VARIATIONAL CHARACTERIZATION OF A SUM OF CONSECUTIVE EIGENVALUES; GENERALIZATION OF INEQUALITIES OF PÓLYA-SCHIFFER AND WELY

JOSEPH HERSCH

Abstract. Let \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \) be the eigenvalues of a vibrating system, an extremal property of \(\sum _i \lambda _i \) and \(\sum _i \lambda _{-1} \), suggested by the work of Pólya-Schiffer [1], is established and generalized to \(\sum _{k+1} \lambda _i \) and \(\sum _{k+1} \lambda _{-1} \): on the one hand in the sense of Poincaré, on the other in the sense of the “Max-Min” property of Courant-Weyl. We establish inequalities which reduce to those of Pólya-Schiffer [1] for \(k = 0 \) and to those of Weyl [2] for \(n = 1 \).

1. Definition of the “Rayleigh Trace” \(TR[L_n] \) on a linear space \(L_n \) and of the “Trace Inverse” \(TRinv[L_n] \)

We consider two positive definite quadratic forms \(A(\nu, \nu) \) and \(B(\nu, \nu) \) on a vector or functional space; the Rayleigh quotient will be \(R[\nu] = \frac{A(\nu, \nu)}{B(\nu, \nu)} \).

We will suppose that the beginning of the spectrum is discrete.

Given a linear subspace \(L_n \) of dimension \(n \), choose \(n \) vectors \(\nu_1, \ldots, \nu_n \) which are pairwise orthogonal in the metric \(B : B(\nu_1, \nu_j) = 0 \) if \(i \neq j \); we define

\[
(1) \quad TR[L_n] = R[\nu_1] + \cdots + R[\nu_n].
\]

This is the trace of the matrix associated with \(A \) in \(L_n \) under the metric \(B \): thus this definition is independent of the choice of \(\nu_1, \ldots, \nu_n \).

Now, choose \(n \) vectors \(\omega_1, \ldots, \omega_n \in L_n \) pairwise orthogonal in the metric \(A : A(\omega_i, \omega_j) = 0 \) if \(i \neq j \); we define

\[
(2) \quad TRinv[L_n] = \frac{1}{R[\omega_1]} + \cdots + \frac{1}{R[\omega_n]}.
\]

This is the trace of the matrix associated with \(B \) in \(L_n \) under the metric \(A \): thus this definition is independent of the choice of \(\omega_1, \ldots, \omega_n \).

2. Variational characterization of \(\sum _i \lambda _i \) and of \(\sum _i \lambda _{-1} \)

We part from the recurrent definition of the eigenvalues \(\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \) and of the corresponding eigenvectors \(u_1, u_2, u_3, \ldots \):

\[
\lambda_1 = \min _\nu R[\nu] = R[u_1]; \quad \lambda_2 = \min _{B(u_1, \nu) = 0} R[\nu] = R[u_2]; \quad \ldots
\]
For any \(n \geq 1 \),

\[
(3) \quad \lambda_1 + \lambda_2 + \cdots + \lambda_n = \min_{\text{choice of } L_n} TR[L_n].
\]

In effect, there exists in all \(L_n \):

a vector \(\nu_n \) which is \(B \)-orthogonal to \(u_1, \ldots, u_{n-1} \), so \(R[\nu_n] \geq \lambda_n \);

a vector \(\nu_{n-1} \) which is \(B \)-orthogonal to \(u_1, \ldots, u_{n-2} \) and to \(\nu_n \), so \(R[\nu_{n-1}] \geq \lambda_{n-1} \);

\vdots

a vector \(\nu_1 \) which is \(B \)-orthogonal to \(\nu_n, \ldots, \nu_2 \), and \(R[\nu_1] \geq \lambda_1 \).

In the sum: \(\lambda_1 + \cdots + \lambda_n \leq TR[L_n] \). In addition,

\[
TR[L(u_1, \ldots, u_n)] = \lambda_1 + \cdots + \lambda_n;
\]

(3) follows. Similarly,

\[
(4) \quad \frac{1}{\lambda_1} + \cdots + \frac{1}{\lambda_n} = \max_{\text{choice of } L_n} TRinv[L_n].
\]

3. Recurrent characterization of \(\sum_{k+1}^{k+n} \lambda_i \) and \(\sum_{k+1}^{k+n} \lambda_i^{-1} \):

\[
(5) \quad \sum_{k+1}^{k+n} \lambda_i = \min_{\text{choice of } L_n \text{ } B \text{-orthogonal to } L(u_1, \ldots, u_k)} TR[L_n].
\]

In effect: in all \(tel \ L_n \) there exists a vector \(\nu_{k+n} \) \(B \)-orthogonal to \(u_1, \ldots, u_{k+n-1} \), therefore \(R[\nu_{k+n}] \geq \lambda_{k+n} \); etc.

\[
(6) \quad \sum_{k+1}^{k+n} \frac{1}{\lambda_i} = \max_{\text{choice of } L_n \text{ } A \text{-orthogonal to } L(u_1, \ldots, u_k)} TRinv[L_n].
\]

4. Direct characterizations of \(\sum_{k+1}^{k+n} \lambda_i \) and \(\sum_{k+1}^{k+n} \lambda_i^{-1} \)

4.1. Extremal property “in the style of Poincaré”.

\[
(7) \quad \sum_{k+1}^{k+n} \lambda_i = \min_{\text{choice of } L_{k+n} \subset L} \max_{\text{choice of } L_n} TR[L_n];
\]

\[
(8) \quad \sum_{k+1}^{k+n} \frac{1}{\lambda_i} = \max_{\text{choice of } L_{k+n} \subset L} \min_{\text{choice of } L_n} TRinv[L_n].
\]
4.2. Extremal property “in the style of Courant-Weyl”.

\[\sum_{k+1}^{k+n} \lambda_i = \max \text{ choice of } L_k \text{ choice of } L_n \min \text{ B-orthogonal to } L_k TR[L_n]; \]

\[\sum_{k+1}^{k+n} \frac{1}{\lambda_i} = \min \text{ choice of } L_k \text{ choice of } L_n \max \text{ A-orthogonal to } L_k TR^{inv}[L_n]. \]

5.1. Schrödinger-type equation. \(\nabla u + [\lambda - W(x, y, z)]u = 0 \) with certain fixed conditions on limits;

\(R^{(W)}[\nu] = \frac{D(\nu) + \iint W \nu^2 \,d\tau}{\iint \nu^2 \,d\tau}, \)

where \(d\tau \) is the volume element and \(D(\nu) \) is the Dirichlet integral.

\[\sum_{i=1}^{n} \left(\lambda_{k_1+i}^{(W_1)} + \lambda_{k_2+i}^{(W_2)} - 2 \lambda_{k_1+k_2+i}^{(W_1+W_2)/2} \right) \leq 0 \quad (k_1 \geq 0, k_2 \geq 0, n \geq 1). \]

Proof. Denote by \(\tilde{u}_1, \tilde{u}_2, \tilde{u}_3, \ldots \) the eigenfunctions of \(\tilde{W}(x, y, z) = (W_1 + W_2)/2 \); in \(L(\tilde{u}_1, \ldots, \tilde{u}_{k_1+k_2+n}) \), there is an \(L_n \) orthogonal to both \(L(u_1^{(W_1)}, \ldots, u_{k_1}^{(W_1)}) \) and \(L(u_1^{(W_2)}, \ldots, u_{k_2}^{(W_2)}) \); thus, under the conditions of paragraph 3,

\[\sum_{k_1+1}^{k_1+n} \lambda_{k_1+i}^{(W_1)} + \sum_{k_2+1}^{k_2+n} \lambda_{k_1+i}^{(W_2)} \leq TR^{(W)}[L_n] + TR^{(W_2)}[L_n] = 2TR^{(\tilde{W})}[L_n] \leq 2 \sum_{k_1+k_2+1}^{k_1+k_2+n} \lambda_{k_1+k_2+i}^{(W_1)}. \]

For \(k_1 = k_2 = 0 \), we have a convex inequality of the type of Pólya-Schiffer [1]; for \(n = 1 \), we have an inequality of the type of Weyl [2].

5.2. Inhomogeneous vibrating system. \(\mathcal{L}[u] - \lambda \rho(x, y, \ldots) = 0 \) with certain fixed conditions on the boundary, and with density \(\rho \geq 0 \). (Here \(\mathcal{L} \) is a self-adjoint linear differential operator). The Rayleigh quotient is

\[R^{(\rho)}[\nu] = \int \nu \mathcal{L}[\nu] \,d\tau / \int \rho \nu^2 \,d\tau. \]

\[\sum_{i=1}^{n} \left(\frac{1}{\lambda_{k_1+1}} + \cdots + \frac{1}{\lambda_{k_N+i}} - \frac{1}{\lambda_{k_1+\cdots+k_{N-1}+i}} \right) \geq 0. \]

For \(N = 2 \) and \(k_1 = k_2 = 0 \), this gives a convex inequality of the type of Pólya-Schiffer [1]; for \(n = 1 \), this gives an inequality of the type of Weyl [2]. If \(k_1 = k_2 = \ldots = k_N = 0 \) and \(n = \infty \), there is equality; we will return to this.
References

[3] We always suppose B is positive definite; the relations (1), (3), (5), (7), (9), (11) remain valid if A is indefinite with only finitely many negative eigenvalues.

DRL 3E3A, University of Pennsylvania

E-mail address: shonkwil@math.upenn.edu