## Math 369 Exam \#1 Practice Problems

1. Find the set of solutions of the following system of linear equations. Show enough work to make your steps clear.

$$
\begin{array}{r}
x+2 y+3 z+4 w=1 \\
-2 x-3 y-4 z-6 w=1 \\
3 x+5 y+7 z+10 w=0
\end{array}
$$

2. (a) Suppose $a, b, c$ are nonzero numbers. Find the inverse of the matrix $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$.
(b) Find the inverse of the matrix $\left(\begin{array}{lll}1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1\end{array}\right)$, where $d, e, f$ are any real numbers.
(c) True or false: Every upper triangular matrix with nonzero diagonal entries has an inverse. Explain your answer.
Hint: Every such matrix can be written as the product

$$
\left(\begin{array}{lll}
a & x & y \\
0 & b & z \\
0 & 0 & c
\end{array}\right)=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right)\left(\begin{array}{ccc}
1 & x / a & y / a \\
0 & 1 & z / b \\
0 & 0 & 1
\end{array}\right)
$$

3. Let $A \in \operatorname{Mat}_{2,3}(\mathbb{R})$ be a $2 \times 3$ matrix.
(a) Let $U=\left\{\vec{x} \in \mathbb{R}^{3}: A \vec{x}=\overrightarrow{0}\right\}$. Show that $U$ is a subspace of $\mathbb{R}^{3}$.
(b) Is $W=\left\{\vec{x} \in \mathbb{R}^{3}: A \vec{x}=\vec{b}\right\}$ a subspace when $\vec{b}=\binom{1}{2}$ ? Explain.
4. Let $V$ be a vector space.
(a) Define what it means for a set $\left\{u_{1}, \ldots, u_{n}\right\} \subset V$ to be linearly dependent.
(b) Suppose $v \in V$. Is the set $\{0, v\}$ linearly dependent? Explain.
5. Let $V=\mathcal{P}(\mathbb{R})[z]$ be the vector space of polynomials with real coefficients in the variable $z$. Is the set

$$
\left\{1+z+z^{2}, 1-z, 1-z^{3}\right\}
$$

linearly independent? Prove your claim.

