Math 215 HW \#4 Solutions

1. Problem 2.1.6. Let \mathbf{P} be the plane in 3 -space with equation $x+2 y+z=6$. What is the equation of the plane \mathbf{P}_{0} through the origin parallel to \mathbf{P} ? Are \mathbf{P} and \mathbf{P}_{0} subspaces of \mathbb{R}^{3} ?

Answer: For any real number r, the plane $x+2 y+z=r$ is parallel to \mathbf{P}, since all such planes have a common normal vector $\mathbf{i}+2 \mathbf{j}+\mathbf{k}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. In particular, notice that the plane determined by the equation

$$
\begin{equation*}
x+2 y+z=0 \tag{*}
\end{equation*}
$$

is parallel to \mathbf{P} and passes through the origin (since $(x, y, z)=(0,0,0)$ is a solution of the above equation). Hence, this is the equation which determines the plane \mathbf{P}_{0}.
Now, suppose $\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right] \in \mathbf{P}_{0}$; i.e. the triples $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ both satisfy the equation $(*)$. Then

$$
\left(x_{1}+x_{2}\right)+2\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right)=\left(x_{1}+2 y_{1}+z_{1}\right)+\left(x_{2}+2 y_{2}+z_{2}\right)=0+0=0
$$

so we have that

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
y_{1}+y_{2} \\
z_{1}+z_{2}
\end{array}\right] \in \mathbf{P}_{0}
$$

Also, if $c \in \mathbb{R}$, then

$$
c x_{1}+2\left(c y_{1}\right)+c z_{1}=c\left(x_{1}+2 y_{1}+z_{1}\right)=c(0)=0
$$

so

$$
c\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=\left[\begin{array}{c}
c x_{1} \\
c y_{1} \\
c z_{1}
\end{array}\right] \in \mathbf{P}_{0}
$$

Therefore, \mathbf{P}_{0} is a subspace of \mathbb{R}^{3}.
On the other hand, $\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 3 \\ 0\end{array}\right]$ are both in \mathbf{P}, but

$$
\left[\begin{array}{l}
6 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
6 \\
3 \\
0
\end{array}\right]
$$

is not in \mathbf{P} since

$$
6+2(3)+0=12 \neq 6
$$

Therefore, we see that \mathbf{P} is not a subspace of \mathbb{R}^{3}.
2. Problem 2.1.12. The functions $f(x)=x^{2}$ and $g(x)=5 x$ are "vectors" in the vector space \mathbf{F} of all real functions. The combination $3 f(x)-4 g(x)$ is the function $h(x)=$ \qquad . Which rule is broken if multiplying $f(x)$ by c gives the function $f(c x)$?
Answer: The combination $3 f(x)-4 g(x)$ is the function

$$
h(x)=3 x^{2}-20 x .
$$

If we tried to define scalar multiplication as $c f(x)=f(c x)$ we would run into problems. Note that

$$
f(5 x)=(5 x)^{2}=25 x^{2}
$$

but

$$
f(2 x)+f(3 x)=(2 x)^{2}+(3 x)^{2}=4 x^{2}+9 x^{2}=13 x^{2} .
$$

Hence, this attempted definition of scalar multiplication would not satisfy rule 8 in the definition of a vector space.
3. Problem 2.1.18.
(a) The intersection of two planes through $(0,0,0)$ is probably a \qquad but it could be a
\qquad . It can't be the zero vector \mathbf{Z} !
Answer: The intersection of two planes through the origin in \mathbb{R}^{3} is probably a line, but it could be a plane (if the two planes coincide).
(b) The intersection of a plane through $(0,0,0)$ with a line through $(0,0,0)$ is probably a
\qquad but it could be a \qquad .
Answer: The intersection of a plane through the origin with a line through the origin in \mathbb{R}^{3} is probably just the single point $(0,0,0)$, but it could be a whole line (if the line lies in the plane).
(c) If \mathbf{S} and \mathbf{T} are subspaces of \mathbb{R}^{5}, their intersection $\mathbf{S} \cap \mathbf{T}$ (vectors in both subspaces) is a subspace of \mathbb{R}^{5}. Check the requirements on $x+y$ and $c x$.
Answer: To see that $\mathbf{S} \cap \mathbf{T}$ is a subspace, suppose $x, y \in \mathbf{S} \cap \mathbf{T}$ and that $c \in \mathbb{R}$. Then, since x and y are both in \mathbf{S} and since \mathbf{S} is a subspace (meaning that it is closed under addition), we have that

$$
x+y \in \mathbf{S}
$$

Likewise, since x and y are both elements of \mathbf{T} and since \mathbf{T} is a subspace, we have that $x+y \in \mathbf{T}$. Therefore, since $x+y$ is in both \mathbf{S} and \mathbf{T}, we have that

$$
x+y \in \mathbf{S} \cap \mathbf{T} .
$$

Likewise, since $x \in \mathbf{S}$ and \mathbf{S} is a subspace (meaning that \mathbf{S} is closed under scalar multiplication), we have that $c x \in \mathbf{S}$; similarly, $c x \in \mathbf{T}$. Therefore,

$$
c x \in \mathbf{S} \cap \mathbf{T}
$$

Since our choices of x, y, and c were completely arbitrary, we see that $\mathbf{S} \cap \mathbf{T}$ is a subspace of \mathbb{R}^{5}.
4. Problem 2.1.22. For which right-hand sides (find a condition on b_{1}, b_{2}, b_{3}) are these systems solvable?
(a) $\left[\begin{array}{ccc}1 & 4 & 2 \\ 2 & 8 & 4 \\ -1 & -4 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
(b) $\left[\begin{array}{cc}1 & 4 \\ 2 & 9 \\ -1 & -4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
(a) Answer: Form the augmented matrix

$$
\left[\begin{array}{cccc}
1 & 4 & 2 & b_{1} \\
2 & 8 & 4 & b_{2} \\
-1 & -4 & -2 & b_{3}
\end{array}\right]
$$

The goal is to use elimination to get this into reduced echelon form. Subtract twice row 1 from row 2 and add row 1 to row 3 to get:

$$
\left[\begin{array}{cccc}
1 & 4 & 2 & b_{1} \\
0 & 0 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}+b_{1}
\end{array}\right]
$$

Hence, the given equation is solvable only if

$$
b_{2}-2 b_{1}=0 \quad \text { and } \quad b_{3}+b_{1}=0
$$

In other words, the right-hand side of the equation must be a vector of the form

$$
\left[\begin{array}{c}
b_{1} \\
2 b_{1} \\
-b_{1}
\end{array}\right]=b_{1}\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

for any real number b_{1}. In other words, the column space of the given matrix is the line containing the vector $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$.
(b) Answer: Form the augmented matrix

$$
\left[\begin{array}{ccc}
1 & 4 & b_{1} \\
2 & 9 & b_{2} \\
-1 & -4
\end{array}\right)
$$

Then the goal is to get this into reduced echelon form. To do so, subtract twice row 1 from row 2 and add row 1 to row 3 , yielding:

$$
\left[\begin{array}{ccc}
1 & 4 & b_{1} \\
0 & 1 & b_{2}-2 b_{1} \\
0 & 0 & b_{3}+b_{1}
\end{array}\right]
$$

The given equation is solvable only if

$$
b_{3}+b_{1}=0
$$

or, equivalently, if $b_{3}=-b_{1}$. Hence, the possible right-hand sides are vectors of the form

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
-b_{1}
\end{array}\right]=b_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+b_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

In other words, the column space of the given matrix is the plane containing the vectors

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

5. Problem 2.1.28. True or false (with a counterexample if false)?
(a) The vectors b that are not in the column space $\mathbf{C}(A)$ form a subspace.

Answer: False. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
$$

Then, for any $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, it's clear that

$$
A x=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

Hence, the column space of A consists of all vectors of the form $\left[\begin{array}{c}x_{1} \\ 0\end{array}\right]$ for some real number x_{1}. Now, neither of the two vectors

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

is in the column space of A, but their sum

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

is in $\mathbf{C}(A)$. Therefore, the vectors that are not in $\mathbf{C}(A)$ do are not closed under addition and so do not form a subspace.
(b) If $\mathbf{C}(A)$ contains only the zero vector, then A is the zero matrix.

Answer: True. The column space of A consists of all linear combinations of the columns of A. In particular, each column of A is an element of $\mathbf{C}(A)$. Hence, if $\mathbf{C}(A)$ contains only the zero vector, then each column of A must be the zero vector, meaning that A is the zero matrix.
(c) The column space of $2 A$ equals the column space of A.

Answer: True. Suppose b is in the column space of A. That means there exists some x such that $A x=b$. Then

$$
(2 A)\left(\frac{1}{2} x\right)=A x=b
$$

so b is in the column space of $2 A$. Hence, the column space of A is contained in the column space of $2 A$.
On the other hand, if c is in the column space of $2 A$, then there exists x such that $(2 A) x=c$. But that means that

$$
A(2 x)=2 A x=c,
$$

so c is also in the column space of A. Hence, the column space of $2 A$ is contained in the column space of A.
Since we've shown containments both directions, it must be the case that the column space of A and the column space of $2 A$ are the same space.
(d) The column space of $A-I$ equals the column space of A.

Answer: False. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Then the column space of A consists of all linear combinations of the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, which is to say all of \mathbb{R}^{2}. On the other hand,

$$
A-I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],
$$

so the column space of $A-I$ consists only of the zero matrix.
6. Problem 2.2.6. Describe the attainable right-hand sides b (in the column space) for

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right],
$$

by finding the constraints on b that turn the third equation into $0=0$ (after elimination). What is the rank, and a particular solution?
Answer: Consider the augmented matrix

$$
\left[\begin{array}{lll}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
2 & 3 & b_{3}
\end{array}\right] .
$$

We can convert this to reduced echelon form by subtracting twice row 1 from row 3 and subtracting 3 times row 2 from row 3 :

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & b_{2} \\
0 & 0 & b_{3}-2 b_{1}-3 b_{2}
\end{array}\right] .
$$

In order for this system to be consistent, it must be the case that

$$
b_{3}-2 b_{1}-3 b_{2}=0
$$

or, equivalently,

$$
b_{3}=2 b_{1}+3 b_{2} .
$$

There are no constraints on b_{1} and b_{2}, the possible right-hand sides of the equation are vectors of the form

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
2 b_{1}+3 b_{2}
\end{array}\right]=b_{1}\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+b_{2}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]
$$

for any real numbers b_{1} and b_{2}. In other words, the column space of A is the plane containing the vectors $\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$.
Looking at the reduced echelon form of the matrix, we see that it is of rank 2 and that a particular solution of the given equation is

$$
\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] .
$$

7. Problem 2.2.20. If A has rank r, then it has an r by r submatrix S that is invertible. Find that submatrix S from the pivot rows and pivot columns of each A :

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 4
\end{array}\right] \quad A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6
\end{array}\right] \quad A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Answer: For the first matrix, if we subtract row 1 from row 2 we get the reduced matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right],
$$

so we see that the pivot columns are the first and third columns, and the pivot rows are the first and second rows. Hence, the invertible 2 by 2 submatrix of A consists of the first and third columns of the first and second rows, namely

$$
\left[\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right] .
$$

For the second choice of A, subtracting row 1 from row 2 yields the reduced matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right] .
$$

Hence, the first column is the only pivot column and the first row is the only pivot row. Therefore, the rank of A is 1 and the invertible 1 by 1 submatrix consists of the first column of the first row, namely
[1].

For the third choice of A, we don't have to do any elimination to see that the pivot columns of A are the second and third columns and the pivot rows of A are the first and third rows.

Hence, A has rank 2 and the invertible 2 by 2 submatrix consists of the second and third columns of the first and third rows, namely

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

8. Problem 2.2.30. Execute the six steps following equation (6) to findthee column space and nullspace of A and the solution to $A x=b$:

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right] .
$$

Answer: Form the augmented matrix $[A b]$:

$$
\left[\begin{array}{lllll}
2 & 4 & 6 & 4 & 4 \\
2 & 5 & 7 & 6 & 3 \\
2 & 3 & 5 & 2 & 5
\end{array}\right] .
$$

Then subtracting row 1 from rows 2 and 3 and multiplying row 1 by $\frac{1}{2}$ yields

$$
\left[\begin{array}{ccccc}
1 & 2 & 3 & 2 & 2 \\
0 & 1 & 1 & 2 & -1 \\
0 & -1 & -1 & -2 & 1
\end{array}\right]
$$

Next, subtracting twice row 2 from row 1 and adding row 2 to row 3 gives

$$
\left[\begin{array}{ccccc}
1 & 0 & 1 & -2 & 4 \\
0 & 1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

This is now in reduced echelon form, so we can answer the question. Notice that the pivot columns are the first and second columns; hence, the column space of A is the span of the first two columns of A, namely $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right]$. Geometrically, this is just the plane containing these two vectors.
Returning the the reduced echelon form of the augmented matrix, notice that we must have

$$
\begin{aligned}
& x_{1}=4-x_{3}+2 x_{4} \\
& x_{2}=-1-x_{3}-2 x_{4},
\end{aligned}
$$

so the special solutions are of the form

$$
x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right]
$$

for some real numbers x_{3} and x_{4}. Hence, the nullspace of A consists precisely of such linear combinations.
Finally, all solutions to the equation $A x=b$ are of the form

$$
\left[\begin{array}{c}
4 \\
-1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right]
$$

where the first term is a particular solution and the latter two terms comprise the special (or homogeneous) solutions.
9. Problem 2.2.62. Construct a matrix whose column space contains $(1,1,5)$ and $(0,3,1)$ and whose nullspace contains $(1,1,2)$.
Answer: The simplest way of constructing a matrix whose column space contains a given vector is to make that vector a column of the matrix. Hence, let

$$
A=\left[\begin{array}{lll}
1 & 0 & a_{1} \\
1 & 3 & a_{2} \\
5 & 1 & a_{3}
\end{array}\right]
$$

Then the column space of A automatically contains the two desired vectors, and we just need to find a_{1}, a_{2}, a_{3} such that $(1,1,2)$ is in the nullspace. But this just means that we need to choose a_{1}, a_{2}, a_{3} such that

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & a_{1} \\
1 & 3 & a_{2} \\
5 & 1 & a_{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1+2 a_{1} \\
4+2 a_{2} \\
6+2 a_{3}
\end{array}\right] .
$$

Hence, we can pick $a_{1}=-1 / 2, a_{2}=-2$, and $a_{3}=-3$, so the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 / 2 \\
1 & 3 & -2 \\
5 & 1 & -3
\end{array}\right]
$$

has all of the desired properties.
10. Suppose x_{p} is a vector in \mathbb{R}^{n} such that

$$
A x_{p}=b,
$$

where A is a given $m \times n$ matrix and b is a given vector in \mathbb{R}^{m}. Prove that, if x is any solution to the equation $A x=b$, then

$$
x=x_{p}+x_{h}
$$

where x_{h} is some element of the nullspace of A.

Proof. Suppose $x \in \mathbb{R}^{n}$ such that $A x=b$. The goal is to find x_{h} such that $x=x_{p}+x_{h}$. In search of that x_{h}, notice that

$$
A\left(x-x_{p}\right)=A x-A x_{p}=b-b=0 .
$$

Hence, $x-x_{p}$ is in the nullspace of A. Letting $x_{h}=x-x_{p}$, we see that

$$
x_{p}+x_{h}=x_{p}+\left(x-x_{p}\right)=x,
$$

as desired.

