Math 369 Exam #2 Practice Problems

1. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$f\left(\binom{x}{y}\right) = \binom{2x - 3y}{x + y}.$$

(a) Show that f is a linear transformation.

(b) Is
$$\begin{pmatrix} -1\\2\\2 \end{pmatrix}$$
 in the image of f ?

2. Consider the matrix

$$A = \begin{pmatrix} -3 & -4 & 0\\ 2 & 3 & 0\\ 0 & 0 & 2 \end{pmatrix}.$$

Find the characteristic polynomial of A.

- 3. Logan and Terry are both computing with the same 5×3 matrix. Logan determines that the nullspace of the matrix is 2-dimensional, while Terry computes that the column space is 2-dimensional. Can they both be right? Justify your answer.
- 4. Suppose V is a vector space and that $f: V \to V$ is a linear transformation. Let

$$V_{\lambda} = \{ v \in V : f(v) = \lambda v \}.$$

Show that V_{λ} is a subspace of V.

5. Consider the following images:

The figure on the right shows the image of the figure on the left under the action of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$.

- (a) What is the matrix for T with respect to the standard basis on \mathbb{R}^2 ? In other words, what is $[T]_{\mathrm{std}_2 \to \mathrm{std}_2}$?
- (b) What are $T\left(\begin{pmatrix}1\\1\end{pmatrix}\right)$ and $T\left(\begin{pmatrix}-1\\1\end{pmatrix}\right)$?
- (c) Let $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix} \right\}$. What is $[T]_{\mathcal{B} \to \mathcal{B}}$? (*Hint: Use (b*)...)