Math 113 Exam \#1 Solutions

1. What are the domain and range of the function $f(x)=\frac{e^{x}}{\sqrt{x^{4}-1}}$?

Answer: Notice that $\sqrt{x^{4}-1}$ is only defined when $x^{4}-1$ is non-negative, meaning that $x \leq-1$ or $x \geq 1$. Moreover, the function f is only defined when the denominator is non-zero, which excludes $x= \pm 1$. Therefore, the domain of f is

$$
\{x: x<-1 \text { or } x>1\}=(-\infty,-1) \cup(1,+\infty)
$$

As for the range, notice that both the numerator and the denominator are always positive, so negative numbers and zero are definitely not in the range. As x gets very negative, the numerator gets very close to zero. Also, as x gets close to -1 , the denominator gets very close to zero while the numerator goes to $1 / e>0$. Hence, the range of f consists of all positive numbers:

$$
\operatorname{Range}(f)=\{y: 0<y\}=(0,+\infty)
$$

2. Let $f(x)=e^{3 x-2}$. Is f invertible? Why or why not? If f is invertible, what is $f^{-1}(x)$?

Answer: Yes, f is invertible. To see why, notice, first of all, that $3 x-2$ is an increasing function and passes the horizontal line test. Moreover, e^{x} is also an increasing function that passes the horizontal line test. Hence, the composition $f(x)=e^{3 x-2}$ is also an increasing function, so it has an inverse.
We can find the inverse by swapping x and y in the expression $y=e^{3 x-2}$ and solving for y. Swapping x and y yields

$$
x=e^{3 y-2}
$$

Taking the natural logarithm of both sides, we see that

$$
\ln x=\ln \left(e^{3 y-2}\right)=3 y-2
$$

Adding 2 to both sides gives

$$
\ln x+2=3 y
$$

Now, just divide both sides by 3 :

$$
\frac{\ln x+2}{3}=y
$$

Therefore, the inverse of f is given by

$$
f^{-1}(x)=\frac{\ln x+2}{3}
$$

3. For each of the following, either evaluate the limit or explain why it doesn't exist.
(a)

$$
\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{x-16}
$$

Answer: I'm going to consider $h(x)=\frac{4-\sqrt{x}}{x-16}$. Rationalizing the denominator yields

$$
\frac{4-\sqrt{x}}{x-16} \cdot \frac{4+\sqrt{x}}{4+\sqrt{x}}=\frac{16-x}{(x-16)(4+\sqrt{x})}=\frac{-(x-16)}{(x-16)(4+\sqrt{x})}
$$

As long as $x \neq 16$, this is equal to

$$
g(x)=\frac{-1}{4+\sqrt{x}}
$$

Therefore, since $h(x)$ and $g(x)$ agree except when $x=16$, we know that

$$
\lim _{x \rightarrow 16} h(x)=\lim _{x \rightarrow 16} g(x)=\lim _{x \rightarrow 16} \frac{-1}{4+\sqrt{x}} .
$$

Since $g(x)$ is a quotient of algebraic functions, it is continuous everywhere it is defined. In particular, $g(x)$ is continuous at $x=16$, so we can evaluate the above limit by plugging in $x=16$:

$$
\lim _{x \rightarrow 16} \frac{-1}{4+\sqrt{x}}=\frac{-1}{4+\sqrt{16}}=-\frac{1}{8}
$$

Putting this all together, we can conclude that

$$
\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{x-16}=-\frac{1}{8}
$$

(b)

$$
\lim _{x \rightarrow-\infty} \frac{6 x^{2}}{\sqrt{7 x^{4}+9}}
$$

Answer: To evaluate this limit, I want to multiply numerator and denominator by $\frac{1}{x^{2}}$:

$$
\lim _{x \rightarrow-\infty} \frac{\frac{1}{x^{2}}\left(6 x^{2}\right)}{\frac{1}{x^{2}} \sqrt{7 x^{4}+9}}=\lim _{x \rightarrow-\infty} \frac{6}{\sqrt{\frac{1}{x^{4}}\left(7 x^{4}+9\right)}}=\lim _{x \rightarrow-\infty} \frac{6}{\sqrt{7+\frac{9}{x^{4}}}}
$$

Since $\frac{9}{x^{4}}$ goes to zero as $x \rightarrow-\infty$, we see that

$$
\lim _{x \rightarrow-\infty} \frac{6}{\sqrt{7+\frac{9}{x^{4}}}}=\frac{6}{\sqrt{7}} .
$$

Therefore, we can conclude that

$$
\lim _{x \rightarrow-\infty} \frac{6 x^{2}}{\sqrt{7 x^{4}+9}}=\frac{6}{\sqrt{7}}
$$

(c)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{2}+4 x+4}
$$

Answer: I claim that this limit does not exist. To see why, notice, first of all, that

$$
\frac{x^{2}+x-2}{x^{2}+4 x+4}=\frac{(x+2)(x-1)}{(x+2)(x+2)}=\frac{x-1}{x+2}
$$

so long as $x \neq-2$. Therefore, if it exists, $\lim _{x \rightarrow-2} \frac{x^{2}+x-2}{x^{2}+4 x+4}$ must be equal to

$$
\lim _{x \rightarrow-2} \frac{x-1}{x+2}
$$

Notice that, as $x \rightarrow-2$, the numerator goes to -3 , while the denominator goes to zero. However, the sign of the denominator depends on which direction x approaches -2 from. When x approaches -2 from the left, we have that

$$
\lim _{x \rightarrow-2^{-}} \frac{x-1}{x+2}=+\infty
$$

since both the numerator and denominator are negative. However, as x approaches -2 from the right, we have that

$$
\lim _{x \rightarrow-2^{+}} \frac{x-1}{x+2}=-\infty
$$

since the numerator is negative and the denominator is positive.
Therefore, since the two one-sided limits do not agree, the given limit does not exist.
4. (a) At which numbers is the function $h(x)=\cos \left(\frac{x}{1-x^{2}}\right)$ continuous? Justify your answer.

Answer: I claim that $h(x)$ is continuous whenever $x \neq \pm 1$. To see this, notice that $g(x)=\frac{x}{1-x^{2}}$ is a rational function, so it is continuous wherever it is defined. Since this function is defined so long as $1-x^{2} \neq 0$, we see that it is defined for all $x \neq \pm 1$.
In turn, the function $f(x)=\cos x$ is continuous, and we know that the composition of continuous functions is continuous. Hence,

$$
h(x)=(f \circ g)(x)
$$

is continuous wherever it is defined, namely for all $x \neq \pm 1$.
(b) What is $\lim _{x \rightarrow 0} h(x)$? Explain your reasoning.

Answer: From part (a), we know that $h(x)$ is continuous at $x=0$. Therefore, by definition of continuity,

$$
\lim _{x \rightarrow 0} h(x)=h(0)=\cos \left(\frac{0}{1-0^{2}}\right)=\cos (0)=1
$$

5. Suppose, for some bizarre reason, NASA built a giant landing platform at the level of the cloud tops on Jupiter. If you're standing on the platform and toss a ball straight up with an initial velocity of 32 m / s, its height (in meters) above the platform is given (approximately) by

$$
s(t)=-13 t^{2}+32 t
$$

Given that, what is the velocity of the ball 2 seconds after you release it?
Answer: We know that the velocity of the ball at time $t=2$ is given by $s^{\prime}(2)$. Therefore, by the definition of the derivative, the velocity is given by

$$
\begin{aligned}
s^{\prime}(2)=\lim _{h \rightarrow 0} \frac{s(2+h)-s(2)}{h} & =\lim _{h \rightarrow 0} \frac{\left[-13(2+h)^{2}+32(2+h)\right]-\left[-13(2)^{2}+32(2)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[-13\left(4+4 h+h^{2}\right)+32 \cdot 2+32 h\right]-[-13 \cdot 4+32 \cdot 2]}{h} \\
& =\lim _{h \rightarrow 0} \frac{-13 \cdot 4-13 \cdot 4 h-13 h^{2}+32 \cdot 2+32 h+13 \cdot 4-32 \cdot 2}{h}
\end{aligned}
$$

We can cancel the factors $-13 \cdot 4$ and $32 \cdot 2$, yielding:

$$
\lim _{h \rightarrow 0} \frac{-13 \cdot 4 h-13 h^{2}+32 h}{h}=\lim _{h \rightarrow 0}(-13 \cdot 4-13 h+32)=-13 \cdot 4+32
$$

Some quick arithmetic gives us that $-13 \cdot 4=-52$, so the above is equal to -20 .
Therefore, we can conclude that the velocity of the ball 2 seconds after you release it is $-20 \mathrm{~m} / \mathrm{s}$, so it is falling at a rate of $20 \mathrm{~m} / \mathrm{s}$.

