Math 113 Exam #1 Solutions

1. What are the domain and range of the function $f(x) = \frac{e^x}{\sqrt{x^4 - 1}}$?

Answer: Notice that $\sqrt{x^4 - 1}$ is only defined when $x^4 - 1$ is non-negative, meaning that $x \leq -1$ or $x \geq 1$. Moreover, the function f is only defined when the denominator is non-zero, which excludes $x = \pm 1$. Therefore, the domain of f is

$${x: x < -1 \text{ or } x > 1} = (-\infty, -1) \cup (1, +\infty).$$

As for the range, notice that both the numerator and the denominator are always positive, so negative numbers and zero are definitely not in the range. As x gets very negative, the numerator gets very close to zero. Also, as x gets close to -1, the denominator gets very close to zero while the numerator goes to 1/e > 0. Hence, the range of f consists of all positive numbers:

Range
$$(f) = \{y : 0 < y\} = (0, +\infty)$$

2. Let $f(x) = e^{3x-2}$. Is f invertible? Why or why not? If f is invertible, what is $f^{-1}(x)$?

Answer: Yes, f is invertible. To see why, notice, first of all, that 3x - 2 is an increasing function and passes the horizontal line test. Moreover, e^x is also an increasing function that passes the horizontal line test. Hence, the composition $f(x) = e^{3x-2}$ is also an increasing function, so it has an inverse.

We can find the inverse by swapping x and y in the expression $y = e^{3x-2}$ and solving for y. Swapping x and y yields

$$x = e^{3y-2}.$$

Taking the natural logarithm of both sides, we see that

$$\ln x = \ln \left(e^{3y-2} \right) = 3y - 2.$$

Adding 2 to both sides gives

 $\ln x + 2 = 3y.$

Now, just divide both sides by 3:

$$\frac{\ln x + 2}{3} = y$$

Therefore, the inverse of f is given by

$$f^{-1}(x) = \frac{\ln x + 2}{3}.$$

3. For each of the following, either evaluate the limit or explain why it doesn't exist.

(a)

$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16}$$

Answer: I'm going to consider $h(x) = \frac{4-\sqrt{x}}{x-16}$. Rationalizing the denominator yields

$$\frac{4-\sqrt{x}}{x-16} \cdot \frac{4+\sqrt{x}}{4+\sqrt{x}} = \frac{16-x}{(x-16)(4+\sqrt{x})} = \frac{-(x-16)}{(x-16)(4+\sqrt{x})}$$

As long as $x \neq 16$, this is equal to

$$g(x) = \frac{-1}{4 + \sqrt{x}}.$$

Therefore, since h(x) and g(x) agree except when x = 16, we know that

$$\lim_{x \to 16} h(x) = \lim_{x \to 16} g(x) = \lim_{x \to 16} \frac{-1}{4 + \sqrt{x}}$$

Since g(x) is a quotient of algebraic functions, it is continuous everywhere it is defined. In particular, g(x) is continuous at x = 16, so we can evaluate the above limit by plugging in x = 16:

$$\lim_{x \to 16} \frac{-1}{4 + \sqrt{x}} = \frac{-1}{4 + \sqrt{16}} = -\frac{1}{8}.$$

Putting this all together, we can conclude that

$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16} = -\frac{1}{8}.$$

(b)

$$\lim_{x \to -\infty} \frac{6x^2}{\sqrt{7x^4 + 9}}$$

Answer: To evaluate this limit, I want to multiply numerator and denominator by $\frac{1}{x^2}$:

$$\lim_{x \to -\infty} \frac{\frac{1}{x^2} \left(6x^2 \right)}{\frac{1}{x^2} \sqrt{7x^4 + 9}} = \lim_{x \to -\infty} \frac{6}{\sqrt{\frac{1}{x^4} \left(7x^4 + 9 \right)}} = \lim_{x \to -\infty} \frac{6}{\sqrt{7 + \frac{9}{x^4}}}.$$

Since $\frac{9}{x^4}$ goes to zero as $x \to -\infty$, we see that

$$\lim_{x \to -\infty} \frac{6}{\sqrt{7 + \frac{9}{x^4}}} = \frac{6}{\sqrt{7}}$$

Therefore, we can conclude that

$$\lim_{x \to -\infty} \frac{6x^2}{\sqrt{7x^4 + 9}} = \frac{6}{\sqrt{7}}.$$

(c)

$$\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 4x + 4}$$

Answer: I claim that this limit does not exist. To see why, notice, first of all, that

$$\frac{x^2 + x - 2}{x^2 + 4x + 4} = \frac{(x+2)(x-1)}{(x+2)(x+2)} = \frac{x-1}{x+2}$$

so long as $x \neq -2$. Therefore, if it exists, $\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 + 4x + 4}$ must be equal to

$$\lim_{x \to -2} \frac{x-1}{x+2}.$$

Notice that, as $x \to -2$, the numerator goes to -3, while the denominator goes to zero. However, the sign of the denominator depends on which direction x approaches -2 from. When x approaches -2 from the left, we have that

$$\lim_{x \to -2^{-}} \frac{x-1}{x+2} = +\infty,$$

since both the numerator and denominator are negative. However, as x approaches -2 from the right, we have that

$$\lim_{x \to -2^+} \frac{x-1}{x+2} = -\infty,$$

since the numerator is negative and the denominator is positive.

Therefore, since the two one-sided limits do not agree, the given limit does not exist.

4. (a) At which numbers is the function $h(x) = \cos\left(\frac{x}{1-x^2}\right)$ continuous? Justify your answer.

Answer: I claim that h(x) is continuous whenever $x \neq \pm 1$. To see this, notice that $g(x) = \frac{x}{1-x^2}$ is a rational function, so it is continuous wherever it is defined. Since this function is defined so long as $1 - x^2 \neq 0$, we see that it is defined for all $x \neq \pm 1$.

In turn, the function $f(x) = \cos x$ is continuous, and we know that the composition of continuous functions is continuous. Hence,

$$h(x) = (f \circ g)(x)$$

is continuous wherever it is defined, namely for all $x \neq \pm 1$.

- (b) What is $\lim_{x\to 0} h(x)$? Explain your reasoning.
 - **Answer:** From part (a), we know that h(x) is continuous at x = 0. Therefore, by definition of continuity,

$$\lim_{x \to 0} h(x) = h(0) = \cos\left(\frac{0}{1 - 0^2}\right) = \cos(0) = 1.$$

5. Suppose, for some bizarre reason, NASA built a giant landing platform at the level of the cloud tops on Jupiter. If you're standing on the platform and toss a ball straight up with an initial velocity of 32 m/s, its height (in meters) above the platform is given (approximately) by

$$s(t) = -13t^2 + 32t.$$

Given that, what is the velocity of the ball 2 seconds after you release it?

Answer: We know that the velocity of the ball at time t = 2 is given by s'(2). Therefore, by the definition of the derivative, the velocity is given by

$$s'(2) = \lim_{h \to 0} \frac{s(2+h) - s(2)}{h} = \lim_{h \to 0} \frac{\left[-13(2+h)^2 + 32(2+h)\right] - \left[-13(2)^2 + 32(2)\right]}{h}$$
$$= \lim_{h \to 0} \frac{\left[-13(4+4h+h^2) + 32 \cdot 2 + 32h\right] - \left[-13 \cdot 4 + 32 \cdot 2\right]}{h}$$
$$= \lim_{h \to 0} \frac{-13 \cdot 4 - 13 \cdot 4h - 13h^2 + 32 \cdot 2 + 32h + 13 \cdot 4 - 32 \cdot 2}{h}$$

We can cancel the factors $-13 \cdot 4$ and $32 \cdot 2$, yielding:

$$\lim_{h \to 0} \frac{-13 \cdot 4h - 13h^2 + 32h}{h} = \lim_{h \to 0} \left(-13 \cdot 4 - 13h + 32 \right) = -13 \cdot 4 + 32.$$

Some quick arithmetic gives us that $-13 \cdot 4 = -52$, so the above is equal to -20.

Therefore, we can conclude that the velocity of the ball 2 seconds after you release it is -20 m/s, so it is falling at a rate of 20 m/s.