Math 369 Final Exam Practice Problems

1. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\binom{x}{y}\right)=\left(\begin{array}{c}
x+y \\
2 x+y \\
3 x+y
\end{array}\right)
$$

What is the nullspace of T ?
2. Let

$$
\mathcal{B}=\left\{\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right),\left(\begin{array}{l}
3 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
4 \\
4 \\
x
\end{array}\right)\right\} .
$$

(a) Find a value for x which makes \mathcal{B} linearly dependent and prove that the result really is linearly dependent.
(b) Find a value for x which makes \mathcal{B} linearly independent and prove that the result really is linearly independent.
3. Find the minimal polynomial of the matrix

$$
A=\left(\begin{array}{ccc}
-4 & -2 & -3 \\
2 & 1 & 6 \\
1 & 2 & 0
\end{array}\right)
$$

4. Let $F: V \rightarrow V$ be a linear transformation.
(a) Let $\lambda \in \mathbb{R}$ be a number. Give the definition of the eigenspace V_{λ} of F associated to λ.
(b) Show that $\overrightarrow{0} \in V_{\lambda}$ (this is true regardles of what λ is).
(c) Suppose that $\lambda \neq \tau$, but that $\vec{v} \in V_{\lambda}$ and $\vec{v} \in V_{\tau}$. Prove that this means $\vec{v}=\overrightarrow{0}$.
5. Let V be a vector space with an inner product. Let $\vec{v} \in V$ be some particular vector and define

$$
W=\{\vec{w} \in V:\langle\stackrel{\rightharpoonup}{w}, \vec{v}\rangle=0\}
$$

Prove that W is a subspace of V.
6. Alice and Bob are each given the same 7×11 matrix B. Alice computes that the nullspace of B is 3 -dimensional, while Bob computes that the column space of B is 8 -dimensional. Can they both be right? Why or why not?
7. Consider \mathbb{R}^{3} with the slightly unusual inner product

$$
\langle\stackrel{\rightharpoonup}{u}, \stackrel{\rightharpoonup}{v}\rangle=\frac{1}{6} u_{1} v_{1}+\frac{1}{8} u_{2} v_{2}+\frac{1}{27} u_{3} v_{3} .
$$

Let $\vec{e}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\vec{e}_{2}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$.
(a) Show that $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is an orthonormal set with respect to this weird inner product.
(b) Let $\vec{v}_{3}=\left(\begin{array}{c}0 \\ 8 \\ 18\end{array}\right)$. Apply the Gram-Schmidt prodcedure to the set $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{v}_{3}\right\}$ to get an orthonormal set. (Hint: you already know from part (a) that $\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is orthonormal, so \vec{v}_{3} is the only vector that needs adjustment.)
8. Shown below left is a picture before applying an unknown matrix C, and below right is the result after applying the matrix. What is the absolute value of $\operatorname{det}(C)$? (You do not need to determine the matrix C to solve this problem, though of course that is one approach.)

9. Prove or disprove the following claim: If A and B are $n \times n$ matrices and A is invertible, then $\operatorname{det}\left(A B A^{-1}\right)=\operatorname{det}(B)$.
10. Let $\mathcal{C}^{0}([-1,1])$ be the vector space of continuous functions on the closed interval $[-1,1]$. Let \mathcal{E} be the set of even continuous functions on $[-1,1]$; in other words,

$$
\mathcal{E}=\left\{f \in \mathcal{C}^{0}([-1,1]): f(x)=f(-x) \text { for all } x \in[-1,1]\right\}
$$

Prove that \mathcal{E} is a subspace of $\mathcal{C}^{0}([-1,1])$.

