1. Evaluate \(\int \frac{\sin(\sqrt{x})}{\sqrt{x^2}} \, dx \). Be sure to show all work for full credit.

2. Consider \(\int \sin(x) \cos(x) \, dx \).

 (a) Evaluate the integral using substitution with \(u = \sin(x) \).

 (b) Evaluate the integral using substitution with \(u = \cos(x) \).

 (c) Use the Pythagorean Identity to show that your results from parts (a) and (b) are equivalent.

\[\sin^2 x + \cos^2 x = 1 \]

So \(\sin^2 x = 1 - \cos^2 x \), thus we can rewrite (a) as \(\frac{1}{2} (1 - \cos^2 x) + C \) or \(-\frac{1}{2} \cos^2 x + \left(\frac{1}{2} + C\right) \) (constant).

On the other hand, \(\cos^2 x = 1 - \sin^2 x \), thus we can rewrite (b) as \(-\frac{1}{2} (1 - \sin^2 x) + K \) or \(\frac{1}{2} \sin^2 x + \left(-\frac{1}{2} + K\right) \) (constant).
3. Consider $\int_{-4}^{0} \sqrt{16-x^2} \, dx$ to answer the following

(a) Why do the substitution methods we have learned in class not ‘work’ for evaluating the integral?

if we were to let $u = 16 - x^2$
$\, du = -2x \, dx$
\[
\text{i.e. would need } \int x\sqrt{16-x^2} \, dx \text{ for } u\text{-sub to work.}
\]
and there is no additional ‘x’ in the integral.

(b) Find the exact value of the integral using geometry. Justify your answer. The use of technology is not accepted for this problem.

\[
\frac{1}{4} \pi (4)^2 = (4\pi)
\]

4. Consider the region bounded by $F(x) = x + 4$, $G(x) = (x - 2)^2$, and $x = 4$ as shown in the graph below.

(a) Write the integral that will give the area of the shaded region.

(b) Evaluate the integral you wrote in part (a).

\[
\int_{0}^{4} (x+4- (x^2-4x+4)) \, dx
\]
\[
= \int_{0}^{4} -x^2 +5x \, dx = \left[-\frac{x^3}{3} + \frac{5}{2} x^2 \right]_{0}^{4}
\]
\[
= \left[-\frac{(4)^3}{3} + \frac{5}{2} (4)^2 \right] - 0
\]
\[
= -\frac{64}{3} + 40 = \frac{56}{3}
\]
5. Find the combined area of the shaded regions illustrated in the graphic below:

\[\int_{-2}^{0} \left(\frac{1}{9} x^3 + 2 \right) - (x+2) \, dx + \int_{0}^{3} (x+2) - \left(\frac{1}{4} x^3 + 2 \right) \, dx \]

\[\int_{-2}^{0} \frac{1}{9} x^3 - x \, dx + \int_{0}^{3} x - \frac{1}{4} x^3 \, dx \]

\[\left(\frac{1}{36} x^4 - \frac{1}{2} x^2 \right) \bigg|_{-2}^{0} + \left(\frac{1}{2} x^2 - \frac{1}{36} x^4 \right) \bigg|_{0}^{3} \]

\[\left[(0) - \left(\frac{16}{36} - 2 \right) \right] + \left[\left(\frac{9}{2} - \frac{81}{36} \right) - (0) \right] \]

\[\frac{137}{36} \]
6. All parts of this problem are based on the function \(f(x) = \frac{1}{x^P} \) for \(P > 0 \). The graph of \(f(x) \) is provided below.

Let \(P \neq 1 \). Set up and evaluate an integral for the area between \(f(x) \) and the \(x \)-axis for \(x = 1 \) to \(x = \circ \) for some constant \(\circ > 1 \).

\[
\int_{1}^{\circ} \frac{1}{x^P} \, dx = \int_{1}^{\circ} -x^{-P} \, dx = \left. \frac{x^{-P+1}}{-P+1} \right|_{1}^{\circ} = \frac{1}{-P+1} - \frac{1}{-P+1} \]

Simplify your result. Fill in the boxes with the appropriate exponent on \(\circ \) and the subtracted constant for your final answer:

\[
\frac{1}{-P+1} \left(\frac{-P+1}{-P+1} - 1 \right) \]

(a) What happens if \(P = 1 \)?

The result above is undefined.

(b) Let \(P > 1 \). Then the quantity \((-P + 1)\) is positive / negative (circle one).

What happens to the area as \(\circ \to \infty \)? (i.e. Take the limit as \(\circ \to \infty \))

Note: If \(-P + 1 = -\#\), then think about \(\circ^{-\#} = \frac{1}{\circ^{\#}} \) which \(\to 0 \) as \(\circ \to \infty \)

(c) Let \(0 < P < 1 \). Then the quantity \((-P + 1)\) is positive / negative (circle one).

What happens to the area as \(\circ \to \infty \)?

Note: If \(-P + 1 = +\#\), then think about what happens for \(\circ^\# \)

So \(\circ^\# \to \infty \) as \(\circ \to \infty \)