Math 113 Exam \#1 Solutions

1. What are the domain and range of the function $f(x)=\frac{1}{\sqrt{4-x}}$?

Answer: $f(x)$ is well-defined provided $\sqrt{4-x)} \neq 0$. In order for $\sqrt{4-x}$ to exist, we must have

$$
4-x \geq 0
$$

meaning that $x \leq 4$. In order for $\sqrt{4-x} \neq 0$ it must also be the case that $x \neq 4$, so the domain of f is

$$
(-\infty, 4)
$$

Since $\sqrt{4-x}>0$ where f is defined, we see that $f(x)>0$ for all x in the domain, so the range of f is

$$
(0,+\infty)
$$

2. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}-8 x+7}}{17 x+12}
$$

Answer: Dividing both numerator and denominator by x yields

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\frac{1}{x} \sqrt{4 x^{2}-8 x+7}}{\frac{1}{x}(17 x+12)} & =\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{1}{x^{2}}\left(4 x^{2}-8 x+7\right)}}{17+\frac{12}{x}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{4-\frac{8}{x}+\frac{7}{x^{2}}}}{17+\frac{12}{x}} \\
& =\frac{\sqrt{4}}{17} \\
& =\frac{2}{17}
\end{aligned}
$$

3. Let

$$
f(x)= \begin{cases}\frac{x-2}{x^{2}-4} & \text { for } x \neq 2 \\ a & \text { for } x=2\end{cases}
$$

If $f(x)$ is continuous at $x=2$, then find the value of a.
Answer: In order for f to be continuous at $x=2$, we must have that

$$
a=f(2)=\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}
$$

Now, we can factor the denominator in the limit to get

$$
\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{x-2}{(x+2)(x-2)}=\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{4}
$$

so we see that, in order for f to be continuous, a must be $\frac{1}{4}$.
4. Are there any solutions to the equation $\cos x=x$?

Answer: Yes, there is a solution to the equation. To see this, let

$$
f(x)=\cos x-x
$$

Then $f(x)=0$ precisely when x is a solution to the equation $\cos x=x$, so the problem is to show that $f(x)=0$ for some x. To see this, notice that f is continuous (since both $\cos x$ and x are continuous functions) and

$$
\begin{aligned}
& f(0)=\cos 0-0=1>0 \\
& f(\pi)=\cos \pi-\pi=-1-\pi<0
\end{aligned}
$$

Therefore, by the Intermediate Value Theorem there exists c between 0 and π such that $f(c)=0$. Then, as noted above, $\cos c=c$, so c is a solution to the equation.
Intuitively, we can see that $\cos x=x$ has a solution by looking at the graphs of $y=\cos x$ and $y=x$; they intersect in exactly one point, so the solution c that we saw exists actually be the only solution.

5. Determine the following limits, if they exist
(a) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x+1}{x-1}$

Answer: Plugging in $x=-1$ yields that

$$
\lim _{x \rightarrow-1} \frac{x^{2}-2 x+1}{x-1}=\frac{(-1)^{2}-2(-1)+1}{(-1)-1}=\frac{4}{-2}=-2
$$

(b) $\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x+1}{x-1}$

Answer: Notice that

$$
\lim _{x \rightarrow 1}\left(x^{2}+2 x+1\right)=1+2+1=4
$$

so the numerator is going to 4 . Also, the denominator is going to zero, so we expect the limit to be $\pm \infty$. To see which, notice that, if $x<1$, then

$$
x-1<0
$$

so the denominator is a very small negative number as $x \rightarrow 1^{-}$. Hence,

$$
\lim _{x \rightarrow 1^{-}} \frac{x^{2}+2 x+1}{x-1}=-\infty .
$$

6. Let

$$
g(x)=\sqrt{x}
$$

Is g differentiable at 0 ? If so, what is $g^{\prime}(0)$?
Answer: If g is differentiable at 0 , then, by definition,

$$
\begin{aligned}
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{0+h}-\sqrt{0}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{h}},
\end{aligned}
$$

which does not exist (when $h>0$, this goes to $+\infty$; when $h<0$, the expression \sqrt{h} doesn't even make sense in the real numbers). Therefore, g is not differentiable at 0 .
7. Let

$$
f(x)=2 x^{2}+3 x .
$$

Is f differentiable at 1 ? If so, what is $f^{\prime}(1)$?
Answer: If f is differentiable at 1 , then, by definition,

$$
\begin{aligned}
f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0} \frac{\left[2(1+h)^{2}+3(1+h)\right]-\left[2(1)^{2}+3(1)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2\left(1+2 h+h^{2}\right)+3(1)+3 h\right]-\left[2(1)^{2}+3(1)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{7 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(7+h) \\
& =7,
\end{aligned}
$$

so we see that f is differentiable at 1 and that $f^{\prime}(1)=7$.

