Math 113 Exam #1 Solutions

1. What are the domain and range of the function $f(x) = \frac{1}{\sqrt{4-x}}$?

Answer: f(x) is well-defined provided $\sqrt{4-x} \neq 0$. In order for $\sqrt{4-x}$ to exist, we must have

$$4 - x \ge 0$$
,

meaning that $x \leq 4$. In order for $\sqrt{4-x} \neq 0$ it must also be the case that $x \neq 4$, so the domain of f is

$$(-\infty,4)$$
.

Since $\sqrt{4-x} > 0$ where f is defined, we see that f(x) > 0 for all x in the domain, so the range of f is

$$(0,+\infty).$$

2. Evaluate

$$\lim_{x \to \infty} \frac{\sqrt{4x^2 - 8x + 7}}{17x + 12}$$

Answer: Dividing both numerator and denominator by x yields

$$\lim_{x \to \infty} \frac{\frac{1}{x}\sqrt{4x^2 - 8x + 7}}{\frac{1}{x}(17x + 12)} = \lim_{x \to \infty} \frac{\sqrt{\frac{1}{x^2}(4x^2 - 8x + 7)}}{17 + \frac{12}{x}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{4 - \frac{8}{x} + \frac{7}{x^2}}}{17 + \frac{12}{x}}$$
$$= \frac{\sqrt{4}}{17}$$
$$= \frac{2}{17}.$$

3. Let

$$f(x) = \begin{cases} \frac{x-2}{x^2-4} & \text{for } x \neq 2\\ a & \text{for } x = 2 \end{cases}$$

If f(x) is continuous at x = 2, then find the value of a.

Answer: In order for f to be continuous at x = 2, we must have that

$$a = f(2) = \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x - 2}{x^2 - 4}.$$

Now, we can factor the denominator in the limit to get

$$\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x+2)(x-2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4},$$

so we see that, in order for f to be continuous, a must be $\frac{1}{4}$.

4. Are there any solutions to the equation $\cos x = x$?

Answer: Yes, there is a solution to the equation. To see this, let

$$f(x) = \cos x - x$$
.

Then f(x) = 0 precisely when x is a solution to the equation $\cos x = x$, so the problem is to show that f(x) = 0 for some x. To see this, notice that f is continuous (since both $\cos x$ and x are continuous functions) and

$$f(0) = \cos 0 - 0 = 1 > 0$$

$$f(\pi) = \cos \pi - \pi = -1 - \pi < 0.$$

Therefore, by the Intermediate Value Theorem there exists c between 0 and π such that f(c) = 0. Then, as noted above, $\cos c = c$, so c is a solution to the equation.

Intuitively, we can see that $\cos x = x$ has a solution by looking at the graphs of $y = \cos x$ and y = x; they intersect in exactly one point, so the solution c that we saw exists actually be the only solution.

5. Determine the following limits, if they exist

(a)
$$\lim_{x\to -1} \frac{x^2-2x+1}{x-1}$$

Answer: Plugging in x = -1 yields that

$$\lim_{x \to -1} \frac{x^2 - 2x + 1}{x - 1} = \frac{(-1)^2 - 2(-1) + 1}{(-1) - 1} = \frac{4}{-2} = -2.$$

(b)
$$\lim_{x\to 1^-} \frac{x^2+2x+1}{x-1}$$

Answer: Notice that

$$\lim_{x \to 1} (x^2 + 2x + 1) = 1 + 2 + 1 = 4,$$

so the numerator is going to 4. Also, the denominator is going to zero, so we expect the limit to be $\pm \infty$. To see which, notice that, if x < 1, then

$$x - 1 < 0$$
,

so the denominator is a very small negative number as $x \to 1^-$. Hence,

$$\lim_{x \to 1^{-}} \frac{x^2 + 2x + 1}{x - 1} = -\infty.$$

6. Let

$$g(x) = \sqrt{x}$$

Is g differentiable at 0? If so, what is g'(0)?

Answer: If g is differentiable at 0, then, by definition,

$$g'(0) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h} = \lim_{h \to 0} \frac{\sqrt{0+h} - \sqrt{0}}{h}$$
$$= \lim_{h \to 0} \frac{\sqrt{h}}{h}$$
$$= \lim_{h \to 0} \frac{1}{\sqrt{h}},$$

which does not exist (when h > 0, this goes to $+\infty$; when h < 0, the expression \sqrt{h} doesn't even make sense in the real numbers). Therefore, g is not differentiable at 0.

7. Let

$$f(x) = 2x^2 + 3x.$$

Is f differentiable at 1? If so, what is f'(1)?

Answer: If f is differentiable at 1, then, by definition,

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\left[2(1+h)^2 + 3(1+h)\right] - \left[2(1)^2 + 3(1)\right]}{h}$$

$$= \lim_{h \to 0} \frac{\left[2(1+2h+h^2) + 3(1) + 3h\right] - \left[2(1)^2 + 3(1)\right]}{h}$$

$$= \lim_{h \to 0} \frac{7h + h^2}{h}$$

$$= \lim_{h \to 0} (7+h)$$

$$= 7,$$

so we see that f is differentiable at 1 and that f'(1) = 7.