Math 369 Exam \#2 Practice Problems

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
f\left(\binom{x}{y}\right)=\left(\begin{array}{c}
2 x-3 y \\
x+y \\
2 x
\end{array}\right)
$$

(a) Show that f is a linear transformation.
(b) Is $\left(\begin{array}{c}-1 \\ 2 \\ 2\end{array}\right)$ in the image of f ?
2. Consider the matrix

$$
A=\left(\begin{array}{ccc}
-3 & -4 & 0 \\
2 & 3 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Find the characteristic polynomial of A.
3. Logan and Terry are both computing with the same 5×3 matrix. Logan determines that the nullspace of the matrix is 2 -dimensional, while Terry computes that the column space is 2-dimensional. Can they both be right? Justify your answer.
4. Suppose V is a vector space and that $f: V \rightarrow V$ is a linear transformation. Let

$$
V_{\lambda}=\{v \in V: f(v)=\lambda v\} .
$$

Show that V_{λ} is a subspace of V.
5. Consider the following images:

The figure on the right shows the image of the figure on the left under the action of the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) What is the matrix for T with respect to the standard basis on \mathbb{R}^{2} ? In other words, what is $[T]_{\text {std }_{2} \rightarrow \operatorname{std}_{2}}$?
(b) What are $T\left(\binom{1}{1}\right)$ and $T\left(\binom{-1}{1}\right)$?
(c) Let $\mathcal{B}=\left\{\binom{1}{1},\binom{-1}{1}\right\}$. What is $[T]_{\mathcal{B} \rightarrow \mathcal{B}}$? (Hint: Use (b) ...)

