modeling techniques.

As the terminolgy suggests, numerical approaches to difference equations will in-
volve direct computation of these sequences via computer. In contrast, analytical
solution methods seek closed form solutions; these are available only in limited
circumstances.

Qualitative approaches are analytical as well as numerical approaches to de-
termine the qualitative behaviour of the solutions in the long run. The questions
addressed are: do the solutions go off to infinity, do they approach a finite value,
will they oscillate or behave more complicated? Another question of interest is
the sensitivity of solutions to variation of parameters. A change in the qualitative
behaviour when a parameter is varied is called a bifurcation.

The topic of modeling will treat empirical and qualitative approaches for
constructing difference equations. We will consider the development of models

106
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FIGURE 6.1: Comparison of the numerical solutions for some simple difference equations.

based on the qualitative approaches presented in Chapter 2 as well as the more
quantitative data fitting approaches of Chapter 5.

A simple but nevertheless important difference equation is the equation

xn+1 = axn + b. (6.1)

If an initial value x0 is fixed the solution is determined for all n,

x1 = ax0 + b, x2 = ax1 + b, x3 = ax2 + b, . . . .

Numerically simulated solutions of (6.1) for various values of the parameters a and
b are shown in Figure 6.1. In Figure 6.1 (a) we see that the solutions decay to zero
while in Figure 6.1 (b) they tend to the value 2. In Figure 6.1 (c) the initial values
are close to zero. Both solutions remain close to zero for a while, but eventually
they split apart and tend to ±∞. In Figure 6.1 (d) the solutions tend to x ≈ 0.7.
Here the solutions alternate between values above and below 0.7 when approaching
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this value. Thus, a noticeable feature for all of these solutions is the long term
behavior. Qualitatively we say the solution either blows up or approaches a finite
limiting value.

EXAMPLE 6.1 Discrete Compound of Interest

Interest rates for loans or saving accounts are normally fixed on an annual basis,
however the compounding scheme typically applies the interest charges monthly.
Suppose you purchase something for a certain amount of $a0 and charge it to your
credit card that carries an annual interest rate of r%. Let an be the accumulated
debt after n months. In Section 6.2.2 we will see that an satisfies the difference
equation

an+1 = (1 +
r

1200
)an − p, (6.2)

where p is your monthly payment. Equation (6.2) has the form of Equation (6.1).
By solving this equation you can answer questions such as: when is a loan a0 paid
off given a certain monthly payment p, or what should the monthly payment be in
order that the loan is paid off after a prescribed amount of time?

Equation (6.1) is called a linear first order difference equation. It is linear
because the right hand side is a linear function of xn. It is of first order because
only one time step is involved. The simplest nonlinear first order difference equation
is

xn+1 = axn + bx2
n. (6.3)

In Figure 6.2 numerical solutions of (6.3) are shown for b = −1 and two different
values of a. In Figure 6.2 (a) we see approach to a limiting value as in Figure 6.1
(d). In contrast in Figure 6.2 (b) the solution eventually alternates between the
values 1.6 and 2.7. This type of behavior cannot be found in solutions of linear
equations. The solutions of nonlinear equations show a much richer variety of
behaviors. Another important difference is that linear equations admit closed form
solutions whereas nonlinear equations typically cannot be solved analytically.

EXAMPLE 6.2 Population Growth

Discrete dynamical systems are widely used in population modeling, in particular
for species which have no overlap between successive generations and for which
births occur in regular, well-defined ‘breeding seasons’. Let pn be the average
population of a species between times nτ and (n + 1)τ . The time step τ depends
on the particular species and can range from an hour to several years. For example
many species of bamboo grow vegetatively for 20 years before flowering and then
dying.

In population dynamics one constructs a model for the change ∆pn = pn+1 −
pn. The simplest model is a linear model, ∆p = kpn + β, where k is called the
reproduction rate and β models constant immigration (β > 0) or emigration (β <
0). The difference equation that results from this model assumption,

pn+1 − pn = kpn + β,
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FIGURE 6.2: Numerical solutions for equation (6.4).

is again of the form of Equation (6.1).
Competition for resources usually leads to nonlinear difference equations. We

will see that the simplest model that takes competition into account leads to the
equation

pn+1 = rpn − p2
n, (6.4)

which is of the form of Equation (6.3). Equation (6.4) is known in the literature as
logistic map. Its prominent feature are very complicated, so called chaotic solutions
in certain ranges of the parameter r.

The equation
xn+2 + 2xn+1 + 3xn = cos(n)

is an example of a linear second order difference equation. We shall see that this
type of equation always can be transformed to a linear system of two first order
equations. The general form of such a system is

xn+1 = axn + byn + fn,

yn+1 = cxn + dyn + gn,

where fn, gn are known sequences. If the right hand sides are replaced by nonlinear
functions we have a nonlinear system, for instance

xn+1 = axn − bx2
n − cxnyn,

yn+1 = dxn − ey2
n − fxnyn.

This system is used in population modeling as a model for the population growth
of two interacting species. The terms −bx2

n and −ey2
n model competition within

each of the two species whereas the terms −cxnyn and −fxnyn model competition
between the species.
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6.2 LINEAR FIRST ORDER DIFFERENCE EQUATIONS

6.2.1 Analytical Solutions

Possibly the simplest nontrivial difference equation has the form

xn+1 = axn. (6.5)

This equation has the special solution xn = 0. Since it is constant it is said to be
an equilibrium solution. The value of the constant, x = 0, is called an equilibrium
value or shortly an equilibrium. The solutions for initial values x0 6= 0 are found
by implementing the iteration,

x1 = ax0

x2 = ax1 = a2x0

x3 = ax2 = a3x0

...

xn = anx0. (6.6)

From (6.6) we can easily infer how the qualitative behavior of xn depends on a: if
|a| > 1 then xn goes off to infinity (the equilibrium is said to be unstable), whereas
if |a| < 1 then xn tends to 0 (the equilibrium is said to be stable). This explains
the behavior of the numerical solutions of Figures 6.1 (a) and (c). Note also that
if a > 0 then xn has the same sign as x0 for all n. In contrast if a < 0 the solution
alternates between positive and negative values.

The cases a = 1 and a = −1 are special. If a = 1 we have xn = x0 for all n,
hence every x is an equilibrium. If a = −1 the solution xn = (−1)nx0 flips back
and forth between x0 and −x0.

A more general equation is the following,

xn+1 = axn + b. (6.7)

An equilibrium is determined by xn+1 = xn = x for all n, hence

x = ax + b ⇒ x =
b

1 − a
,

where we assume a 6= 1. We can transform (6.7) to (6.5) by subtracting the
equilibrium. Set

yn = xn − x.

Then

yn+1 = xn+1 − x = axn + b − x

= a(yn + x) + b − x = ayn,

and so yn = any0. The solution of (6.7) is found by transforming yn back to xn,

xn = yn + x = axn(x0 − x) + x = an(x0 −
b

1 − a
) +

b

1 − a
. (6.8)
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Again the value of |a| determines whether xn goes off to infinity or approaches x,
and the sign of a determines whether xn − x alternates or has a constant sign.

EXAMPLE 6.3

The equation

xn+1 =
1

2
xn + 1

is of the form of (6.7). The equilibrium is

x =
b

1 − a
= 2.

Since a = 1/2 < 1 and a > 0 the solutions approach the equilibrium 2 and the sign
of xn−2 is the same for all n. This explains the behavior of the numerical solutions
shown in Figure 6.1 (d).

A more general form than (6.7) is provided by the equation

xn+1 = axn + bn, (6.9)

where bn is a given sequence. This equation is said to be nonhomogeneous due to
the presence of the bn term. If bn = 0 for all n, (6.9) simplifies to (6.5) and then
the equation is called homogeneous. We refer to (6.5) as the homogeneous equation
associated with (6.9). In the special case in which bn = b = const we were able to
transform the nonhomogeneous equation to its associated homogeneous equation,
but if bn varies with n this is no longer possible.

Definition 4. A one parameter family of solutions of (6.9) is an expression
xn = xn(c) that depends linearly on a parameter c and satisfies (6.9) iden-
tically in n and c. A particular solution is a solution that contains no free
parameters. A one parameter family of solutions is a general solution if for
every particular solution pn we can find a value c of c such that pn = xn(c)
for all n.

Consider now the difference hn = qn − pn of two particular solutions qn and
pn of (6.9). The computation

hn+1 = qn+1 − pn+1 = (aqn + bn) − (apn + bn)

= a(qn − pn) = ahn

shows that hn is a solution of the homogeneous equation (6.5). Since h0 = q0 − p0

it follows from (6.6) that hn = (q0 − p0)a
n and so,

qn = (q0 − p0)a
n + pn.

If we assume pn is a known particular solution, this equation allows to find any
other particular solution qn from its initial value q0. Thus if we write

xn = can + pn, (6.10)

and consider c as parameter, the solution qn is simply obtained by setting c = q0−p0.
We therefore have proved the following theorem.
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Theorem 5. Let pn be a particular solution of the nonhomogeneous equation

xn+1 = axn + bn.

Then the family
xn = can + bn

is a general solution.

Note that there is no unique general solution. For instance,

xn = can + (pn + 5an)

is also a general solution because pn + 5an is another particular solution.

EXAMPLE 6.4

Verify that pn = −n − 1 is a particular solution of

xn+1 = 3xn + 2n + 1.

Solution To test that an expression is a solution of a difference equation we just
have to plug it into the equation and check if both sides are the same. Now the left
hand side evaluates to

pn+1 = −(n + 1) − 1 = −n − 2,

and the right hand side to

3pn + 2n + 1 = 3(−n − 1) + 2n + 1 = −n − 2.

Since these are the same we have verified that pn is a solution. It is a particular
solution because it does not depend on parameters.

EXAMPLE 6.5

Find the general solution of

xn+1 = 3xn + 2n + 1

and the particular solution that satisfies x0 = 1.

Solution Form Example 6.4 we know that pn = −n − 1 is a particular solution.
Since a = 3 the general solution is

xn = c3n − n − 1.

To find the particular solution asked for we evaluate at n = 0,

x0 = c − 1 = 1.

It follows that c = 2, hence
xn = 23n − n − 1

is the solution with x0 = 1.
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bn form of particular solution conditions
(6.11) pn = (A0 + A1n + · · · + AMnM )bn b 6= a

pn = n(A0 + A1n + · · · + AMnM )bn b = a
(6.12) pn = (A0 + A1n + · · · + AMnM )bn cos(kn) k 6= 0, π

+ (B0 + B1n + · · · + BMnM )bn sin(kn)

TABLE 6.1: Solution forms pn for bn given by Equations (6.11) and (6.12)

To complete the solution of the nonhomogeneous equation (6.9) we need to
find a particular solution. For general terms bn this can be a complicated task.
However there is a method that applies always if bn is a combination of powers of n
(n0, n1, n2 etc.), trigonometric functions of n, and powers bn. This method is called
method of undetermined coefficients.

Method of undetermined coefficients. Assume bn has one of the following
forms,

bn = (c0 + c1n + . . . + cMnM )bn, (6.11)

where cM 6= 0, or

bn = (c0 + c1n + · · · + cMnM )bn cos(kn)

+ (d0 + d1n + . . . + dMnM )bn sin(kn), (6.12)

where at least one of cM or dM is nonzero. The coefficients b, k and cj , dj (0 ≤ j ≤
M) are assumed to be given numbers. It can be shown that if bn is as in (6.11) or
(6.12), then there exists a unique particular solution pn of the form as summarized
in Table 6.2.1. To find the values of the coefficients Aj , Bj (0 ≤ j ≤ M), one sets up
a trial form for pn according to the table with initially undetermined values of the
coefficients, substitutes the trial form into the difference equation, and determines
the values of the coefficients from the condition that pn be a solution. If bn is a
linear combination of several terms of the form of (6.11) or (6.12), with different
values of b or (b, k), each of them can be treated separately and the results are
added up.

EXAMPLE 6.6

Find a particular solution of

xn+1 = 3xn + 2n + 1.

Solution Here bn = 2n + 1 is of the form (6.11) with b = 1 and M = 1. Thus we
use pn = A + Bn as trial form and substitute this into the difference equation to
obtain,

A + B(n + 1) = 3(A + Bn) + 2n + 1,

or
(2A − B + 1) + (2B + 2)n = 0.
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This equation holds for all n if A and B satisfy the equations 2A − B = −1 and
2B = −2. The solution is A = B = −1, hence

pn = −n − 1.

EXAMPLE 6.7

Find a particular solution of

xn+1 = −xn + cos 2n.

Solution Substitution of the trial form pn = A cos 2n+B sin 2n into the difference
equation yields

A cos 2(n + 1) + B sin 2(n + 1) = −A cos 2n − B sin 2n + cos 2n.

We apply the formulae for cos(α + β) and sin(α + β) to the terms on the left hand
side and then rearrange the equation as

[A(1 + cos 2) + B sin 2 − 1] cos 2n + [−A sin 2 + B(1 + cos 2)] sin 2n = 0.

This equation holds for all n if the terms in both brackets vanish. Setting these
terms equal to zero gives the following system of equations for A and B,

A(1 + cos 2) + B sin 2 − 1 = 0

−A sin 2 + B(1 + cos 2) = 0,

with the solution

A =
1

2
, B =

sin 2

2(1 + cos 2)
.

Hence the particular solution is

pn =
1

2
cos 2n +

sin 2 cos 2n

2(1 + cos 2)
=

cos 2n + cos 2(n − 1)

2(1 + cos 2)
.

EXAMPLE 6.8

Find a particular solution of

xn+1 = xn/2 + n(1/2)n.
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Solution Here a = b = 1/2, so the trial function is pn = n(An+B)(1/2)n. Again
we substitute pn into the difference equation,

[A(n + 1)2 + B(n + 1)](1/2)n+1 = (An2 + Bn)(1/2)n/2 + n(1/2)n.

We multiply this equation by 2n+1 and rearrange terms as

2(A − 1)n + (A + B) = 0.

Thus A = −B = 1 and the particular solution is

pn = (n2 − n)(1/2)n.

6.2.2 Modeling Examples

(A) Savings Accounts and Loans

Savings Accounts. Assume you open a savings account at an annual interest
rate of r% and with monthly compound of interest. Let an be the dollar amount
on the account at the end of month n after the opening date. The amount at the
end of month n + 1 is

an+1 = an + in + pn,

where pn is the total deposit (withdrawal if pn < 0) and in is the interest earned,

in =

(

r

100

1

12

)

an.

Thus an satisfies the nonhomogeneous, linear first order difference equation,

an+1 = kan + pn, (6.13)

where
k = 1 +

r

1200
.

If pn = p = const we know the solution already (Equation (6.8) with a = k, b = p,
xn = an),

an = kn(a0 +
p

k − 1
) − p

k − 1
= kna0 +

(kn − 1)p

k − 1
. (6.14)

EXAMPLE 6.9

After graduating from High School Peter works for four years. During this time he
deposits each month $1000 on a savings account at an annual interest rate of 5%
(no initial deposit). The next four years Peter spends on College. During this time
he withdraws each month an amount of $pw from his savings account so that at
the end of the four years the balance is zero again. Find pw and the total interest
earned.
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Solution Letting p be the the monthly deposit, the accumulated amount on
Peter’s savings account after the first four years is

a48 =
(k48 − 1)p

k − 1
.

After the second four years this has evolved into

a96 = k48a48 −
(k48 − 1)pw

k − 1
=

k48 − 1

k − 1
(k48p − pw).

Solving the equation a96 = 0 for pw gives pw = k48p. With p = $1000 and k =
1+5/1200 this evaluates to pw = $1220.89. The total interest earned is 48(pw−p) =
$10, 602.72.

Loans. Equation (6.13) also holds for loans. In this case a0 is the amount bor-
rowed and an is the amount owed after n months. The term −pn > 0 is the monthly
payment. For constant monthly payment p the difference equation for an is

an+1 = kan − p, (6.15)

with the solution

an = kan
0 − (kn − 1)p

k − 1
.

Note that (6.15) has an unstable equilibrium a = p/(k − 1). If a0 > a the solution
grows without bound when n increases. While for savings accounts this may be
desirable, it is certainly not tolerable for loans.

The term of a loan is the time N (in months) when the loan is paid off. Setting
aN = 0 leads to a linear relation between monthly payment and initial debt,

p =
kN (k − 1)

kN − 1
a0. (6.16)

EXAMPLE 6.10

You decide to purchase a home with a mortgage at 6% annual interest and with a
term of 30 years. For k = 1 + 6/1200 = 1.005 and N = 360 the factor

R =
kN (k − 1)

kN − 1

in Equation (6.16) is R = 0.00600. If the house costs a0 = $200, 000, the monthly
payment is p = Ra0 = $1, 199.10. On the other hand, if your income restricts your
monthly payment to a maximum of pm = $1000, the maximal amount you can
spend for the house is pm/R = $166, 791.61.
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If p, a0 and k are fixed, the equation (6.16) may be considered as an equation
for the term N . Writing kN = eN ln k, Equation (6.16) can be rewritten as

eN ln k =
p

p − (k − 1)a0
,

hence

N =
− ln[1 − (k − 1)a0/p]

ln k
. (6.17)

Note however that the right hand side of (6.17) needs not to be an integer. Nev-
ertheless it can be used to estimate N and then to improve p or a0. For example,
assume you need $200, 000 and you want your payment to be close to, but not above
$1500. With r = 8%, a0 = 200, 000 and p = 1500, (6.17) evaluates to N = 330.68.
If this is rounded up to N = 331, Equation (6.16) gives p = $1499.60.

In our last example on savings accounts and loans we have to solve the non-
homogeneous equation (6.9) with nonconstant bn.

EXAMPLE 6.11

An employee starts her position at the age of 25 with an annual salary of $40, 000.
She deposits each month 8% of her monthly salary on a retirement savings account.
The salary increases by 3% each year and the annual interest rate of her retirement
savings account is 6%. What is the accumulated amount when she retires at the
age of 65?

Solution Let Am be the accumulated amount on the retirement savings account
at the end of year m and let am,n be the accumulated amount in month n of year
m + 1, that is,

am,0 = Am, am,12 = Am+1.

The amount am,n satisfies difference equation

am,n+1 = kram,n + kpsm, (6.18)

where kr = 1 + 6/1200 = 1.005, kp = 8/1200 and sm is the salary in year m + 1.
The salary satisfies the homogeneous difference equation

sm+1 = kssm,

with ks = 1 + 3/100 = 1.03 and s0 = 40, 000, hence

sm = km
s s0.

The solution of (6.18) is

am,n = kn
r am,0 +

(kn
r − 1)km

s kps0

kr − 1
.

Evaluating this at n = 12 yields

Am+1 = kaAm + fkm
s , (6.19)
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where

f =
(k12

r − 1)kps0

kr − 1
= $3289.48, ka = k12

r = 1.0616778.

It remains to solve the nonhomogenous difference equation (6.19). By using the
method of undetermined coefficients a particular solution can be determined to be
pm = fkm

s /(ks − ka). The solution with initial value A0 = 0 then is

Am =
(km

s − km
a )f

ks − ka
.

For m = 40 this evaluates to A40 = 799, 106.39. Hence the employee starts her
retirement with an amount of $799, 106.39 on her retirement savings account.

(B) Cooling and Heating

Newton’s law of cooling states that the rate of change of the temperature of an
object is proportional to the difference of the temperature of the object and its
surrounding. Let ∆Tn = Tn+1 − Tn be the change in temperature of the object
over a time interval τ , typically τ = 1hour. According to Newton’s law of cooling
we have

∆Tn ∝ Rn − Tn,

or

∆Tn = k(Rn − Tn),

where Rn is the surrounding temperature. Since we know that temperature de-
creases if Rn > Tn it follows that k > 0. The difference equation that arises from
this model is

Tn+1 = Tn + k(Rn − Tn).

If Rn = R = const this equation is again of the form (6.7) with solution

Tn = (1 − k)n(T0 − R) + R.

Note that the equilibrium solution is Tn = R as expected. The equilibrium is stable
if 0 < k < 2. However if 1 < k < 2 the temperature would oscillate about the
surrounding temperature which does not make sense physically, hence 0 < k < 1.

EXAMPLE 6.12

A murder victim is discovered in an office building that is maintained at 68 degrees
F. Given the medical examiner found the body temperature to be 88 degrees F at
8am and that one hour later the body temperature was 86 degrees F, at what time
was the crime committed?

Solution Setting T0 = 98.6 (where 0 is the time the crime was committed) and
R = 68 we obtain

Tn = 68 + 30.6(1 − k)n.
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If we define n1 as the time the body was observed initially by the medical examiner
and the time one hour later as n1 + 1 we have the equations

Tn1
= 88 = 68 + 30.6(1 − k)n1 ,

and

Tn1+1 = 86 = 68 + 30.6(1 − k)n1+1.

These two equations may be solved to give k = 1/10 and n1 = 4.036. So the crime
was committed just before 4am.

6.3 LINEAR SECOND ORDER EQUATIONS

6.3.1 Homogeneous Equations

We begin by considering the second order linear homogeneous difference equation

xn+2 + αxn+1 + βxn = 0 (6.20)

It is readily verified that this equation has solutions of the form

xn = λn

Upon substitution into Equation (6.20) we obtain the auxiliary equation

λ2 + αλ + β = 0

This quadratic equation has solutions that break down into three cases: i) both
solutions real and distinct, ii) one real double solution, and iii) a pair of complex
solutions as

λ± =
−α ±

√

α2 − 4β

2

Case i: α2 − 4β > 0. Two real roots.
In this case

λ+ =
−α +

√

α2 − 4β

2

and

λ− =
−α −

√

α2 − 4β

2

are both real and the solution is

hn = c1(λ+)n + c2(λ−)n

Since the equation is linear we know that the superposition of solutions is again a
solution. Notice that there are now two free parameters c1 and c2 to accommodate
the two initial conditions x0 and x1 required for a second order difference equation.
Notice also that hn → 0 for n → ∞ if λ±| < 1, but in general |hn| → ∞ if |λ+| > 1.
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EXAMPLE 6.13

xn+2 = xn+1 + xn

The auxiliary equation is now

λ2 − λ − 1 = 0

The solutions to this quadratic are

λ± =
1 ±

√
5

2

Thus, the general solution to the homogeneous problem is

hn = c1

(

1 +
√

5

2

)n

+ c2

(

1 −
√

5

2

)n

If we select h0 = h1 = 1 we have the Fibonocci sequence {1, 1, 2, 3, 5, 8, 13, . . . }. Em-
ploying this pair of initial conditions it is easily shown that the particular solution
is

hn =

(
√

5 + 1

2
√

5

)(

1 +
√

5

2

)n

+

(
√

5 − 1

2
√

5

)(

1 −
√

5

2

)n

You might impress your friends by telling them the 50th number in this sequence
h50 = 20365011074. It is also apparent that these numbers increase exponentially
fast.

Case ii: α2 − 4β = 0. One real (double) root.
In this case

λ+ = λ− = −α

2
so we only have one solution while we require two for the general solution of a
second order difference equation.

It is not hard to verify that in this instance the second solution is actually

xn = n(
−α

2
)n

. (See Exercise 6.15). Now the general solution to this homogeneous equation is

hn = c1

(

−α

2

)n
+ c2n

(

−α

2

)n

EXAMPLE 6.14

xn+2 + 2xn+1 + xn = 0

The auxiliary equation is
λ2 + 2λ + 1

which has the solution λ = −1. Thus, the general solution to this homogeneous
problem is

hn = c1(−1)n + c2n(−1)n
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Case iii: α2 − 4β < 0. Two complex roots.
The solution to the auxiliary equation is again

λ± =
−α ±

√

α2 − 4β

2

Based on the fact α2 − 4β < 0 we rewrite this as

λ± =
−α

2
± i

√

4β − α2

2

where i =
√
−1.1

We could now write the solution

hn = c1

(−α

2
+ i

√

4β − α2

2

)n

+ c1

(−α

2
− i

√

4β − α2

2

)n

but this form would not provide much insight. Instead we employ Demoivre’s
theorem that states

exp(inx) = cos(nx) + i sin(nx)

To exploit this formula we need to recall that each solution to the auxiliary equation
can be written in its complex polar form

z = x + iy = r exp(iθ)

where x = r cos θ and y = r sin θ. Thus, we take

x =
−α

2
, and y =

√

4β − α2

2

To compute the polar form we need r and θ. Recall

r2 = x2 + y2

so

r2 = (
−α

2
)2 + (

√

4β − α2

2
)2

= β

So
r =

√

β

The angle satisfies

tan θ =
y

x
=

√

4β − α2

−α

In polar form, the solution is

hn = c1r
n exp(inθ) + c2r

n exp(−inθ)

1Unlike the previous cases we now assume familiarity with basic complex numbers.



122 Chapter 6 Modeling with Discrete Dynamical Systems

The associated real form is

hn = rn(c1 cos(nθ) + c2 sin(nθ),

where we have used the facts that exp(inθ) = cos(nθ) + i sin(nθ) and that the real
and imaginary parts of a complex solution are real solutions (see problems). The
form of the solution tells that hn → 0 for n → ∞ if r < 1 and |hn| → ∞ if r > 1.
If r = 1 the solution remains bounded, but does not approach zero.

EXAMPLE 6.15

Find the general solution to the homogeneous difference equation

xn+2 + 2xn+1 + 5xn = 0

The auxiliary equation gives the solutions

λ± = −2 ± i

If we write these in polar form we have

hn = 5n/2(c1 exp(inθ) + c2 exp(−inθ))

where tan θ = 1/2. The associated real valued form is

hn = 5n/2(c1 cos(nθ) + c2 sin(nθ)).

6.3.2 The Cobweb Model Revisited

Consider a supply curve
p = msq + bs

and a demand curve
p = mdq + bd

Here we derive a formula for the values (qn, pn) that are the iterations along the
supply and demand curves that either converge to an economic equilibrium or spiral
out of control. Let the starting point on the demand curve be (q0, p0). The next
iteration is then given by

(q1, p1) = (
p0 − bs

ms
, p0)

Similarly,
(q2, p2) = (q1,mdq1 + bd),

(q3, p3) = (
p2 − bs

ms
, p2)

and
(q4, p4) = (q3,mdq3 + bd)

Thus, we have established the following pattern:
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(q2n, p2n) = (q2n−1,mdq2n−1 + bd)

and

(q2n+1, p2n+1) = (
p2n − bs

ms
, p2n)

It is now possible to create a second order difference equation for both qn and
pn. Since

q2n+1 =
p2n − bs

ms

it follows, upon substituting for p2n that

q2n+1 =
(mdq2n−1 + bd) − bs

ms

or,

q2n+1 =
md

ms
q2n−1 +

bd − bs

ms
. (6.21)

A Nonhomogeneous Second Order Equation. The equation (6.21) is of the
form

q2n+1 = αq2n−1 + β

This is a nonhomogeneous second order difference equation whose general solution
is, as in the first order case, given by

xn = hn + pn,

where hn is the general solution of the associated homogeneous equation and pn is
a particular solution of the nonhomogeneous equation.

The associated homogeneous equation is

q2n+1 = αq2n−1

and has the auxiliary equation

λ2 = α

so the general solution to the homogeneous problem is

hn = c1α
n/2 + c2(−α1/2)n

As the nonhomogeneous term is a constant we first search for a particular
solution of the form pn = A. This must be an equilibrium solution, if it exists.
Solving for A then gives

A = αA + β

or

A =
β

1 − α



124 Chapter 6 Modeling with Discrete Dynamical Systems

In terms of the original variables of the supply and demand problem, α =
md/ms, β = (bd − bs)/ms, the general solution to the nonhomogeneous equation
now becomes

qn = c1

(

md

ms

)n/2

+ c2

(

−(
md

ms
)1/2

)n

+
bd − bs

ms − md

It is clear from our previous work that this equation will only converge if

|md

ms
| < 1

Note also that if this condition holds then the quantity supplied converges,

qn → bd − bs

ms − md

and approaches the market equilibrium.

6.4 NONLINEAR DIFFERENCE EQUATIONS AND SYSTEMS IN POPULATION

MODELING

In this section we will consider a sequence of modifications of a population model
that characterize the modeling process and illustrate how including or deleting
terms in equations can have dramatic effects on the predictive powers of a model.

The simplest model for population growth makes the assumption that there is
no competition for resources such as nutrients or habitat. This exponential growth
is readily captured by the simple difference equation

pn+1 − pn = ∆pn = kpn (6.22)

where the growth constant k > 0 reflects the rate of reproduction. One would
assume that for rabbits this constant would be larger than for elephants. Actual
values for k must be determined empirically from the data using a data fitting
technique such as least squares.

If instead of simply taking k > 0 in Equation (6.22) we could have modeled
both the birth rate kb and the death rate kd such that

pn+1 − pn = kbpn − kdpn (6.23)

Clearly now we may write

k = kb − kd

and as we would expect, if k > 0 the model predicts that the population grows
exponentially fast and if −1 < k < 0 then the population decays exponentially fast.
Values of k in the rang k < −1 do not make sense because then the solution would
oscillate between positive and negative values.

The effect of adding to a population via immigration or subtracting via emi-
gration is captured by

pn+1 − pn = kpn + βn (6.24)
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where βn is the net flux of population. Now we might expect that growth rates
could be offset by immigration or emigration. For example k < 0 but βn = β can
produce a positive equilibrium population.

Obviously ignoring competition for finite resources places significant limita-
tions on this model. It will work well where the assumptions hold true but when
the effects of competition for resources become important it will not capture them.
To model competition we may argue as follows: competition occurs when there is
interaction between two members of a species and the total amount of competition
is the number of ways we can select subsets of 2 from a population p which is

number of pairwise interactions ∝ p(p − 1)

2

where we have divided by two to compute the number of combinations rather than
permutations. Now we may modify the model to incorporate competition as

pn+1 − pn = k1pn − k2pn(pn − 1) (6.25)

again ignoring effects due to migration. Here we are assuming k2 > 0 and use
the negative sign to reflect the fact that competition reduces the population. This
equation can be simplified to

pn+1 − pn = c1pn − c2p
2
n (6.26)

This is the well-known logistic difference equation for population growth and it
appears to correspond well to the growth of bacteria in agar jelly, for example.

Superficially we see that the difference between the model that does not model
competition and the one that does is a quadratic term. A more fundamental dif-
ference is that Equation (6.22) is linear while Equation (6.26) is nonlinear. The
only fixed point for Equation (6.22) is p = 0. For Equation (6.26) there are now
two fixed points p1 = 0 and p2 = c1

c2

; see Figure 6.3. From the plot of pn+1 − pn

it is clear that this new model predicts that the population will be limited, i.e., it
can’t grow unbounded to ∞ because as soon as pn > c1/c2 then ∆pn < 0 so the
population must decrease.

One is initially tempted to conclude that the equilibrium point p1 = 0 is
unstable while the equilibrium point p2 = c1/c2 is stable. As we shall see in
the numerical simulations this can be true, but for certain values of c1 and c2

the situation can be much more complicated including periodic and even chaotic
solutions!

6.4.1 Systems of Equations and Competing Species

Now consider two species A and B whose populations are denoted an and bn,
respectively. If we assume that these species have infinite resources and compete
neither with themselves or each other then we would propose the simple system of
difference equations

an+1 − an = k1an

bn+1 − bn = k2bn



126 Chapter 6 Modeling with Discrete Dynamical Systems

c
1
/c

2
 

0
 p

n
 

p
n+1

−p
n

 

p
n+1

−p
n
<0

 

p
n+1

−p
n
>0

 

p
n+1

−p
n
 <0

 

p
n+1

−p
n
>0

 

FIGURE 6.3: A plot of the change in population pn+1 − pn as a function of the population pn.

This system is said to be uncoupled as the values of an do not influence bn and,
similarly, the values of bn do not influence an.

If species B eats the same kind of food species A does, but species A does not
eat the same kind of food species B does we have the model

an+1 − an = g1an − c1anbn

bn+1 − bn = g2bn

If species A and B both like each others food we would employ the model

an+1 − an = g1an − c1anbn

bn+1 − bn = g2bn − c2anbn

See Figure 6.4 for a numerical simulation of this system. Note that this nonlinear
system does not have a closed form solution. For the parameters selected we see
that even though species A initially has a lower population it appears to grow
without bound while population B becomes extinct. Here we may conclude that
species A is more fit than species B and consequently survives.

If species A and B compete both with each other and with themselves the
population model would then become

an+1 − an = g1an − c1anbn − k1a
2
n

bn+1 − bn = g2bn − c2anbn − k2b
2
n
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FIGURE 6.4: Competition for finite resources. We have selected the initial conditions a1 = 25 and

b1 = 30. In addition the parameters were chosen to be g1 = .047, c1 = .012, g2 = .023, c2 = .015.

Notice that if population B becomes extinct while A survives then the model reduces
to the logistic difference equation for a single species.

Predator Prey Model. Now consider modeling the interaction between
natural predators and their prey. A classic example of this relationship is given by
foxes and rabbits. The population of foxes and rabbits are intimately linked given
that the rabbits are the food supply for the foxes. When the population of rabbits
increases one can predict an associated, though possibly time lagged, increase in
the number of foxes. Conversely, when the number of rabbits decreases the less
food there is for the foxes. Of course an increase in the number of foxes will result
in more rabbits being eaten and thus a reduction in the rabbit population.

Let’s develop a model for this situation. First, denote the fox population by
fn and the rabbit population by rn. If we assume that in the absence of rabbits
the fox population becomes extinct we have the model

∆fn = −g1fn

where the constant g1 > 0. If rabbits are available, then they should contribute
positively to a change in the fox population. It seems reasonable to assume that
the increase in the fox population will be proportional to the number of fox and
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rabbit interactions which is given by the product fnrn. Thus, in the presence of
rabbits we may model the change in the fox population to be

∆fn = −g1fn + c1fnrn

where the constant c1 > 0
Now the rabbits should multiply in the absence of foxes

∆rn = g2rn

where the constant g2 > 0. The impact of the foxes on the rabbits is presumably
also proportional to the number of interactions but now this reduces the rabbit
population.

∆rn = g2rn − c2fnrn

In summary we have the model

fn+1 = (1 − g1)fn + c1fnrn (6.27)

rn+1 = (1 + g2)rn − c2fnrn (6.28)

Note that we have omitted the competition amongst the foxes for the rabbits as
well as the competition amongst the rabbits for their food. This is easily captured
by extending the above system to

fn+1 = (1 − g1)fn + c1fnrn − d1f
2
n (6.29)

rn+1 = (1 + g2)rn − c2fnrn − d2r
2
n (6.30)

See Figure 6.5 for a simulation of the above equations. Note that the predicted
oscillation is in fact there, however it is damped and the solution proceeds to a
stable equilibrium.

6.5 EMPIRICAL MODELING

One may imagine that true observations, e.g., from populations in nature, will not
be precise due to limitations in counting species in the wild. Thus, the data will
contain what we refer to as a unknown noise component. In general, model selection
can be arrived at by

1. Collect observations to build models

2. Propose models, e.g., predator prey or competing species

3. Compute model coefficients in each case

4. Compare models through validation and testing

Now we present the method of least squares as a means to determine our
unknown model coefficients.

6.5.1 Non-Newtonian Fish?

Recall that Newton’s Law of Cooling states that the temperature change in a body
is proportional to the difference between the temperature of the body Tn and the
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FIGURE 6.5: Simulation of preditor prey equations. We have selected the initial conditions f1 = 25 and
r1 = 100. In addition the parameters were chosen to be g1 = 0.01, c1 = 0.0001, g2 = 0.1, c2 = 0.0005,
d1 = 0.0001 and d2 = 0.

surrounding temperature M , i.e., as a difference equation

∆Tn = k(M − Tn)

After repeatedly overcooking a certain kind of fish based on this law a frustrated
cook has decided to take science into her own hands. She speculates that the actual
law of cooking for this fish has the more general form

∆Tn = k(M − Tn)α

and that for certain types of foods, call them Non-Newtonian foods, that α 6= 1.
To test her hypothesis, our cook measures the temperature of a fish every

minute until it approaches the temperature of the oven which is set to 425 degrees
F. The results of her data collection are shown in Figure 6.6.

Now ∆Tn is known since Tn is known for n = 1, . . . , 200. Thus, for any α and
k we can compute a model error of

E(α, k) =
∑

n

(

∆Tn − k(425 − Tn)α
)2

We recall from our previous work with least squares that computing α and k requires
differentiating the error term E(α, k) with respect to α and k. For this particular
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FIGURE 6.6: Observations of a Non-Newtonian fish. These are (synthetic) measurements of the
temperature of the fish as a function of time.

model it is simpler to employ a logarithmic transformation

yn = ln ∆Tn

b = ln k

xn = ln(425 − Tn)

giving

E(α, b) =
∑

n

(yn − b − αxn)2

Differentiating these with respect to α and b and setting the results equal to zero
produces the equations

(
∑

n x2
n

∑

n xn
∑

n xn P

)(

b
α

)

=

(
∑

n ynxn
∑

n yn

)

Solving these equations using only the first 101 observations T0, T1, . . . , T100 and
the MATLAB code provided produces the results

α = 1.25

and
k = 0.01
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FIGURE 6.7: Simulation of preditor prey equations. We have selected the initial conditions f0 = 25
and r0 = 100. In addition the parameters were chosen to be g1 = .01, g2 = .0005, c1 = .0001, c2 =
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6.5.2 Predator or Prey?

Assume that the data in Figure 6.7 is provided. The goal is to see if we can calculate
the coefficients of the preditor prey equations that will reproduce this data. Thus,
given the tentative model

∆fn = −g1fn + c1fnrn

∆rn = g2rn − c2fnrn

the points {fn, rn} are now observations while the equation coefficients {g1, g2, c1, c2}
are to be determined.

The least squares error is now

E(g1, c1, g2, c2) =
∑

n

(∆fn + g1fn − c1fnrn)2 +
∑

n

(∆rn − g2fn + c2fnrn)2 (6.31)

Setting
∂E

∂g1
=

∂E

∂c1
=

∂E

∂g2
=

∂E

∂c2
= 0

produces the necessary conditions for a minimum error. Taking the uncoupled
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equations for c1 and g1 we have

(

−∑

n f2
n

∑

n f2
nrn

−∑

n f2
nrn

∑

n f2
nr2

n

) (

g1

c1

)

=

( ∑

n(∆fn)fn
∑

n(∆fn)fnrn

)

(6.32)

These must be solved simultaneously with the uncoupled conditions for c2

and g2, i.e.,

(

−∑

n r2
n −∑

n r2
nfn

∑

n r2
nfn −∑

n f2
nr2

n

)(

g2

c2

)

=

(
∑

n(∆rn)rn
∑

n(∆rn)fnrn

)

(6.33)

Solving these equations produces the exact coefficients that were used to gen-
erate the data. In principal, this procedure may be applied to direct observations
from nature. One may conclude if a model fits the data and, if so, which species
plays which role, i.e., by examining the computed signs of c1, c2, g1 and g2 one may
infer which species is the predator and which is the prey. See the MATLAB code
for these equations in the Appendix.
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PROBLEMS

6.1. Consider the following equations and identify as

• linear or nonlinear

• homogeneous or nonhomogenous

• which order

(a) x2
n+1 + xn = 1.

(b) xn+1 = xn−1 + 2
(c) xn+1 = sin(xn−1)
(d) xn+3 = xn+1 + xn−3 + n2

6.2. Determine particular solutions to the following equations
(a) xn+1 = xn + 1
(b) xn+1 = 5xn + n2

(c) xn+1 = xn

2 + 6n

6.3. Show that the real and imaginary parts of a complex solution to a linear difference
equation are also solutions to the same difference equation.

6.4. Determine general solutions to the following equations
(a) xn+1 = xn + 1
(b) xn+1 = 5xn + n2

(c) xn+1 = xn

2 + 6n

(d) xn+1 = xn

2 + 4n2 + 2n+ 1
6.5. You currently have $5000 in a savings account that pays 6% interest per year.

Interest is compounded monthly. You add another $200 each month. What do
you have on your savings account after five years, and what is the total interest
earned during these five years?

6.6. You owe $500 on a credit card that charges 1.5% interest in each month. You
can pay $50 each month and make no new charges. When is your loan paid off
and what is your last payment? How much interest have you paid?

6.7. Your parents are considering a 30–year $100, 000 mortgage at an annual interest
rate of 6%. What is the monthly payment, and what will be the total interest
paid?

6.8. Mary receives $5000 as graduation present from her parents when graduating
from High School. She deposits the money on a savings account at an annual
interest rate of 3%. Interest is compounded monthly. Before going to college she
works for three years, and during this time she deposits each month a certain
amount on the savings account. She plans to withdraw $1200 each month in
her first year on college, and to increase the monthly withdrawal in each of the
following three years by $100 (in her fourth year on college she withdraws $1500
each month). What must the monthly payment during the first three years be in
order that after Mary’s four years on college the balance on the savings account
is zero again, and what is the total interest Mary has earned after the seven
years?

6.9. Redo Example 6.11 for the case that the annual salary sm is paid during the
first nine months (monthly payment sm/9) in each year, i.e., there is no income
and hence no payment on the retirement savings account during the last three
months of the year. (This is the situation of university professors if they don’t
have additional income from grants.)

6.10. Assume the temperature of a roast in the oven increase at a rate proportional to
the difference between the oven (set to 400 degrees F) and the roast. If the roast
enters the oven at 50 degrees F and is measured one hour later to be at 90 when
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should the table be set if the eating temperature is 166 degrees F? Hint: write
down the difference equation and solve analytically.

6.11. Computer. This question concerns numerically exploring the solutions of the
equation

pn+1 = pn + αpn(1 − pn)

First determine all the equilibrium solutions of this difference equation by setting
p = pn+1 = pn. Now investigate the stability of these equilibrium numerically.
Consider the initial conditions

• p0 = 0

• p0 = 0.0001

• p0 = 2

Numerically simulate the difference equation using the following values of α

• α = .1

• α = .7

• α = 1.2

Describe your results and comment on the stability of the equilibrium you found.
Provide plots of all your results. It will make your comparisons easier if you plot
all the results for one value of α on a single graph.

6.12. Computer. This question concerns numerically exploring the solutions of the
equation

pn+1 = pn + 0.1pn(1 − pn)(2 − pn)

First determine all the equilibrium solutions of this difference equation. Numeri-
cally simulate the difference equation using the following initial conditions

• p0 = 0

• p0 = 0.0001

• p0 = .9999

• p0 = 1

• p0 = 1.0001

• p0 = 1.9999

• p0 = 2

• p0 = 2.0001

Describe your results and comment on the stability of the equilibrium you
found. Provide plots of all your results. It will make your comparisons easier if
you plot all the results on a single graph.

6.13. Computer. Simulate the fourth order difference equation

pn+4 = sin(pn+3 + pn+2 + pn+1 − pn) + 2

and compare to the related equation

pn+4 = sin(pn+2 + pn+1 − pn) + 2

using the initial coditions p1 = 6, p2 = 1, p3 = 2.5, p4 = −3. Explore mod-
ifications to these difference equations and see if you can find any interesting
behavior. For example, what is the effect of varying the nonhomogeneous term?
Plot your results in each case for 100 iterations.
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6.14. Computer. Consider the system of difference equations

xn+1 = 0.3xn + 0.8yn

yn+1 = 0.7xn + 0.2yn

Simulate these equations numerically for a variety of initial conditions and at-
tempt to determine any stable equilibrium. Verify that you have actually deter-
mined an equilibrium solution by substituting into the original system. (Note
that the equilibrium solution in this problem actually depends on the initial
condition.)
(a) How do the solutions change if you modify the first coefficient from 0.30 to

0.31?
(b) How do the solutions change if you modify the first coefficient from 0.30 to

0.31 and modify the 0.7 coefficient to 0.69.
(c) Compare the results in part a) and b). Can you explain?

6.15. Consider the difference equation

xn+2 + αxn+1 + βxn = 0

where it is assumed that α2 − 4β = 0. Show that xn = (−α
2 )nn is a solution.

6.16. Find the linear second order nonhomogeneous difference equation relating the
price p2n+2 and p2n in the cobweb model. Solve this equation and produce a
convergence criterion. What does the equilibrium price converge to? Check your
result by computing the point of intersection of the supply and demand curves.

6.17. Determine analytical solutions to the following difference equations assuming in
each case that x1 = 1 and x0 = −1. Plot your results.

a) xn+2 + 3xn+1 + xn = 0

b) 10xn+2 + xn+1 + xn = 0

c) xn+2 +
√

3xn+1 + 3
4xn = 0

6.18. Extend the population model with pairwise competition to include competition
among groups of three. Furthermore, assume that the competition among groups
of three is more intense than competition between pairs. Identity the new equi-
librium solution(s). Use a plot of ∆pn versus pn to argue whether the model
predicts a bounded population.

6.19. Consider a clam population that obeys the logistic difference Equation (6.26).
Modify this equation to account for constant harvesting of the clams. By com-
puting the new equilibrium points of the population model describe the impact
of harvesting on the clam population.

6.20. Consider three species A, B, C and the evolution of their populations an, bn and
cn.

• Species A eats B and C

• Species B eats neither A nor B

• Species C eats only A.

• Species B eats waste products produced by species A and B.

• The population of both species A and B increase in the absence of other
species.

• The population of species C decreases in the absence of A and B.
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• Species C is competes with itself for food while this is not true for species
A and B.

Write down a system of three coupled difference equations modeling the popu-
lations of the three species.

6.21. Computer. Provide a model for the bee colony population data in Table 6.2.
What does your model predict the long-term population to be?

day 1 2 3 4 5 6 7 8 9 10
number 20 25 60 85 111 146 177 182 184 171

day 11 12 13 14 15 16 17 18 19 20
number 179 167 161 146 159 154 162 166 166 168

TABLE 6.2: Bee colony population data.

6.22. Find the equilibria of the difference equation

pn+1 = pn − 0.1pn(1 − pn)(2 − pn)

and determine which of them are stable.
6.23. Computer. Numerically compute and plot 50 iterates of the difference equation

pn+1 = pn − 0.1pn(1 − pn)(2 − pn)

for each of the initial conditions
(a) (a) p0 = 0.9
(b) p0 = 1.1.
Is the behavior of the iterates consistent with the stability calculation of Problem
6.22?

6.24. Computer. Find all the equilibrium solutions of the logistic difference equation

xn+1 = rxn(1 − xn)

as a function of r. Letting x0 = 0.2 numerically iterate this difference equation
for 200 iterations for the following values of r:

• r = 2

• r = 3.2

• r = 3.8282

• r = 3.83

Plot your results xn as a function of n for each case and comment. Does this
seem like a reasonable model for a population?

6.25. Consider the logistic difference equation with r > 0:

pn+1 = rpn(1 − pn).

(a) Show that p1 = 0 is an equilibrium.
(b) Find the second equilibrium p2(r). For which values of r is p2(r) ≥ 0?
(c) For which values of r is p1 = 0 stable?
(d) For which values of r is p2(r) stable?
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6.26. Computer. Numerically compute and plot 50 iterates of the difference equation

pn+1 = rpn(1 − pn)

for p0 = 0.5 and each of the following values of r:
(a) r = 0.8
(b) r = 2.9
(c) r = 3.1
(d) r = 3.5
(e) r = 3.9.
Describe the behavior of the iterates and relate it, where possible, to the stability
calculation of Problem 6.25.

6.27. Computer. Use a least squares approach to determine k in Newton’s Law of
cooling

Tn+1 = Tn + k(M − Tn)

using the data generated by our empirical fish model

Tn+1 = Tn + 0.01(M − Tn)1.25

First generate 200 points using this equation and compute k based on these
points. Now predict the next 200 points and calculate the error. If a fish is well
cooked at 170 degrees F how long does each model predict it will take to cook
the fish? Use the values M = 425 and T0 = 50.

6.28. Computer. Using the data provided in Table 6.3 estimate via least squares the
coeffients c1, c2, d1, d2 in the model

an+1 = an + c1an + d1bn

bn+1 = bn + c2an + d2bn

Include your equations for the unknown coefficients in your write-up.

n an bn

1 15.00 45.00
2 30.00 30.00
3 24.00 36.00
4 26.40 33.60
5 25.44 34.56
6 25.82 34.18
7 25.67 34.33
8 25.73 34.27
9 25.71 34.29
10 25.72 34.28
11 25.71 34.29

TABLE 6.3: Did this data come from a linear system?

6.29. Extend the Equations (6.32) and (6.33) provided for computing the coefficients
c1, c2, g1, g2 for the predator-prey model with no intra-species competition given
by Equation (6.27) to the case of Equations 6.29 where intraspecies competition is
accounted for. Your equations should now provide estimates for c1, c2, g1, g2, d1, d2
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6.30. Consider the differential equation for the unforced damped nonlinear pendulum

d2x

dt2
+ α

dx

dt
+ sinx = 0

where x(t) represents the angular displacement from the equilibrium in radians.
Using the expressions for the numerical estimates of the derivatives

d2x

dt2
=
xn+1 + xn−1 − 2xn

(∆t)2

and
dx

dt
=
xn − xn−1

∆t

where xn ≡ x(n∆t).
(a) Show that the differential equation can be approximated by the second order

difference equation

xn+1 = (2 − α∆t)xn + (α∆t− 1)xn−1 − (∆t)2 sin(xn) (6.34)

(b) Simulate this difference equation for 1000 iterations using the values ∆t =
0.05, α = 0.1, x1 = 0, x2 = 0.0001 and plot your result. Repeat this calcula-
tion for x1 = 2, x2 = 2.0001 and compare your results.

(c) Redo this simulation using the small angle approximation sinx = x, i.e.,
simulate

xn+1 = (2 − α∆t)xn + (α∆t− 1)xn−1 − (∆t)2xn (6.35)

using the values ∆t = 0.05, α = 0.1, x1 = 0, x2 = 0.0001 and plot your
result. Again, repeat this calculation for x1 = 2, x2 = 2.0001 and compare
your results with those found in part (c).

(d) Rewrite the second order Equation (6.34) as a system of two first order
equations via the substitution yn+1 = xn and determine all equilibria. Note
that the equilibria can also be determined directly from Equation (6.34).

(e) By computing the eigenvalues of the Jacobian matrix of this system, ascer-
tain which equilibria are stable and unstable. Discuss.

6.31. Repeat parts (d) and (e) of Problem 6.30 for the small angle approximation
Equation (6.35) and compare.

6.32. Analytically solve the linear difference equation from the previous problem

xn+1 = (2 − α∆t)xn + (α∆t− 1)xn−1 − (∆t)2xn

and compare with your numerical simulation above. For simplicity you may take
∆t = 0.05, α = 0.1, x1 = 2, x2 = 2.0001.

6.33. Analytically solve the linear nonhomogeneous difference equation

xn+1 = (2 − α∆t)xn + (α∆t− 1)xn−1 − (∆t)2xn + 0.01 sin(n/50)

Simulate this problem numerically and compare with your analytical solution for
2000 iterations. Can you identify a transient (i.e., a term that goes to zero) and
steady state (persistent) components of your solution? Again, for simplicity you
may take ∆t = 0.05, α = 0.1, x1 = 2, x2 = 2.0001. Hint: combine your solution
to the homogeneous problem found above with a particular solution of the form

pn = A cos(n/50) +B sin(n/50)

Solve for the undetermined coefficients A and B.
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C H A P T E R 7

Simulation Modeling

It is not unusual that the complexity of a phenomenon or system makes a direct
mathematical attack time-consuming, or worse, intractable. An alternative mod-
eling approach consists of the literal execution of rules by the computer. Such
simulation approaches occur in great variety but share the common feature that a
computer is the central vehicle for knowledge, or process discovery. Here are some
problems where simulation modeling appears to be successful, if not indispensible:

• Develop strategies in games with simple rules but stochastic components such
as blackjack, checkers, and solitaire.

• Numerically approximate solutions to complex models such as the Navier-
Stokes equations of fluid dynamics. (These simulations are typically deter-
ministic).

• Modeling phenomenon with inherent probabilistic components such as process-
ing queues, traffic problems, and inventory problems.

This above list, while certainly not complete, gives an indication of the range of
problems that lend themselves naturally to simulation modeling.

7.1 THE TIRE DISTRIBUTOR PROBLEM

Consider the inventory problem confronting the distributor of a commodity with
random demand. To be concrete we will consider the situation of a car tire distrib-
utor. Our assumption is that this distributor supplies tires to a large number of
clients and in turn purchases its supply of tires from a major tire producer. The
distributor itself does not fabricate tires but relies on deliveries from the factory.
Based on observed daily demand it is up to the distributor to determine a quantity
X of tires to be delivered at an integer interval N in days.

The problem is driven by costs. It is the desire of the distributor to select
an X and N to minimize total costs. These costs are assumed to consist of two
components:

• tire delivery costs

• interest costs on money borrowed to pay for tires in stock

The tire delivery costs may be modeled in several different ways. We will
assume that the factory delivers and charges by the truckload and each truckload
can contain up to 1,000 tires. Furthermore, the delivery charges for a truckload
with no discount if the truck is not full. Hence, if a truckload costs $α, then the
delivery costs are d(X) are

d(X) = α

(

[X − 1

1000

]

+ 1

)

140
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where the notation [a] means the the number a rounded down to the nearest integer.
So, for example,

[

1500

1000

]

= 1

The second cost is due to the interest charged by the bank for the load the
company has to purchase the tires. Note that even if the distributor had enough
cash flow to not need to borrow, we would still view the investment in the tires
sitting in the warehouse as a cost as this money could presumably be invested to
earn a dividend.

Let’s assume the interest rate per day per tire is β. If xn tires are in stock at
the end of day n then we are assessed the interest fee βxn so that the total cost of
interest over an interval N is

I =
N

∑

n=1

βxn

This problem is complicated by the fact that the number of tires purchased
by customers varies randomly from day to day as shown in Table 7.1. Furthermore,
the average demand was calculated to be 997 tires/day. Thus, the distributor must
attempt to simulate this statistical demand in the model. To accomplish this we
need to develop a demand subroutine that will mimic the observed daily demand.
This may be achieved by associating the demand intervals with segments of the
unit interval the length of which is determined by the actual frequence of demand.
So, for example, the demand interval 0 ≤ xn < 100 occurs 12 days out of 365
(presumably due to holidays). So, we associate the interval

I1 = [0, 12/365]

to the probability that the daily demand will be in the interval 0 ≤ xn < 100
tires. Since we are mapping the interval [0,1] to daily demand ranges we must
require that these subintervals be nonoverlapping. Thus, the fact that the interval
100 ≤ xn < 300 occurred on exactly 4 days means that we should reserve 4/365 of
the unit interval for this demand range, i.e., I2 = [12/365, 16/365]. We may develop
the rest of the intervals in a similar fashion, i.e.,

I3 = [16/365, 43/365]

I4 = [43/365, 86/365]

and so on.
Now we have partitioned the unit interval, i.e.,

[0, 1] = I1 ∪ I2 ∪ · · · ∪ I11

Thus, if we pick a random number z ∈ [0, 1] (always picking this number uniformly
from the interval) we can map that number to an appropriate daily demand interval.

For example, if our uniform random number generator returns z = .0768 then
we select the interval containing this point, i.e., I3. Now the question remains
how to pick an actual daily demand? If we are in interval I3 we only know that
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the demand should be between 300 and 500 tires. So we may select this demand
randomly from the integers in this interval. This model we have constructed for
simulating the demand can be simply tested by running the model for 100 years
and seeing if we reproduce the demands (now averaged over the 100 years). The
results of doing this, shown in the last column of table 7.1 suggest this model is
rather good.

daily demand frequency in days cumulative distribution simulated freq.
0 ≤ xn < 100 12 12 12.22

100 ≤ xn < 300 4 16 4.04
300 ≤ xn < 500 27 43 26.67
500 ≤ xn < 700 43 86 43.05
700 ≤ xn < 900 48 134 47.20
900 ≤ xn < 1100 67 201 66.31
1100 ≤ xn < 1300 78 279 78.92
1300 ≤ xn < 1500 55 334 55.77
1500 ≤ xn < 1700 22 356 21.56
1700 ≤ xn < 190 7 363 7.24
1900 ≤ xn < 2100 2 365 2.02

TABLE 7.1: Number of days certain quantities of tires were demanded. Total number of days of
collected data is 365.

Summary of Tire Distributor Simulation

We run the simulation for 365 days and compute the average daily cost. This
calculation is repeated 100 times and the average cost is now averaged again. This
produces a more reliable stochastic estimate of the cost.

• Make an initial delivery of tires of size deliver quantity.

• Compute the stochastic demand and subtract sales from stock NUM TIRES

• If the stock is zero then add a penalty

• Accrue interest costs every iteration.

• If delivery interval counter indicates delivery then increment NUM TIRES by
delivery quantity.

7.2 BLACKJACK STRATEGY

Blackjack is a poker game pitting the Dealer, or Bank, against one or more players.
For simplicity we will assume there is only one player, as in video blackjack. The
object of the game is to score higher than the dealer without going over 21 points.
If this occurs the player is paid the value of his bet. If the Dealer has a higher score
than the player the Dealer collects the bet. Ties result in no loss of bet, or a push.

Card Values. The 10, Jack, Queen, and King are all valued at 10 while the
cards from 2 through 9 are valued as indicated. The score of a hand is obtained
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FIGURE 7.1: The average daily cost for this simulation averaged over 365 days was $228. This

simulation has no days without tires and does not tend to accumulate tires that would be subject to
interest.
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FIGURE 7.2: The average daily cost for this simulation averaged over 365 days was $703. The
increased cost is due to number of days (19) where the stock went to zero.
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FIGURE 7.3: The daily cost for this simulation averaged over 365 days was $447. This increased cost

is apparently due to the interest costs on the increasing stock.
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the nearest dollar) $415, $416, $354, $331, $340 and $341. A deliver interval of 15 days and quanity
16,000 tires appears optimal from our simulations.
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by adding the values of the individual cards in the hand. The Ace is worth 1 or 11
points. The player can choose the value of the Ace whereas the dealer must always
take the high value unless the total is over 21.

Blackjack occurs when a total of 21 is obtained with the first two cards in a
hand (a black Jack is not necessary). If the Dealer has Blackjack and the Player
has 21, the Dealer wins. If the Dealer has 21 and the Player has Blackjack, the
Player wins. If a Player wins with a Blackjack then he is paid 1.5 times the bet
placed. A total of 21 with more than two cards is not black jack.

Rules of Play. The dealer distributes two cards to the Player and to himself.
The Dealer shows the value of one of his cards to the player. The Player then
requests cards one at a time until he decides to stay pat (receive no more cards) or
goes bust (exceeds 21). If the Player stands pat then the Dealer plays. The Dealer
has no choices in how he plays his cards but must follow a specific set of rules.

Dealer Play. Dealer must stand pat on 17. Dealer must continue to take
cards until his total is 17 or higher An Ace in the dealer’s hand is always counted
as 11 unless counting it as 1 prevents the dealer from going over. Thus if the dealer
holds (ace,7) then he must stand. If the dealer holds (10,6,Ace) where the Ace is
the third card picked then the dealer holds 17 and must stand.
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PROBLEMS

7.1. The tire factory that supplies our distributor is overstocked and has decided to
discount shipping such that the first truck costs the usual amount α = $400,
the second truck costs $α/2, the third truck costs $α/3 and so on. Modify the
tire distributor problem to account for this and determine new optimal values of
delivery amount and delivery interval. Are your answers what you would expect?

7.2. Modify the ordering of a new shipment of tires to occur when the stock is at
20% of the delivery load. How does this effect the optimal delivery amount and
interval? Does the smallest average daily cost go down?

7.3. Modify your code so that the number of tires in stock can’t excede Tmax =
17, 000 tires. Include graphs of your new simulations to demonstrate this limited
capacity. What is the new optimal delivery interval and delivery quantity?

7.4. Modify the ordering of a new shipment of tires to occur when the stock is at
20% of the delivery load. How does this effect the optimal delivery amount and
interval? Does the smallest average daily cost go down?

7.5. Now assume that the placement of orders for new shipments of tires have a
random component based on the routines of the three rotating managers. Assume
manager I works 30% of the shifts and that he will place the order when stock
dips under 35% of the delivery quantity; manager II works 50 % of the shifts and
he places orders will when the stock dips below 20% of the delivery quantity;
manager III works 20% of the shifts and he places orders when the stock is just
under 5% of the delivery quantity. Modify your code to account for this. What
is the new optimal deliver quantity? (Note: there is now no delivery interval.)
Hand in your modified code for grading.

7.6. In the simulation code provided the days without tires are all charged at the
same flat rate. Modify the code to account for the fact that some tires may have
been sold before the stock ran out. For example, if there were 700 tires at the
beginning of the day and 800 were sold the penalty for not filling 100 orders
should be smaller than if the whole day were spent without tires.

7.7. Adapt the Blackjack computer program in the Appendices to exploit knowledge
of the Dealer’s showing card when deciding when to stop getting new cards. Run
the simulation 1000 times (i.e., 2000 decks of cards) picking my stay value based
on the value of the Dealer’s face card and compare the results. Compare your
winnings with the provided code that does not consider the Dealer’s face card.
You should win a higher percentage after the modification.

7.8. Experiment with the player’s strategy for deciding whether to select an ace as a
one or eleven based on the Dealer’s showing card. Can you improve over your
results in the previous problem?
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Matlab Code for Data Fitting

A.1 MAMMALIAN HEART RATE PROBLEM

File: ls_mammals.m

---------------------Start of actual file contents------------------------

%LEAST SQUARES ANALYSIS OF MAMMALIAN HEART RATE

%w body weights

%r corresponding heart rates

%data is a row vector

w = [3.5 4 6 25 103 117 200 252 300 437 1340 2000 2700 5000

22500 30000 33000 50000 70000 100000 415000 450000 500000 3000000];

r = [787 660 588 670 347 300 420 352 300 269 251 205 187 120 100

85 81 70 72 70 45 38 40 48];

x1 = w.^(-1/3) %raise each component of vector w to -1/3 power.

x2 = w.^(-2/3) %the result of this operation is a vector the same size as w

Now calculate the slope given by the formula:

k =

∑P
i=1 riw

−1/3
i

∑P
i=1 w

−2/3
i

We will use the variables numerator and denominator to split up the
calculation in the obvious fashion. The numerator is expressed as the
vector dot product of r, the row vector of heart rates, and x1 as found
above.

numerator = r*x1’;%apply transpose operator ’ to x1 to compute dot product.

denominator = sum(x2);%compute the sum of each component

k1 = numerator/denominator;

Now we reproduce the above calculation reproducing all the steps but
by using a different data set to compute the slope. It would be more
effiecient to pass the data to a subroutine rather than repeat all the
code. We examine this in the next section.

149
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%%Now build the model on the first 2/3 of the data (16 points)

ws = w(8:24)%the notation 8:24 is equivalent to [8 9 10 11 12 .... 24]

rs = r(8:24)

x1 = ws.^(-1/3)%raise each component of vector w to -1/3 power.

x2 = ws.^(-2/3)

numerator = rs*x1’;%apply transpose operator ’ to x1 to compute dot product.

denominator = sum(x2);%compute the sum of each component

k2 = numerator/denominator;%see formula in section 3.1.1

hold on

plot(w.^(-1/3),r,’o’)%plot raw data

plot(w.^(-1/3),k1*w.^(-1/3),’--x’)%plot first model

plot(w.^(-1/3),k2*w.^(-1/3),’--v’)%plot second model

title(’mammalian heart rate model’)

xlabel(’weight w^{(-1/3)}’)

ylabel(’pulse rate’)

legend(’raw data’,’least squares fit (all data)’, ’least squares fit 2/3 data’)

-----------------------End of actual file contents--------------------------------
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A.2 LEAST SQUARES WITH NORMAL EQUATIONS

This program consists of two parts: a subroutine called ls normal.m and a driver
called run ls.m.

File: ls_normal.m

---------------------Start of actual file contents------------------------

%Input:

% x is a column vector of domain (input) variables

% y is a column vector of range (output) variables

%

%Output:

% m is the slope of the line

% b is the intercept of the line

function [m,b] = ls_normal (x,y)

P = size(x,1)%how many points are there in this column vector?

Now we compute the terms required in the evaluation of m and b in the
normal equations. Recall

m =
(
∑

yi)(
∑

xi) − P
∑

yixi

(
∑

xi)2 − P
∑

x2
i

b =
−(

∑

yi)(
∑

x2
i ) + (

∑

xi)(
∑

yixi)

(
∑

xi)2 − P
∑

x2
i

We set sy =
∑

yi, dp xy =
∑

yixi and x sq =
∑

x2
i .

sy = sum(y);%sum y_i (scalar)

sx = sum(x);%sum x_i (scalar)

dp_xy = x’*y; %y dot product x (scalar)

x_sq = sum(x.*x);%sum x_i^2 term (scalar)

denom = sx^2 - P*x_sq; %(scalar)

m = (sy*sx-P*dp_xy)/denom

b = (-sy*x_sq+sx*dp_xy)/denom

%plot results

plot(x,y,’o’)

hold

plot(x,m*x+b,’--v’)

legend(’data’,’model’)

-----------------------End of actual file contents--------------------------------
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The above subroutine is called using the following driver:

File: run_ls.m

---------------------Start of actual file contents------------------------

w = [3.5 4 6 25 103 117 200 252 300 437 1340 2000 2700 5000

22500 30000 33000 50000 70000 100000 415000 450000 500000 3000000];

r = [787 660 588 670 347 300 420 352 300 269 251 205 187 120 100

85 81 70 72 70 45 38 40 48];

x = w.^(-1/3)’%note that the transpose operator ’ turns the row vec into col vec.

y = r’% the subroutine expects column vectors by design.

[m,b] = ls_normal (x,y)

-----------------------End of actual file contents--------------------------------
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A.3 LEAST SQUARES WITH OVERDETERMINED SYSTEM

File: ls_interp.m

---------------------Start of actual file contents------------------------

%Input:

% x is a column vector of domain (input) variables

% y is a column vector of range (output) variables

%

%Output:

% m is the slope of the line

% b is the intercept of the line

function [m,b] = ls_interp(x,y)

%Compute the matrix X

Recall the equation we are solving in this problem:











1 x1

1 x2

...
...

1 xP











(

b
m

)

=











y1

y2

...
yP











In terms of matrices we can summarize the above as

Xvec = y

This equation will be solved via matlab’s backslash routine.

P = size(x,1)%how big is the data set?

c1 = ones(P,1)%create a column vector of ones of length P

X = [c1 x]% construct the "interpolation matrix"

vec = X\y% solve the least squares problem

b = vec(1)%obtain the first component (intercept)

m = vec(2)%obtain the slope

%plot results

plot(x,y,’o’)
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hold

plot(x,m*x+b,’--v’)

legend(’data’,’model’)

-----------------------End of actual file contents--------------------------------

A.4 NON-NEWTONIAN FISH

See the discussion in Section 6.5.1.

File: fishfit.m

---------------------Start of actual file contents------------------------

y = log(T(2:101)-T(1:100))%use only the first 100 points

x = log(425-T)%

m11 = x(1:100)*x(1:100)’

m12 = sum(x(1:100))

m21 = m12

m22 = 100

r1 = (x(1:100))*y’

r2 = sum(y(1:100))

R = [r1;r2]

M = [m11 m12; m21 m22]

XX = inv(M)*R%this vector contains the results [b alpha]

k = exp(XX(2))%transforming back to original model equation

-----------------------End of actual file contents--------------------------------

A.5 PREDITOR OR PREY?

See the discussion in Section 6.5.2.

File: predpreyfit.m

---------------------Start of actual file contents------------------------

a = f(1:19800);%init data representing the population of species A

b = r(1:19800);%init data representing the population of species B

%%FOXES matrix equation coefs

m11 = -sum(a*a’)

m12 = sum(a.*a.*b)

m21 = -m12

m22 = sum(a.*a.*b.*b)

z1 = (f(2:19801)-a)*a’

z2 = sum((f(2:19801)-a).*a.*b)
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M = [m11 m12; m21 m22];%now compute the matrix by assembling the components

R1 = [z1;z2]%this is the RHS of equation for (g_1, c_1)

cg1 = inv(M)*R1%solve for (g_1, c_1)

%%rabbits equation coefs

m11 = sum(b*b’)

m12 = -sum(b.*b.*a)

m21 = -m12

m22 = -sum(a.*a.*b.*b)

z1 = (r(2:19801)-b)*b’

z2 = sum((r(2:19801)-b).*a.*b)

M = [m11 m12; m21 m22];

R1 = [z1;z2]

cg2 = inv(M)*R1%solve for (g_2, c_2)

-----------------------End of actual file contents--------------------------------

A.6 TIRE DISTRIBUTOR

See the discussion in Chapter 7 Section 7.1.

File: flatdemand.m

---------------------Start of actual file contents------------------------

function [num_tires] = flatdemand

u = rand(1);

u1 = rand(1);

if u < 12/365

num_tires = floor(u1*100);

elseif u >= 12/365 & u < 16/365

num_tires = 100 + floor(u1*200);

elseif u >= 16/365 & u < 43/365

num_tires = 300 + floor(u1*200);

elseif u >= 43/365 & u < 86/365

num_tires = 500 + floor(u1*200);

elseif u >= 86/365 & u < 134/365

num_tires = 700 + floor(u1*200);

elseif u >= 134/365 & u < 201/365

num_tires = 900 + floor(u1*200);

elseif u >= 201/365 & u < 279/365

num_tires = 1100 + floor(u1*200);

elseif u >= 279/365 & u < 334/365

num_tires = 1300 + floor(u1*200);
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elseif u >= 334/365 & u < 356/365

num_tires = 1500 + floor(u1*200);

elseif u >= 356/365 & u < 363/365

num_tires = 1700 + floor(u1*200);

else u >= 363/365 & u <1

num_tires = 1900 + floor(u1*200);

end

-----------------------End of actual file contents--------------------------------

File: simulate.m

---------------------Start of actual file contents------------------------

function [AVE_DAILY_COST] = simulate(num_runs, delivery_interval, delivery_quantity)

NUM_DAYS = 365

TRUCK_CAPACITY=4000;%tires

truck_charge = 400;%delivery cost per truck

delivery_charge = truck_charge*(floor((delivery_quantity-1)/TRUCK_CAPACITY)+1);

penalty = 1000;%10 dollar penalty per day * 1000 tires

for i = 1:num_runs

day_counter = 0;

%Assume there is a delivery at the outset

NUM_TIRES = delivery_quantity;%init

COST =delivery_charge;

interest_rate = 0.01;

days_without_tires =0;

delivery_counter = 0;

daily_inventory(1) = NUM_TIRES;

while day_counter <= NUM_DAYS;

if delivery_counter == delivery_interval;%add delivery charge

NUM_TIRES = NUM_TIRES + delivery_quantity;

COST = COST + delivery_charge;

delivery_counter = 0;

end

NUM_TIRES = NUM_TIRES - flatdemand; %sell tires for day

if NUM_TIRES <=0;%out of stock?

days_without_tires = days_without_tires + 1;

NUM_TIRES = 0;

end

COST = COST + interest_rate*NUM_TIRES;%add charges for unsold tires

day_counter = day_counter + 1;

daily_inventory(day_counter+1) = NUM_TIRES;
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delivery_counter = delivery_counter + 1;

end

%add daily charge due interest at end of day for remaining tires

cost_penalty = days_without_tires*10000;

AVE_DAILY_COST(i) = (COST + cost_penalty)/NUM_DAYS;

end

-----------------------End of actual file contents--------------------------------
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File: run_simulate.m

---------------------Start of actual file contents------------------------

num_runs = 100;

delivery_quantity = 4000; %number to have delivered in each shipment (X in notes)

for j=1:6

for i = 1:25

delivery_interval = i;

DAILY_COST(:,i,j) = simulate(num_runs, delivery_interval, delivery_quantity);

end

delivery_quantity = delivery_quantity + 4000

end

for j=1:6

for i = 1:25

AVES(i,j) = sum(DAILY_COST(:,i,j))/num_runs

end

end

semilogy(1:25,AVES(:,1),’.’,1:25,AVES(:,2),’x’,1:25,AVES(:,3),’o’,1:25,AVES(:,4),’+’,1:25,AVES(:,5),’v’,1:25,AVES(:,6),’^’

legend(’delivery quantity 4000’,’delivery quantity 8000’,’delivery quantity 12000’,’delivery

ylabel(’average daily cost’)

xlabel(’delivery interval in days’)

-----------------------End of actual file contents--------------------------------

A.7 BLACKJACK

File: blackjack.m

---------------------Start of actual file contents------------------------

%blackjack simulation

%bet one dollar on each hand; start with $100

my_money = 100;

iwin=0;%counter for number of wins

ilose = 0;%counter for number of losses

ties = 0;%counter for number of ties

hand = 0;%counter for number of hands played.

my_stay_value = 14; %don’t take another card if hand is worth 14 or more.

%deal cards from 2 decks

for i = 1:100

%note 11= jack, 12 = queen, 13 = king, and 14 = ace.

d1 = [2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10

11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14];
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deck = [d1 d1];

numcards = size(deck,2);

bigindexset = 1:numcards;

permuted_indices = bigindexset(randperm(numcards));

shuffled_cards = deck(permuted_indices);

%One game (of two decks)

card_counter = 1;

while card_counter < numcards - 10%dont let deck run out!

%new hand

hand = hand +1;

my_count = 0;

dealer_count = 0;

%make initial deal of two cards to Player and Dealer.

my_count = my_card_value(card_counter, shuffled_cards, my_count);

card_counter = card_counter+1;%advance deck index

dealer_count = dealer_card_value(card_counter, shuffled_cards, dealer_count);

card_counter = card_counter+1;

my_count = my_card_value(card_counter, shuffled_cards, my_count);

card_counter = card_counter+1;

dealer_count = dealer_card_value(card_counter, shuffled_cards, dealer_count);

card_counter=card_counter+1;

while my_count < my_stay_value & card_counter < numcards

my_count = my_card_value(card_counter, shuffled_cards, my_count);

card_counter = card_counter +1;

end

while dealer_count < 17 & card_counter < numcards & my_count < 22

dealer_count = dealer_card_value(card_counter, shuffled_cards, dealer_count);

card_counter = card_counter +1;

end

%who wins?

if my_count > 21% I am bust

my_money = my_money - 1;

ilose = ilose +1;

elseif dealer_count > 21%dealer is bust

my_money = my_money + 1;

iwin = iwin +1;

elseif my_count == dealer_count

%push--my winnings don’t change

ties = ties +1;

elseif my_count > dealer_count

my_money = my_money +1;
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iwin = iwin +1;

else

my_money = my_money -1;

ilose = ilose + 1;

end%if

%construct an array that computes a running fraction of losses

perclose(hand) = ilose/(iwin+ilose+ties);

end%while

end%for

iwin

ilose

ties

plot(perclose)

my_money

-----------------------End of actual file contents--------------------------------

File: dealer_card_value.m

---------------------Start of actual file contents------------------------

function newcount = dealer_card_value(card_counter, shuffled_cards, dealer_count)

card_value = shuffled_cards(card_counter);

if card_value >= 10 & card_value < 14

newcount = dealer_count + 10;

elseif card_value < 10

newcount = dealer_count + card_value;

else%card is an ace and has value of 11 for dealer unless he goes bust.

bigcount = 11 + dealer_count;

smallcount = 1 + dealer_count;

if bigcount <22

newcount = bigcount;

else

newcount = smallcount;

end

end

-----------------------End of actual file contents--------------------------------

File: dealer_card_value.m

---------------------Start of actual file contents------------------------

function newcount = my_card_value(card_counter, shuffled_cards, my_count)

card_value = shuffled_cards(card_counter);

if card_value >= 10 & card_value < 14

newcount = my_count + 10;

elseif card_value < 10

newcount = my_count + card_value;
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else%card is an ace and has value one or 11.

bigcount = 11 + my_count;

smallcount = 1 + my_count;

if bigcount >18 & bigcount <22

newcount = bigcount;

else

newcount = smallcount;

end

end

-----------------------End of actual file contents--------------------------------


