
Math 215 HW #4 Solutions

1. Problem 2.3.6. Choose three independent columns of U . Then make two other choice. Do
the same for A. You have found bases for which spaces?

U =


2 3 4 1
0 6 7 0
0 0 0 9
0 0 0 0

 and A =


2 3 4 1
0 6 7 0
0 0 0 9
4 6 8 2

 .

Solution: The most obvious way to choose three independent columns of U is to pick the
three pivot columns, namely 

2
0
0
0

 ,


3
6
0
0

 , and


1
0
9
0

 .

Another choice of three independent columns would be the first, third and fourth columns,
which are independent because, if

0
0
0
0

 = c1


2
0
0
0

 + c2


4
7
0
0

 + c3


1
0
9
0

 =


2c1 + 4c2 + c3

7c2

9c3

0

 ,

then it must be the case that c2 = c3 = 0 (from the second and third components), so the
first component reduces to 0 = 2c1, so c1 = 0 as well.

We could also have chosen the second, third, and fourth columns. To see that these are
independent, suppose

0
0
0
0

 = c1


3
6
0
0

 + c2


4
7
0
0

 + c3


2
0
9
0

 =


3c1 + 4c2 + c3

6c1 + 7c2

9c3

0

 .

Then the third component implies that c3 = 0 and the first two component give the system
of equations

3c1 + 4c2 = 0
6c1 + 7c2 = 0.

Interpreting via the augmented matrix
[

3 4 0
6 7 0

]
and reducing by subtracting twice row

1 from row 2 yields [
3 4 0
0 −1 0

]
.

1



Then c2 = 0 and, since 3c1 + 4c2 = 0, this means that c1 = 0 as well. So, as indicated, the
second, third, and fourth columns of U are also independent.

Since U is just the echelon form of A (in particular, you can get from A to U by subtracting
twice row 1 from row 4), the relationship between the columns of A is the same as the
relationship between the columns of U . Hence, we can translate the three choices made above
into three different choices of independent columns of A. Namely, the first, second, and fourth
columns of A are independent, as are the first, third, and fourth columns of A, and the second,
third, and fourth columns of A are also independent.

2. Problem 2.3.10. Find two independent vectors on the plane x + 2y − 3z − t = 0 in R4. Then
find three independent vectors. Why not four? This plane is the nullspace of what matrix?

Solution: Notice that 
2
−1
0
0

 and


3
0
1
0


are vectors in the plane x + 2y − 3z − t = 0. They’re independent since

0
0
0
0

 = c1


2
−1
0
0

 + c2


3
0
1
0

 =


2c1 + 3c2

−c1

c2

0



implies that c1 = 0 = c2. The vector


1
0
0
1

 is also in this plane and we can see that this

collection of three vectors is linearly independent as follows: suppose
0
0
0
0

 = c1


2
−1
0
0

 + c2


3
0
1
0

 + c3


1
0
0
1

 =


2c1 + 3c2 + c3

−c1

c2

c3

 .

Then it must be the case that c1 = c2 = c3 = 0, so we see that the vectors
2
−1
0
0

 ,


3
0
1
0

 , and


1
0
0
1


are linearly independent vectors in the plane x + 2y − 3z − t = 0 in R4.

There cannot be four linearly independent vectors in this plane because any collection of four
linearly independent vectors in R4 must span all of R4. Since there are clearly vectors in R4

that are not in the plane (for example,


1
0
0
0

), this cannot be the case.
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Any vector in the plane x + 2y − 3z − t = 0 is a solution to the matrix equation
1 2 −3 −1
1 2 −3 −1
1 2 −3 −1
1 2 −3 −1




x
y
z
t

 =


0
0
0
0


and, vice versa, any solution to this matrix equation definitely lies in the plane. Therefore,
the plane x + 2y − 3z − t = 0 is the nullspace of the matrix

1 2 −3 −1
1 2 −3 −1
1 2 −3 −1
1 2 −3 −1

 .

(Incidentally, this provides another check that there can’t be four linearly independent vectors
in the plane. Since this matrix clearly has rank 1, we know that the dimension of the nullspace
is 4 − 1 = 3, so the plane x + 2y − 3z − t = 0, which is the same as the nullspace, is also
three-dimensional and so cannot contain four linearly independent vectors)

3. Problem 2.3.26. Suppose S is a five-dimensional subspace of R6. True or false?

(a) Every basis for S can be extended to a basis for R6 by adding one more vector.
Answer: True. Just pick any vector in R6 that is linearly independent from the given
basis (there must be lots of them, since R6 is 6-dimensional and S is 5-dimensional).
Then the set consisting of the given basis plus this new vector is, by construction,
linearly independent and spans a 6-dimensional space, so it must span all of R6. Any
set of linearly independent vectors that spans all of R6 is a basis for R6, so this is indeed
a basis for R6.

(b) Every basis for R6 can be reduced to a basis for S by removing one vector.
Answer: False. Suppose S is the five-dimensional subspace described by the equation

x1 + x2 + x3 + x4 + x5 + x6 = 0.

(One way to see this is both a subspace and five-dimensional: by the same reasoning as
in Problem 2, it is the nullspace of the 6×6 matrix with all entries equal to 1.) Consider
the standard basis for R6:



1
0
0
0
0
0

 ,



0
1
0
0
0
0

 ,



0
0
1
0
0
0

 ,



0
0
0
1
0
0

 ,



0
0
0
0
1
0

 ,



0
0
0
0
0
1




.

Then none of the elements of this basis lies in S, so deleting one of them cannot possibly
give a basis for S.

4. Problem 2.3.38.
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(a) Find all functions that satisfy dy
dx = 0.

Solution: Integrating both sides of the equation, we see that

y(x) = 0 + C = C,

where C is some constant. Thus, the functions that satisfy dy
dx = 0 are exactly the

constant functions.
(b) Choose a particular function that satisfies dy

dx = 3.
Solution: Notice that d

dx(3x) = 3, so yp(x) = 3x is a particular function that solves
dy
dx = 3.

(c) Find all functions that satisfy dy
dx = 3.

Solution: I claim that all functions that satisfy dy
dx = 3 are of the form

y(x) = yp(x) + C = 3x + C.

One the one hand, this is completely obvious from our knowledge of Calculus. On the
other hand, we can prove this just using parts (a) and (b) above.
In particular, suppose y(x) is some solution to dy

dx = 3. Then

d

dx
(y(x)− yp(x)) =

dy

dx
− dyp

dx
= 3− 3 = 0,

so y(x)− yp(x) is a solution to the equation dy
dx = 0. Hence, by part (a), we know that

y(x)− yp(x) = C

for some constant C, so we see that

y(x) = yp(x) + C = 3x + C.

5. Problem 2.4.10. If Ax = b always has at least one solution, show that the only solution to
AT y = 0 is y = 0. Hint : What is the rank?

Solution: If A is an m×n matrix and Ax = b always has at least one solution for any choice
of b ∈ Rm, that means that any vector b ∈ Rm must lie in the column space of A. In other
words,

col(A) = Rm.

This, then, means that the dimensions of these two spaces must be the same:

dim col(A) = dim Rm = m.

Since the rank of A is the same as the dimension of the column space of A, we see that A has
rank m.

Now, the solutions to the equation AT y = 0 are precisely those vectors y which lie in nul(AT ),
otherwise known as the left nullspace of A. However, the dimension of the left nullspace of A
is given by

dim nul(AT ) = m− rank(A) = m−m = 0.

Therefore, nul(AT ) is zero-dimensional, so it only contains the zero vector, so the zero vector
is the only solution to the equation AT y = 0.
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6. Problem 2.4.28. Construct a matrix with (1, 0, 1) and (1, 2, 0) as a basis for its row space and
its column space. Why can’t this be a basis for the row space and nullspace?

Solution: Consider the matrix

A =

 1 0 1
0 −4 2
1 2 0

 .

Notice, first of all, that A is symmetric, so a basis for its column space will also be a basis
for its row space (and vice versa). Notice that the second column is twice the first column
minus twice the third column, so we can ignore the second column for the purposes of finding
a basis for the column space.

Also, the vectors

 1
0
1

 and

 1
2
0

 are certainly linearly independent since they aren’t multi-

ples of each other. Therefore, these two columns do indeed give a basis for the column space
of A (and, by symmetry, for the row space of A).

Now, I claim that this cannot be a basis for the row space and the nullspace of any 3 × 3
matrix A. To see why, remember that the dimension of the row space of A is equal to the
rank of A, whereas the dimension of the nullspace is equal to the number of columns minus
the rank, namely

3− rank(A).

If these two vectors are a basis for both the row space and the nullspace, then both the row
space and the nullspace must be two-dimensional, meaning that

rank(A) = 2 and 3− rank(A) = 2,

meaning that the rank of A must be both 2 and 1 simultaneously. This is clearly impossible,
so we see that the row space and the nullspace can’t both be two-dimensional, so no two
vectors can be a basis for both the row space and the nullspace of any 3× 3 matrix.

7. Problem 2.4.32. Describe the four subspace of R4 associated with

A =

 0 1 0
0 0 1
0 0 0

 and I + A =

 1 1 0
0 1 1
0 0 1

 .

Solution: The column space of A is just the space spanned by the vectors 1
0
0

 and

 0
1
0

 ,

namely the xy-plane.

Notice that A is already in reduced echelon form, corresponding to the equations y = 0 and
z = 0. This leaves x as a free variable, so the solutions to the homogeneous equation are
those vectors of the form  x

0
0

 ,
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so the nullspace of A is the x-axis.

The row space of A (i.e. the column space of AT ) is spanned by the vectors 0
1
0

 and

 0
0
1

 ,

which is just the yz-plane.

The left nullspace of A (i.e. nul(AT )) consists of those vectors y such that AT y = 0. Since

AT =

 0 0 0
1 0 0
0 1 0


is already in reduced echelon form, we can read off the equations x = 0 and y = 0. Hence, z
is a free variable, so the nullspace of AT consists of those vectors of the form 0

0
z

 .

Thus, the left nullspace of A is the z-axis.

(Notice that the column space and the left nullspace are perpendicular; similarly, the row
space and the nullspace are perpendicular.)

Now, turn to I + A. Notice that we don’t have to do any elimination to see that I + A has
three pivot columns (and three pivot rows), so the rank of I +A is equal to three. Thus, both
the column space and the row space are three-dimensional, so each is all of R3. Moreover,

dim nul(A) = 3− rank(A) = 3− 3 = 0,

so the nullspace is zero-dimensional, meaning it consists only of the zero vector. Likewise,

dim nul(AT ) = 3− rank(A) = 3− 3 = 0,

so the left nullspace is also zero-dimensional and only contains the zero vector.

8. Problem 2.6.6. What 3 by 3 matrices represent the transformations that

(a) project every vector onto the xy-plane?
Solution: To find the matrix for this transformation, we just need to apply the trans-
formation to the standard basis for R3: the ith column of the matrix will be whatever
vector results from applying the transformation to ei.

Projecting the vector

 1
0
0

 to the xy-plane has no effect on it, so the first column of

the matrix is

 1
0
0

.

6



Likewise, projecting

 0
1
0

 to the xy-plane has no effect, so the second column of the

matrix is

 0
1
0

.

Finally, projecting

 0
0
1

 to the xy-plane yields

 0
0
0

, so the third column of the matrix

is

 0
0
0

.

Therefore, the matrix of this transformation is 1 0 0
0 1 0
0 0 0

 .

(b) reflect every vector through the xy-plane?
Solution: Again, we just apply the transformation to the standard basis.

Reflecting

 1
0
0

 through the xy-plane has no effect, so the first column of the matrix

is

 1
0
0

.

Likewise, reflecting

 0
1
0

 through the xy-plane has no effect, so the second column of

the matrix is

 0
1
0

.

Finally, reflecting

 0
0
1

 through the xy-plane yields

 0
0
−1

, so the third column of

the matrix is

 0
0
−1

.

Therefore, the matrix of this transformation is 1 0 0
0 1 0
0 0 −1

 .

(c) rotate the xy-plane through 90◦, leaving the z-axis alone?
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Solution: Applying the transformation to the standard basis, we see that rotating 1
0
0

 through 90◦ (counterclockwise) yields

 0
1
0

, so the first column of the matrix is 0
1
0

.

Rotating

 0
1
0

 through 90◦ yields

 −1
0
0

, so the second column of the matrix is −1
0
0

.

Finally, the transformation leaves the z-axis alone, so

 0
0
1

 is unchanged, and so is the

third column.
Therefore, the matrix of this transformation is 0 −1 0

1 0 0
0 0 1

 .

(d) rotate the xy-plane, then xz, then yz, through 90◦?

Solution: First, apply this transformation to

 1
0
0

: the rotation in the xy-plane yields 0
1
0

, the rotation in the xz-plane leaves this vector unaffected, and then the rotation

in the yz-plane yields

 0
0
1

. Therefore, the first column of the matrix is

 0
0
1

.

Now, apply the transformation to

 0
1
0

. The rotation in the xy-plane yields

 0
−1
0

.

Rotating this vector in the xz-plane yields

 0
0
−1

. Finally, rotating this vector in the

yz-plane yields

 0
1
0

, so we see that the second column of the matrix is

 0
1
0

 (notice

that this means that the transformation actually has no effect on the y-axis).

Finally, apply the transformation to

 0
0
1

. The rotation in the xy-plane has no effect on
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this vector. Rotating in the xz-plane takes this vector to

 −1
0
0

, and then rotation in

the yz-plane has no further effect. Therefore, the third column of the matrix is

 −1
0
0

.

Putting all of this together, the matrix of the transformation is 0 0 −1
0 1 0
1 0 0


(You can easily check that this is the same matrix you would get if the transformation
had just been rotating the xz-plane by 90◦ and leaving the y-axis alone, so the rotations
in the xy-plane and the yz-plane were actually superfluous).

(e) carry out the same three rotations, but each one through 180◦?

Solution: Rotating

 1
0
0

 through 180◦ in the xy-plane yields

 −1
0
0

. Rotating this

through 180◦ in the xz-plane gets us back to

 1
0
0

, which is, in turn, unaffected by a

180◦ rotation in the yz-plane. Thus, the first column of the matrix is

 1
0
0

.

Rotating

 0
1
0

 in the xy-plane yields

 0
−1
0

, which is then unaffected by the 180◦

rotation in the xz-plane. Rotating by 180◦ in the yz-plane gets us back to

 0
1
0

, which

is, therefore, the second column of the matrix.

Finally,

 0
0
1

 is unaffected by a 180◦ rotation in the xy-plane. Rotating by 180◦ in the

xz-plane yields

 0
0
−1

; rotating this by 180◦ in the yz-plane takes us back to

 0
0
1

,

which is the third column of the matrix.
Thus, the matrix of the transformation is 1 0 0

0 1 0
0 0 1


(Notice that this means we could have achieved the same effect by doing nothing, since
this is also the matrix of the identity transformation).
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9. Problem 2.6.14. Prove that T 2 is a linear transformation if T is linear (from R3 to R3).

Proof. Suppose x, y ∈ R3 and that a, b ∈ R. Then, in order to show that T 2 is linear, we need
to show that T 2(ax + by) = aT 2(x) + bT 2(y). To that end, notice that

T 2(ax + by) = T (T (ax + by)) = T (aT (x) + bT (y)),

since T is a linear transformations. In turn, again using the fact that T is a linear transfor-
mation, the above is equal to

aT (T (x)) + bT (T (y)) = aT 2(x) + bT 2(y).

Stringing these equalities together, we see that

T 2(ax + by) = aT 2(x) + bT 2(y),

so T 2 is indeed linear.

10. Problem 2.6.22. Which of these transformations is not linear? The input is v = (v1, v2).

(a) T (v) = (v2, v1).
(b) T (v) = (v1, v1).
(c) T (v) = (0, v1).
(d) T (v) = (0, 1).

Solution: I claim that (d) is the only one of these transformations that is not linear. To see

this, let v =
[

v1

v2

]
and w =

[
w1

w2

]
be two vectors and let a, b ∈ R be scalars.

To see that the transformation in (a) is linear, notice that

T (av + bw) = T

(
a

[
v1

v2

]
+ b

[
w1

w2

])
= T

([
av1 + bw1

av2 + bw2

])
=

[
av2 + bw2

av1 + bw1

]
= a

[
v2

v1

]
+ b

[
w2

w1

]
= aT (v) + bT (w).

Thus, the T from (a) is a linear transformation.

Next, to see that the transformation from (b) is linear, we check that

T (av + bw) = T

(
a

[
v1

v2

]
+ b

[
w1

w2

])
= T

([
av1 + bw1

av2 + bw2

])
=

[
av1 + bw1

av1 + bw1

]
= a

[
v1

v1

]
+ b

[
w1

w1

]
= aT (v) + bT (w).
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Hence, the T from (b) is a linear transformation.

Turning to (c), we see that

T (av + bw) = T

(
a

[
v1

v2

]
+ b

[
w1

w2

])
= T

([
av1 + bw1

av2 + bw2

])
=

[
0

av1 + bw1

]
= a

[
0
v1

]
+ b

[
0
w1

]
= aT (v) + bT (w),

so this is also a linear transformation.

Finally, the transformation in (d) is not linear. To see this, notice that

T

([
1
0

]
+

[
0
1

])
= T

([
1
1

])
=

[
0
1

]
, (∗)

whereas

T

([
1
0

])
+ T

([
0
1

])
=

[
0
1

]
+

[
0
1

]
=

[
0
2

]
. (†)

Since the expressions in (∗) and (†) are not equal, the transformation T cannot be linear.
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