Homotopy and link homotopy

Clayton Shonkwiler

Department of Mathematics
University of Georgia

March 11, 2012
Joint work with Frederick R. Cohen and Rafal Komendarczyk
Consider a *parametrized* n-component link $L_1, L_2, L_3, \ldots, L_n$, where

$$L_i : S^1 \to \mathbb{R}^3$$

have disjoint images.
Given an n-component link $L = \{L_1, \ldots, L_n\}$, there is a natural evaluation map

$$F_L : S^1 \times \ldots \times S^1 \longrightarrow \text{Conf}(n)$$

which is just $F_L = L_1 \times \ldots \times L_n$.
The Evaluation Map

Given an n-component link $L = \{L_1, \ldots, L_n\}$, there is a natural evaluation map

$$F_L : S^1 \times \ldots \times S^1 \longrightarrow \text{Conf}(n)$$

which is just $F_L = L_1 \times \ldots \times L_n$.

Here $\text{Conf}(n)$ is the configuration space of n distinct points in \mathbb{R}^3:

$$\text{Conf}(n) = \text{Conf}_n \mathbb{R}^3 = \{(x_1, \ldots, x_n) \in (\mathbb{R}^3)^n : x_i \neq x_j \text{ for } i \neq j\}.$$
Definition

A *link homotopy* of a link L is a deformation during which each component may cross itself, but distinct components must remain disjoint.
Definition

A link homotopy of a link \(L \) is a deformation during which each component may cross itself, but distinct components must remain disjoint.

Let \(\text{Link}(n) \) denote the set of \(n \)-component links up to link homotopy.

Let \(\text{Link}(n) \) denote the set of \(n \)-component links up to link homotopy.
The κ invariant

$$F_L : (S^1)^n \longrightarrow \text{Conf}(n).$$

Link homotopies of L induce homotopies of F_L.

We get an induced map

$$\kappa : \text{Link}(n) \longrightarrow [(S^1)^n, \text{Conf}(n)]$$

$$L \quad \mapsto \quad [F_L]$$
Theorem (Gauss)

The degree of the composition is equal to the linking number.
\[S^1 \times S^1 \xrightarrow{(t_1, t_2)} (L_1(t_1), L_2(t_2)) \xrightarrow{\frac{L_1(t_1) - L_2(t_2)}{|L_1(t_1) - L_2(t_2)|}} S^2 \]

Theorem (Gauss)

The degree of the composition is equal to the linking number.

Since the linking number classifies 2-component links up to link homotopy and the degree classifies maps \(S^1 \times S^1 \to S^2 \) up to homotopy, \(\kappa \) is bijective for \(n = 2 \).
\[S^1 \times S^1 \times S^1 \hookrightarrow \text{Conf}_3 S^3 \xrightarrow{\text{hom. equiv.}} S^3 \times S^2 \xrightarrow{\pi} S^2. \]
\[S^1 \times S^1 \times S^1 \subset \text{Conf}_3 S^3 \xrightarrow{\text{hom. equiv.}} S^3 \times S^2 \xrightarrow{\pi} S^2. \]

Theorem (with DeTurck, Gluck, Komendarczyk, Melvin, and Vela-Vick)

The homotopy periods of the above map give the complete set of link homotopy invariants of \(3\)-component links.

Corollary

\[\kappa : \text{Link}(3) \rightarrow \left[(S^1)^3, \text{Conf}(3) \right] \] is injective (though not bijective).
Theorem (with DeTurck, Gluck, Komendarczyk, Melvin, and Vela-Vick)

The homotopy periods of the above map give the complete set of link homotopy invariants of 3-component links.
\[S^1 \times S^1 \times S^1 \subset \text{Conf}_3 S^3 \xrightarrow{\text{hom. equiv.}} S^3 \times S^2 \xrightarrow{\pi} S^2. \]

Theorem (with DeTurck, Gluck, Komendarczyk, Melvin, and Vela-Vick)

The homotopy periods of the above map give the complete set of link homotopy invariants of 3-component links.

Corollary

\[\kappa : \text{Link}(3) \to [(S^1)^3, \text{Conf}(3)] \text{ is injective (though not bijective).} \]
Conjecture (Koschorke)

*The map $\kappa : \text{Link}(n) \rightarrow [(S^1)^n, \text{Conf}(n)]$ is injective for all n.***
Conjecture (Koschorke)

The map $\kappa : \text{Link}(n) \to [(S^1)^n, \text{Conf}(n)]$ is injective for all n.

Let $\text{BLink}(n)$ denote the set of homotopy Brunnian n-component links, meaning every $(n-1)$-component sublink is link homotopically trivial.
Koschorke’s Conjecture

Conjecture (Koschorke)

The map \(\kappa : \text{Link}(n) \to [(S^1)^n, \text{Conf}(n)] \) is injective for all \(n \).

Let \(\text{BLink}(n) \) denote the set of *homotopy Brunnian* \(n \)-component links, meaning every \((n - 1)\)-component sublink is link homotopically trivial.

Theorem (Koschorke)

The restriction \(\kappa : \text{BLink}(n) \to [(S^1)^n, \text{Conf}(n)] \) is injective.
Let $\text{CLink}(n)$ be the set of n-component links with some $(n - 1)$-component sublink which is link homotopically trivial.
Main Theorem

Let $\text{CLink}(n)$ be the set of n-component links with some $(n - 1)$-component sublink which is link homotopically trivial.

Theorem (with Cohen and Komendarczyk)

The restriction $\kappa : \text{CLink}(n) \to [(S^1)^n, \text{Conf}(n)]$ is injective.
Habegger and Lin introduced the group of homotopy string links $\mathcal{H}(n)$.
Habegger and Lin introduced the group of homotopy string links $H(n)$.

Theorem (Habegger–Lin) The map $H(n) \to \text{Link}(n)$ induced by the Markov closure is surjective. Moreover, if two string links close up to link-homotopic links, then they are related by a sequence of conjugations and "partial conjugations."
Habegger and Lin introduced the group of homotopy string links $\mathcal{H}(n)$.

Theorem (Habegger–Lin)

The map $\mathcal{H}(n) \to \text{Link}(n)$ induced by the Markov closure is surjective. Moreover, if two string links close up to link-homotopic links, then they are related by a sequence of conjugations and “partial conjugations”.
For each $i = 1, \ldots, n$, there is a natural projection

$$\delta_i : \mathcal{H}(n) \to \mathcal{H}(n - 1)$$

given by deleting the ith strand.
For each $i = 1, \ldots, n$, there is a natural projection

$$\delta_i : \mathcal{H}(n) \to \mathcal{H}(n - 1)$$

given by deleting the ith strand.

$$B\mathcal{H}(n) = \ker \prod_i \delta_i = \bigcap_i \ker \delta_i$$

is the subgroup of *Brunnian string links*
For each $i = 1, \ldots, n$, there is a natural projection

$$\delta_i : \mathcal{H}(n) \to \mathcal{H}(n - 1)$$

given by deleting the ith strand.

$$B\mathcal{H}(n) = \ker \prod_i \delta_i = \bigcap_i \ker \delta_i$$

is the subgroup of Brunnian string links and

$$C\mathcal{H}(n) = \bigcup_i \ker \delta_i$$

is the set of string links with a trivial $(n - 1)$-stranded sublink.
Key Proposition 1

$\mathcal{B}\mathcal{H}(n)$ is the center of $\mathcal{H}(n)$.
Key Proposition 1

$B\mathcal{H}(n)$ is the center of $\mathcal{H}(n)$.

Corollary

The restriction of the Markov closure map $B\mathcal{H}(n) \to B\text{Link}(n)$ is bijective.
Torus Homotopy Groups

Let $T(n)$ be the nth Fox torus homotopy group of $\text{Conf}(n)$:

$$T(n) = [\Sigma(S^1)^{n-1}, \text{Conf}(n)] = [(S^1)^{n-1}, \Omega \text{Conf}(n)].$$
Let $T(n)$ be the nth Fox torus homotopy group of $\text{Conf}(n)$:

$$T(n) = [\Sigma(S^1)^{n-1}, \text{Conf}(n)] = [(S^1)^{n-1}, \Omega \text{Conf}(n)].$$

If $L \in \text{BLink}(n)$, then $L - L_n$ is link homotopically trivial, so the restriction of F_L to the face $(S^1)^{n-1} \times \{\ast\}$ is homotopic to the constant map.
Torus Homotopy Groups

Let $T(n)$ be the nth Fox torus homotopy group of $\text{Conf}(n)$:

$$T(n) = [\Sigma(S^1)^{n-1}, \text{Conf}(n)] = [(S^1)^{n-1}, \Omega \text{Conf}(n)].$$

If $L \in \text{BLink}(n)$, then $L - L_n$ is link homotopically trivial, so the restriction of F_L to the face $(S^1)^{n-1} \times \{\ast\}$ is homotopic to the constant map.

Therefore, we can interpret $\kappa(L) = [F_L]$ as an element of $T(n)$.
Key Proposition 2

The diagram

\[
\begin{array}{ccc}
B\mathcal{H}(n) & \xrightarrow{\phi} & T(n) \\
\downarrow & & \downarrow p^# \\
\text{BLink}(n) & \xrightarrow{\kappa} & [(S^1)^n, \text{Conf}(n)]
\end{array}
\]

commutes and \(p^# \circ \phi\) is injective. Therefore \(\kappa\) is injective as well.
Thanks!