Clayton Shonkwiler

Math 517

Instructor: Dr. Clayton Shonkwiler
Time: Monday, Wednesday, Friday 12:00–12:50
Location: Engineering E106
Office: Weber 216
Office Hours: Monday 3:00–4:00, Wednesday 11:00–12:00 and 3:00–4:00, Thursday 2:00–3:00
Text: Principles of Mathematical Analysis, by Walter Rudin
Email Address:

Lecture Notes


Exam 1 Practice Problems (sketches of solutions)

Final Exam Practice Problems (sketches of solutions)


The goal of this course is to develop the theory of limits, continuity, differentiation, and linearization in a relatively general setting. These are the same concepts that are taught in a typical undergraduate analysis course (like MATH 317), so you should already have some familiarity with them. However, in this course we want to get a little more serious and develop this theory in general metric spaces (to the extent possible) and in higher-dimensional Euclidean spaces.

Here are the topics for the course as listed in the Qualifying Exam syllabus:

  • Metric spaces, compactness, completeness.
  • Sequences, convergence, Cauchy sequences.
  • Series, power series, nonnegative and absolutely convergent series.
  • Continuity, uniform continuity, intermediate value theorem.
  • Sequences and series of functions, pointwise and uniform convergence.
  • Weierstrass approximation theorem, equicontinuity, the Arzela-Ascoli theorem.
  • Differentiation in several variables, partial derivatives, the chain rule.
  • Linearization, mean value theorems, sequences of differentiable functions.
  • Higher order derivatives, power series, Taylor’s theorem.
  • Contraction mapping principle, implicit and inverse function theorems.