1. 0.3.8

Prove that the equation \(a^2 + b^2 = 3c^2 \) has no solutions in nonzero integers \(a, b \) and \(c \).

Proof. Suppose there exist nonzero integers \(a_0, b_0 \) and \(c_0 \) such that \(a_0^2 + b_0^2 = 3c_0^2 \). Then

\[
a_0^2 + b_0^2 \equiv 3c_0^2 \mod 4
\]

or

\[
\frac{a_0^2}{4} + \frac{b_0^2}{4} = \frac{3c_0^2}{4}
\]

in \(\mathbb{Z}/4\mathbb{Z} \). Now, in this group, all squares are of the form \(\overline{0} \) or \(\overline{1} \), meaning

\[
\frac{a_0}{2}, \frac{b_0}{2}, \frac{c_0}{2} \in \mathbb{Z}
\]

Hence, \(a_0, b_0 \) and \(c_0 \) are all divisible by 2. Dividing both sides of the original equation by 4, this means

\[
\frac{a_0^2}{4} + \frac{b_0^2}{4} = \frac{3c_0^2}{4}
\]

so \(\frac{a_0}{2}, \frac{b_0}{2}, \frac{c_0}{2} \in \mathbb{Z} \) are also solutions of the equation.

Using the above argument, we then see that

\[
\frac{a_0}{4}, \frac{b_0}{4}, \frac{c_0}{4}
\]

are also integer solutions of the original equation and that, in general, so are \(\frac{a_0}{2^n}, \frac{b_0}{2^n}, \frac{c_0}{2^n} \) for all \(n \in \mathbb{N} \). However, if \(N > a_0 \),

\[
\frac{a_0}{2N} \notin \mathbb{Z},
\]

a contradiction. Therefore, we conclude that there are no nonzero integer solutions of the equation \(a^2 + b^2 = 3c^2 \). \(\square \)

2. 0.3.13

Let \(n \in \mathbb{Z}, n > 1 \), and let \(a \in \mathbb{Z} \) with \(1 \leq a \leq n \). Prove that if \(a \) and \(n \) are relatively prime then there is an integer \(c \) such that \(ac \equiv 1 \mod n \).
Proof. Since \(a \) and \(n \) are relatively prime, we know that \((a, n) = 1 \). Now, since the g.c.d. of two integers is a \(\mathbb{Z} \)-linear combination of the integers, there exist \(c, d \in \mathbb{Z} \) such that

\[
1 = ac + nd.
\]

Subtracting \(nd \) from both sides, we see that

\[
ac = 1 + n(-d),
\]

or

\[
ac \equiv 1 \mod n.
\]

\[\square\]

3. 1.2.10

Let \(G \) be the group of rigid motions in \(\mathbb{R}^3 \) of a cube. Show that \(|G| = 24 \).

Let \(C \) denote the cube, and label the vertices of \(C \) by \(1, 2, \ldots, 8 \) such that vertex 1 is adjacent to vertex 2. Now, if \(\sigma \in G \), there are 8 possibilities for the value of \(\sigma(1) \), the eight vertices of \(C \). Furthermore, for each of the 8 possible values of \(\sigma(1) \), there are three possibilities for where vertex 2 can be sent, the 3 vertices adjacent to \(\sigma(1) \). Hence, there are \(8 \cdot 3 = 24 \) possible rigid motions of \(C \), or \(|G| = 24 \).

4. 1.3.15

Prove that the order of an element in \(S_n \) equals the least common multiple of the lengths of the cycles in its cycle decomposition.

Proof. Let \(\sigma \in S_n \) and let

\[
\sigma = (a_1a_2 \ldots a_{m_1})(a_{m_1+1}a_{m_1+2} \ldots a_{m_2}) \ldots (a_{m_k-1+1}a_{m_k-1+2} \ldots a_{m_k})
\]

be the cycle decomposition of \(\sigma \). Let \(n \) be an arbitrary positive integer. Since disjoint cycles commute, we see that

\[
\sigma^n = [(a_1a_2 \ldots a_{m_1})(a_{m_1+1}a_{m_1+2} \ldots a_{m_2}) \ldots (a_{m_k-1+1}a_{m_k-1+2} \ldots a_{m_k})]^n
= (a_1a_2 \ldots a_{m_1})^n(a_{m_1+1}a_{m_1+2} \ldots a_{m_2})^n \ldots (a_{m_k-1+1}a_{m_k-1+2} \ldots a_{m_k})^n
\]

\(\sigma^n = 1 \) if and only if

\[
(a_{m_{j-1}+1}a_{m_{j-1}+2} \ldots a_{j_k})^n = 1
\]

for all \(j \), where \(1 < j \leq k \). This will be the case precisely when the length of each cycle in the decomposition of \(\sigma \) divides \(n \). The least such \(n \) is the least common multiple of the cycle lengths, so the order of \(\sigma \) is equal to the least common multiple of the lengths of the cycles in its cycle decomposition. \[\square\]
5. 1.6.4

Prove that the multiplicative groups $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ are not isomorphic.

Proof. Suppose there exists such an isomorphism $\phi : \mathbb{R} - \{0\} \rightarrow \mathbb{C} - \{0\}$. Then

$$|x| = |\phi(x)| \text{ for all } x \in \mathbb{R} - \{0\}.$$

In both $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$, $|1| = 1$ and $|-1| = 2$. However, all other elements of $\mathbb{R} - \{0\}$ are of infinite order, whereas, in $\mathbb{C} - \{0\}$, the elements i and $-i$ are both of order 4. Hence, no element of $\mathbb{R} - \{0\}$ may be mapped to i or $-i$ under ϕ, meaning ϕ is not an isomorphism. From this contradiction, we conclude that $\mathbb{R} - \{0\}$ and $\mathbb{C} - \{0\}$ are not isomorphic. □

6. 1.6.7

Prove that D_8 and Q_8 are not isomorphic.

Proof. We know, from the definition of $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$, that, in Q_8, the element 1 has order 1, -1 has order 2 and $i, -i, j, -j, k, -k$ have order 4. Now,

$$D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$$

where $r^4 = s^2 = 1$ and $rs = sr^{-1}$. Clearly, the order of s is 2, and we see that

$$(sr)^2 = srsr = ssr^{-1}r = s^2 = 1,$$

so the element sr has order 2 as well. Hence, D_8 has at least two elements of order 2, whereas Q_8 has only one element of order 2. Since isomorphisms preserve the order of group elements, we can conclude that D_8 and Q_8 are not isomorphic. □