Math 2260 Written HW \#5 Solutions

1. Suppose a 15 foot chain is hanging from a winch 15 feet above the ground. The chain weighs 3 pounds per foot.
(a) How much work is required to wind up the entire chain?

Answer: The force required to lift an object is equal to the weight of the object. If the bottom of the chain is y feet above the ground, then the length of the chain hanging from the winch is $15-y$. Therefore, the weight of the chain is $3(15-y)=45-3 y$. In other words, the force that the winch needs to apply to the chain when the end of the chain is y feet above the ground is

$$
F(y)=45-3 y .
$$

Therefore, winding up the chain requires

$$
\begin{aligned}
\int_{0}^{15} F(y) d y & =\int_{0}^{15}(45-3 y) d y \\
& =\left[45 y-\frac{3 y^{2}}{2}\right]_{0}^{15} \\
& =\left(45(15)-\frac{3 \cdot 15^{2}}{2}\right)-(0-0) \\
& =3 \cdot 15^{2}-\frac{3 \cdot 15^{2}}{2} \\
& =\frac{3 \cdot 15^{2}}{2} \\
& =\frac{675}{2}
\end{aligned}
$$

foot-pounds of work.
(b) How much work is required to wind up the entire chain with a 100 pound load attached to it?
Answer: As before, the weight of the chain is $45-3 y$ when its bottom is y feet above the ground, but now there is always a 100 pound weight attached to the end of the chain, so the total weight hanging from the winch is $45-3 y+100=145-3 y$.
Therefore, winding up the chain-and-load assembly requires

$$
\begin{aligned}
\int_{0}^{15}(145-3 y) d y & =\left[145 y-\frac{3 y^{2}}{2}\right]_{0}^{15} \\
& =145(15)-\frac{3 \cdot 15^{2}}{2} \\
& =2175-\frac{675}{2} \\
& =\frac{3675}{2}
\end{aligned}
$$

foot-pounds of work.
2. Solve the differential equation

$$
2 x y-3 \frac{d y}{d x}=12 x .
$$

Answer: The goal is to separate variables and then integrate. Therefore, I should get all the x 's on the same side, so subtract $2 x y$ from both sides:

$$
-3 \frac{d y}{d x}=12 x-2 x y .
$$

Now, if I factor the right hand side, I get

$$
-3 \frac{d y}{d x}=2 x(6-y) .
$$

My goal is still to separate variables, so I'm going to divide both sides by $6-y$ and multiply by $d x$:

$$
-3 \frac{d y}{6-y}=2 x d x
$$

Now I can integrate:

$$
\begin{aligned}
\int-3 \frac{d y}{6-y} & =\int 2 x d x \\
3 \ln (|6-y|) & =x^{2}+C
\end{aligned}
$$

Therefore,

$$
\ln (|6-y|)=\frac{x^{2}}{3}+C^{\prime},
$$

where $C^{\prime}=\frac{C}{3}$ is another constant. Now, exponentiating both sides yields

$$
|6-y|=e^{x^{2} / 3+C^{\prime}}=A e^{x^{2} / 3}
$$

for the constant $A=e^{C^{\prime}}$. If $6-y>0$, then $|6-y|=6-y$, so we have

$$
6-y=A e^{x^{2} / 3}
$$

and so

$$
y=6-A e^{x^{2} / 3} .
$$

On the other hand, if $6-y<0$, then $|6-y|=-(6-y)=y-6$, so we have

$$
y-6=A e^{x^{2} / 3}
$$

meaning that

$$
y=6+A e^{x^{2} / 3} .
$$

The only difference between these two expressions is in the sign of the coefficient of $e^{x^{2} / 3}$ and so, by changing the sign of the constant A if necessary, it follows that

$$
y=6+A e^{x^{2} / 3}
$$

for some constant A.

