
TOPOLOGY HW 7

CLAY SHONKWILER

54.5

Consider the covering map p × p : R × R → S1 × S1 of Example 53.4.
Consider the path

f(t) = (cos 2πt, sin 2πt)× (cos 4πt, sin 4πt)

in S1 × S1. Sketch what f looks like when S1 × S1 is identified with the
doughnut surface D. Find a lifting f̃ of f to R× R and sketch it.

Answer: See attached sheet for sketches. Let f̃(t) = t× 2t. Then

((p×p)◦f̃)(t) = (p×p)(f̃(t)) = (p×p)(t×2t) = (cos 2πt, sin 2πt)×(cos 4πt, sin 4πt) = f(t),

so f̃ is a lifting of f .
♣

54.7

Generalize the proof of Theorem 54.5 to show that the fundamental group
of the torus is isomorphic to the group Z× Z.

Proof. Let p × p : R × R → S1 × S1 be as in 54.5, let e0 = (0, 0) and let
b0 = p(e0). Then p−1(b0) is the set Z × Z. Since R2 is simply connnected,
the lifting correspondance

φ : π1(S1 × S1; b0) → Z× Z

is bijective. We show that φ is a homomorphism, which gives us the desired
result.

Given [f ], [g] ∈ π1(S1 × S1; b0), let f̃ and g̃ be their respective liftings to
paths on R2 beginning at e0. Let (n1, n2) = f̃(1) and (m1,m2) = g̃(1); then
φ([f ]) = (n1, n2) and φ([g]) = (m1,m2), by definition. Let ˜̃g be the path

˜̃g(s) = (n1, n2) + g̃(s)

on R2. Since p((n1, n2) + (x1, x2)) = p((x1, x2)) for all (x1, x2) ∈ R2, the
path ˜̃g is a lifting of g; it begins at (n1, n2). Then f ∗ ˜̃g is defined, and is
the lifting of f ∗ g that begins at 0. The end point of this path is ˜̃g(1) =
(n1, n2) + (m1,m2). Then, by definition

φ([f ] ∗ [g]) = (n1 + m1, n2,m2) = φ([f ]) + φ([g]).

�
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55.3

Show that if A is a nonsingular 3× 3 matrix having nonnegative entries,
then A has a positive real eigenvalue.

Proof. Let T : R3 → R3 be the linear transformation whose matrix, relative
to the standard basis for R3, is A. Let B be the intersection of the 2-sphere
S2 with the first octant of R3. B is homeomorphic to the ball B2, so the
Brouwer fixed-point theorem holds for continuous maps of B into itself.

Now, if x = (x1, x2, x3) ∈ B, then all components of x are nonnegative and
at least one is positive. Since all entries of A are non-negative, the vector
T (x) is a vector with all nonnegative components. Furthermore, since A
is non-singular, its nullspace is trivial, so x /∈ NulA, meaning T (x) 6= 0.
Therefore, ||T (x)|| 6= 0, so the map x 7→ T (x)/||T (x)|| is a continuous map
of B into itself. By the fixed-point theorem, then, this map has a fixed point
x0. Then

T (x0) = ||T (x0)||x0,

so T (and, hence, A) has a positive real eigenvalue ||T (x0)||. �

A

Definition 0.1. Let G be a group and X a set. A (right) group action
on X is a map X ×G → X given by (x, g) 7→ x · g, such that

i) x · e = x for all x ∈ X.
ii) x(g1g2) = (x · g1) · g2 for any x ∈ X, g1, g2 ∈ G.

Now, let p : E → B be a covering map and fix b0 ∈ B. Now let p−1(b0)×
π1(B; b0) → p−1(b0) be given by x · [f ] = f̃(1), where f̃ : I → E is the
unique lift of f to a path based at x ∈ p−1(b0).

(a) Show that this is a well-defined right group action of π1(B; b0) on the
fiber p−1(b0). It is sometimes referred to as the monodromy action.

Proof. Let [1] ∈ π1(B; b0) be the identity element. Then, if x ∈ p−1(b0),

x · [1] = 1̃(1) = x,

since 1̃ is just the trivial loop based at x. Furthermore, if [f ], [g] ∈ π1(B; b0)
and x ∈ p−1(b0),

x · ([f ] ∗ [g]) = x · [f ∗ g] = (f̃ ∗ g)(1),

where f̃ ∗ g is the unique lift of f ∗ g to a path based at x. Now, on the
other hand,

(x · [f ]) · [g] = f̃(1) · [g] = g̃(1),

where g̃ is the unique lift of g to a path based at f̃(1). Now, note that

g̃(1) = f̃ ∗ g(1),

so x · ([f ] ∗ [g]) = (x · [f ]) · [g], so this is a well-defined group action. �
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(b) Show that if E is path connected this action is transitive. That is, for
any x, y ∈ p−1(b0) there exists [α] ∈ π1(B; b0) such that x · [α] = y.

Proof. Let x, y ∈ p−1(b0). Then, since E is path-connected, there exists a
path α from x to y. Now, define α = p ◦ α. Then

α(0) = (p ◦ α)(0) = p(α(0)) = p(x) = b0,

α(1) = (p ◦ α)(1) = p(α(1)) = p(y) = b0,

so α is a loop based at b0. Furthermore, since the lift of α to a path based
at x is unique, and x is certainly a lift of α based at x, we see that

x · [α] = α(1) = y.

�

(c) Given a (right) action of some group G on a set X, the isotropy
subgroup of G corresponding to x0 ∈ X is the subgroup Gx0 = {g ∈ G :
x0 · g = x0}. Now, given x0 ∈ p−1(b0), what is the corresponding isotropy
subgroup of the monodromy action?

Answer: Suppose [f ] ∈ Gx0 . Then f = p ◦ f̃ where f̃ is the unique lift
of f to a path in E based at x0 such that f̃(1) = x0. This implies that
f̃ ∈ Ω(E, x0), so [f̃ ] ∈ π1(E, x0). Hence,

Gx0 ⊆ {[p ◦ f̃ ] ∈ π1(B; b0) : [f̃ ] ∈ π1(E;x0)}.

On the other hand, if [f̃ ] ∈ π1(E;x0), then

x0 · [p ◦ f̃ ] = (p̃ ◦ f̃)(1) = f̃(1) = x0,

since p ◦ f̃ = p ◦ f̃ and this lifting is unique. Hence,

{[p ◦ f̃ ] ∈ π1(B; b0) : [f̃ ] ∈ π1(E;x0)} ⊆ Gx0 .

Therefore, we can conclude that Gx0 = {[p◦f̃ ] ∈ π1(B; b0) : [f̃ ] ∈ π1(E;x0)}.
♣

B

For each n ∈ N, let pn : S1 → S1 be given by z 7→ zn, where S1 = {z ∈
C : ||z|| = 1}.

(a) Show that pn is a covering map.

Proof. Fix n ∈ N. Then pn is certainly continuous and surjective, so we need
only check that each point in S1 has a neighborhood that is evenly covered
by pn to show that pn is a covering map. Consider the open subset U
consisting of all points on the circle having at least one positive coordinate.
We can write

U = {eiθ| − π/2 < θ < π}.
Then

p−1(U) = {ei 2πk+θ
n | − π/2 < θ < π, k = 0, 1, . . . (n− 1)}.
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If we let Vk = {ei 2πk+θ
n | − π/2 < θ < π}, then we see that

p−1(U) =
n−1⊔
k=0

Vk.

Now, we need to show that p|Vk
→ U is a homeomorphism for each k. Fix

j ∈ {0, 1, . . . (n−1)}. Continuity is clear. Now, if x = ei
2πj+θ1

n , y = ei
2πj+θ2

n ∈
Vj such that xn = p|Vj (x) = p|Vj (y) = yn, then

xn =
(
ei

2πj+θ1
n

)n
= e2πjeiθ1 = eiθ1

and
yn =

(
ei

2πj+θ2
n

)n
= e2πjeiθ2 = eiθ2

so θ1 = θ2, meaning x = y. Hence, p|Vj is injective.

If eiθ ∈ U , then x = ei 2πj+θ
n ∈ Vj and p|Vj (x) = eiθ, so p|Vj is surjective.

Now, it suffices to show that p|V j
→ U is a homeomorphism. p|V j

is
bijective for the same reasons p|Vj is. Also, if C ⊆ V j is closed, then, since
V j is compact, C is compact, so it’s image under p|V j

is compact and thus,
since U is Hausdorff, closed. Hence p|V j

: V j → U is a closed, bijective
map and, therefore, a homeomorphism. Therefore, p|Vj : Vj → U is a
homeomorphism and so we see that U is evenly covered by p.

A similar argument demonstrates that the subset U ′ ⊆ S1 consisting of all
points on the circle having at least one negative coordinate is evenly covered
by p. Every element in S1 is contained in either U or U ′ (or both), so every
element as a neighborhood evenly covered by p, to p is a covering map. �

(b) What are all the non-trivial subgroups of Z?
Answer: The non-trivial subgroups of Z are those groups of the form

nZ = {na : a ∈ Z}
for some n ∈ Z.

To see this, let G be a subgroup of Z. Since Z is well-ordered, there exists
some positive, smallest g ∈ G. Let x ∈ G, x 6= 0. Then, by the Euclidean
Algorithm, there exist q, r ∈ Z such that

x = qg + r

where 0 ≤ r < g. Now,

qg = g + g + . . . + g︸ ︷︷ ︸
q summands

so qg ∈ G. Hence, since x ∈ G, r = x − qg ∈ G. Since g is the minimal
positive element of G, this means it must be the case that r = 0. Therefore,
every non-zero element of G is a multiple of g, so G = gZ.

♣
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(c) What subgroup of Z is pn∗(πn(S1; 1)) isomorphic to?
Answer: Since Z and all of its subgroups are cyclic, this isomorphism

will be completely determined by its action on the generator of π1(S1; 1),
namely [σ] where σ : [0, 1] → S1 is given by σ(t) = ei2πt. Now,

pn∗([σ]) = [pn ◦ σ]

where
(pn ◦ σ)(t) = pn(σ(t)) = pn(ei2πt) = (ei2πt)n = ei2πnt.

If φ : π1(S1; 1) → Z is the natural isomorphism, then φ(ei2πnt) = n. In other
words, pn∗([σ]) corresponds to the element n ∈ Z. Hence, pn∗(π1(S1; 1)) is
isomorphic to nZ.

♣
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