Math 215 Exam #1 Practice Problem Solutions

1. For each of the following statements, say whether it is true or false. If the statement is true, prove it. If false, give a counterexample.

(a) If A is a 2×2 matrix such that $A(x) = 0$ for all $x \in \mathbb{R}^2$, then A is the zero matrix.
 Answer: False. If $A(x) = 0$ for all x, then the column space of A and the nullspace of A must be the same space. In particular, consider the matrix
 \[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. \]
 Then, for any $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$, we have that
 \[Ax = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ 0 \end{bmatrix}, \]
 and
 \[A(x) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \]
 Hence, $A(x) = 0$ for all x, but $A \neq 0$, so A gives a counterexample to the statement.

(b) A system of 3 equations in 4 unknowns can never have a unique solution.
 Answer: True. We can realize such an system of equations as a single matrix equation
 \[Ax = b, \]
 where A is a 3×4 matrix. Hence, $\text{rank}(A) \leq 3$, so the dimension of the nullspace of A is at least 1:
 \[\dim \text{null}(A) = 4 - \text{rank}(A) \geq 4 - 3 = 1. \]
 Hence, there must be at least one free variable in the system, meaning that, if the system is solvable at all, it must have an infinite number of solutions.

(c) If V is a vector space and S is a finite set of vectors in V, then some subset of S forms a basis for V.
 Answer: False. Let $V = \mathbb{R}^2$, which is clearly a vector space, and let S be the singleton set $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$. The single element of S does not span \mathbb{R}^2, so no subset of S can be a basis for \mathbb{R}^2. Hence, this provides a counterexample to the statement.

(d) Suppose A is an $m \times n$ matrix such that $Ax = b$ can be solved for any choice of $b \in \mathbb{R}^m$. Then the columns of A form a basis for \mathbb{R}^m.
 Answer: False. Consider the matrix
 \[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}. \]
 Then A is already in reduced echelon form and clearly has 2 pivots, so $\text{rank}(A) = 2$. This implies that $\dim \text{col}(A) = 2$, so the column space of A consists of all of \mathbb{R}^2. Thus, the equation $Ax = b$ can be solved for any $b \in \mathbb{R}^2$ (since any b is in $\text{col}(A)$). However, the columns of A are clearly not linearly independent (no set containing the zero vector can be linearly independent), so they cannot form a basis for \mathbb{R}^2.
 A related but true statement would be the following: “Suppose A is an $m \times n$ matrix such that $Ax = b$ can be solved for any choice of $b \in \mathbb{R}^m$. Then some subset of the columns of A forms a basis for \mathbb{R}^m.”
(e) Given 3 equations in 4 unknowns, each describes a hyperplane in \mathbb{R}^4. If the system of those 3 equations is consistent, then the intersection of the hyperplanes contains a line.

Answer: True. This is really just a restatement of (b). Translating the system of equations into a matrix equation $Ax = b$, the nullspace of A must be at least one-dimensional, so the solution-space must be at least one-dimensional. Since the solution space of the matrix equation corresponds to the intersection of the hyperplanes, that intersection must be at least one-dimensional, meaning it must contain a line.

(f) If A is a symmetric matrix (i.e. $A = A^T$), then A is invertible.

Answer: False. Consider the symmetric matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

Then A only has rank 1, meaning that A cannot be invertible, so this gives a counterexample to the statement.

(g) If $m < n$ and A is an $m \times n$ matrix such that $Ax = b$ has a solution for all $b \in \mathbb{R}^m$, then there exists $z \in \mathbb{R}^m$ such that $Ax = z$ has infinitely many solutions.

Answer: True. The fact that $Ax = b$ has a solution for all $b \in \mathbb{R}^m$ means that the column space of A is equal to all of \mathbb{R}^m. Hence,

$$\text{rank}(A) = \text{dim} \text{col}(A) = m.$$

Since

$$\text{dim} \text{nul}(A) = n - \text{rank}(A) = n - m$$

and since $m < n$, we have that the nullspace of A has some positive dimension. Since the nullspace of A consists precisely of those $x \in \mathbb{R}^n$ such that $Ax = 0$, this equation has infinitely many solutions. Thus, letting $z = 0$, we see that the statement is true.

(h) The set of polynomials of degree ≤ 5 forms a vector space.

Answer: True. You should check that the set of polynomials of degree ≤ 5 satisfies all the rules for being a vector space. The important facts are this space is closed under addition and scalar multiplication.

2. For each of the following, determine whether the given subset is a subspace of the given vector space. Explain your answer.

(a) **Vector Space:** \mathbb{R}^4.

Subset: The vectors of the form

$$\begin{bmatrix} a \\ b \\ 0 \\ d \end{bmatrix}.$$

Answer: Yes, this is a subspace. If we take two vectors in the subset, say

$$\begin{bmatrix} a_1 \\ b_1 \\ 0 \\ d_1 \end{bmatrix} \text{ and } \begin{bmatrix} a_2 \\ b_2 \\ 0 \\ d_2 \end{bmatrix},$$

then their sum

$$\begin{bmatrix} a_1 \\ b_1 \\ 0 \\ d_1 \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \\ 0 \\ d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ 0 \\ d_1 + d_2 \end{bmatrix}$$

is also in the subset, so this set is closed under addition.
Moreover, if $c \in \mathbb{R}$, then
\[
 c \begin{bmatrix}
 a_1 \\
 b_1 \\
 0 \\
 d_1
 \end{bmatrix} = \begin{bmatrix}
 ca_1 \\
 cb_1 \\
 0 \\
 cd_1
 \end{bmatrix}
\]
is in the set, so this set is closed under scalar multiplication.
Thus, the set is closed under both addition and scalar multiplication, and so is a subspace.

(b) Vector Space: \mathbb{R}^2.
Subset: The solutions to the equation $2x - 5y = 11$.
Answer: No, this is not a subspace. To see why, I’ll show that it is not closed under addition.
The vectors
\[
 \begin{bmatrix}
 \frac{11}{2} \\
 0
 \end{bmatrix} \text{ and } \begin{bmatrix}
 0 \\
 -\frac{11}{5}
 \end{bmatrix}
\]
are both in the set, since the pairs ($11/2, 0$) and $(0, -11/5)$ both solve the equation $2x - 5y = 11$, but
\[
 \begin{bmatrix}
 \frac{11}{2} \\
 0
 \end{bmatrix} + \begin{bmatrix}
 0 \\
 -\frac{11}{5}
 \end{bmatrix} = \begin{bmatrix}
 \frac{11}{2} \\
 \frac{1}{5}
 \end{bmatrix}
\]
is not in the set, since
\[
 2(11/2) - 5(-11/5) = 11 + 11 = 22.
\]
Therefore, the set is not closed under addition, and so is not a subspace.

(c) Vector Space: \mathbb{R}^n.
Subset: All $x \in \mathbb{R}^n$ such that $Ax = 2x$ where A is a given $n \times n$ matrix.
Answer: Yes, this is a subspace. To prove it, suppose x_1 and x_2 are in this set, meaning that
\[
 Ax_1 = 2x_1 \quad \text{and} \quad Ax_2 = 2x_2
\]
(such vectors are called eigenvectors of A; we’ll learn more about them later). Then
\[
 A(x_1 + x_2) = Ax_1 + Ax_2 = 2x_1 + 2x_2 = 2(x_1 + x_2),
\]
meaning that $x_1 + x_2$ is in this set as well.
Moreover, for any $c \in \mathbb{R}$,
\[
 A(cx_1) = c(Ax_1) = c(2x_1) = 2(cx_1),
\]
so cx_1 is in the set as well.
Therefore, this set is closed under addition and scalar multiplication, so it is indeed a subspace.

(d) Vector Space: \mathbb{R}^3.
Subset: The intersection of P_1 and P_2, where P_1 and P_2 are planes through the origin.
Answer: Yes, this is a subspace. The proof is essentially the same as you gave for Problem 3(c) from HW 4.

(e) Vector Space: All polynomials.
Subset: The quadratic (i.e. degree 2) polynomials.
Answer: No, this is not a subspace. To see that it is not closed under addition, notice that if $f(t) = t^2$ and $g(t) = -t^2$, then f and g are both in the set of quadratic polynomials, but, since
\[
 (f + g)(t) = f(t) + g(t) = t^2 + (-t^2) = 0,
\]
the sum $f + g$ is not a quadratic polynomial.
(f) **Vector Space:** All real-valued functions.

Subset: Functions of the form \(f(t) = a \cos t + b \sin t + c \) for \(a, b, c \in \mathbb{R} \).

Answer: Yes, this is a subspace. If \(a_1, a_2, b_1, b_2, c_1, c_2 \in \mathbb{R} \) and I define

\[
 f(t) = a_1 \cos t + b_1 \sin t + c_1
\]

and

\[
 g(t) = a_2 \cos t + b_2 \sin t + c_2,
\]

then \(f \) and \(g \) are in the given subset. The sum has the form

\[
 f(t) + g(t) = (a_1 + a_2) \cos t + (b_1 + b_2) \sin t + (c_1 + c_2),
\]

so \(f + g \) is also in the subset, which is, therefore, closed under addition. Also, if \(r \in \mathbb{R} \), then

\[
 rf(t) = r(a_1 \cos t + b_1 \sin t + c_1) = (ra_1) \cos t + (rb_1) \sin t + (rc_1),
\]

so \(rf \) is in the subset, which is, therefore, closed under scalar multiplication. Hence, we can conclude that this subset is actually a subspace.

3. Consider the matrix

\[
 A = \begin{bmatrix}
 1 & a \\
 a & 1
 \end{bmatrix}.
\]

(a) Under what conditions on \(a \) is \(A \) invertible?

Answer: The matrix \(A \) is invertible if and only if it has rank 2. To see what the rank is, we do elimination. The first step is to subtract \(a \) times row 1 from row 2, yielding

\[
 \begin{bmatrix}
 1 & a \\
 0 & 1 - a^2
 \end{bmatrix}.
\]

Then this has a second pivot if and only if \(1 - a^2 \neq 0 \), meaning that \(a^2 \neq 1 \), or \(a \neq \pm 1 \). Thus, \(A \) is invertible so long as \(a \) is neither 1 nor \(-1 \).

(b) Choose a non-zero value of \(a \) that makes \(A \) invertible and determine \(A^{-1} \).

Answer: Choose \(a = 2 \). Recall that we can find the inverse of \(A \) by converting the left side of the following augmented matrix to the identity:

\[
 \begin{bmatrix}
 1 & 2 & 1 & 0 \\
 2 & 1 & 0 & 1
 \end{bmatrix}.
\]

Subtract twice row 1 from row 2:

\[
 \begin{bmatrix}
 1 & 2 & 1 & 0 \\
 0 & -3 & -2 & 1
 \end{bmatrix}.
\]

Scale the second row by \(-\frac{1}{3} \) and also subtract twice the result from row 1:

\[
 \begin{bmatrix}
 1 & 0 & -\frac{1}{3} & 0 \\
 0 & 1 & \frac{2}{3} & -\frac{1}{3}
 \end{bmatrix}.
\]

Therefore,

\[
 A^{-1} = \begin{bmatrix}
 -\frac{1}{3} & \frac{2}{3} \\
 \frac{2}{3} & -\frac{1}{3}
 \end{bmatrix}.
\]
(c) For each value of a that makes A non-invertible, determine the dimension of the nullspace of A.

Answer: When $a = 1$, the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$$

which, after subtracting row 1 from row 2, reduces to

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

Hence, A has rank 1, so the nullspace has dimension

$$\dim \text{nul}(A) = 2 - \text{rank}(A) = 2 - 1 = 1.$$

4. Consider the system of equations

$$x_1 + 2x_2 + x_3 - 3x_4 = b_1$$

$$x_1 + 2x_2 + 2x_3 - 5x_4 = b_2,$$

$$2x_1 + 4x_2 + 3x_3 - 8x_4 = b_3.$$

(a) Find all solutions when the above system is homogeneous (i.e. $b_1 = b_2 = b_3 = 0$). Find a basis for the space of solutions to the homogeneous system.

Answer: Convert the system into the augmented matrix

$$\begin{bmatrix} 1 & 2 & 1 & -3 & 0 \\ 1 & 2 & 2 & -5 & 0 \\ 2 & 4 & 3 & -8 & 0 \end{bmatrix}.$$

Now do elimination to get the reduced echelon form. First, subtract row 1 from row 2 and subtract twice row 1 from row 3:

$$\begin{bmatrix} 1 & 2 & 1 & -3 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -2 & 0 \end{bmatrix}.$$

Now, subtract row 2 from both row 1 and row 3:

$$\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then this system is consistent provided that

$$x_1 = -2x_2 + x_4$$

$$x_3 = 2x_4.$$

Hence, the solutions to the homogeneous equation are those vectors of the form

$$x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

for $x_2, x_4 \in \mathbb{R}$. Then a basis for the space of solutions to the homogeneous system (i.e. nullspace of the corresponding matrix) is

$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\}.$$

4. Consider the system of equations

$$x_1 + 2x_2 + x_3 - 3x_4 = b_1$$

$$x_1 + 2x_2 + 2x_3 - 5x_4 = b_2,$$

$$2x_1 + 4x_2 + 3x_3 - 8x_4 = b_3.$$

(a) Find all solutions when the above system is homogeneous (i.e. $b_1 = b_2 = b_3 = 0$). Find a basis for the space of solutions to the homogeneous system.

Answer: Convert the system into the augmented matrix

$$\begin{bmatrix} 1 & 2 & 1 & -3 & 0 \\ 1 & 2 & 2 & -5 & 0 \\ 2 & 4 & 3 & -8 & 0 \end{bmatrix}.$$

Now do elimination to get the reduced echelon form. First, subtract row 1 from row 2 and subtract twice row 1 from row 3:

$$\begin{bmatrix} 1 & 2 & 1 & -3 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -2 & 0 \end{bmatrix}.$$

Now, subtract row 2 from both row 1 and row 3:

$$\begin{bmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then this system is consistent provided that

$$x_1 = -2x_2 + x_4$$

$$x_3 = 2x_4.$$

Hence, the solutions to the homogeneous equation are those vectors of the form

$$x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

for $x_2, x_4 \in \mathbb{R}$. Then a basis for the space of solutions to the homogeneous system (i.e. nullspace of the corresponding matrix) is

$$\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\}.$$

5
(b) Let S be the set of vectors $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ such that the system can be solved. What is the dimension of S?

Answer: Letting A be the matrix of the system, we know that the set of vectors b for which the system can be solved is the column space of A. Since A is 3×4, we know that

$$\text{rank}(A) + \text{dim nul}(A) = 4.$$

Since, from part (a), we know that the dimension of the nullspace is 2, this implies that the column space of A is two-dimensional.

(c) It’s easy to check that the vector $v = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ is a solution to the system that arises when $b_1 = 3$, $b_2 = 5$, and $b_3 = 8$. Find all the solutions to this system.

Answer: All solutions x to the system $Ax = b$ take the form $x = x_p + x_h$, where x_p is a particular solution and x_h is the homogeneous solution to the corresponding homogeneous problem. Thus, we can let $x_p = v$, which we’re told solves the system and we see that, using part (a), the general solution is

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix},$$

where $x_2, x_4 \in \mathbb{R}$.

\[\text{6} \]