1. The water trough in the figure below is made to be the dimensions shown in the figure. Only the angle θ can be varied. The value of a is nonnegative and the value of b is positive. Note that $1' = 1$ foot. [Retrieved from Thomas’ Calculus, USM Special Edition, p. 223]

(a) We wish to maximize the volume of water that the trough can hold. Find a function whose output represents the volume of the trough. It can be in terms of both a and b.

$$\text{Volume} = 20 \cdot 2 \cdot \frac{1}{2} ab + b : 1 = 20 (ab + b)$$

(b) Rewrite b in terms of a and then use this to write the volume of the trough just in terms of a.

$$b = \sqrt{1 - a^2} \quad \text{if } b > 0$$

$$V(a) = 20(1 - a^2 + \theta)$$

(c) What if we rewrite the volume of the trough in terms of the angle θ?

$$\sin \theta = \frac{a}{1} \quad \cos \theta = \frac{b}{1}$$

$$V(\theta) = 20 \left(\frac{1 - \sin^2 \theta + \sin \theta (1 - \sin^2 \theta)}{1} \right)$$

(d) What is the domain of $V(\theta)$ (i.e. for the context of this problem, what is the set of values allowed for θ)?

Domain: $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq \theta < \frac{\pi}{2}$

(f) How is the use of θ in this problem different from how we’ve rewritten functions to be in one variable in other optimization problems?

Rather than writing a in terms of b (or vice versa), we were able to incorporate θ and thus write both a & b in terms of θ.\n
2. Suppose that \(f(x) \) denotes a function that is continuous for all real numbers. The statement below is true sometimes. Give an example of a function for which it holds true and an example of a function for which it does not hold true. Explain your reasoning. Provide your answers by filling in the table below:

\[
\int_{a}^{b} f(x) \, dx \text{ will always give the total area enclosed by the curve and the } x\text{-axis.}
\]

<table>
<thead>
<tr>
<th>Example of True</th>
<th>Example of False</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram of a function with area under curve]</td>
<td>![Diagram of a line function]</td>
</tr>
</tbody>
</table>

Why is the statement true for your example?

If \(f(x) \) is completely on or above the \(x \)-axis, then \(\int_{a}^{b} f(x) \, dx \) will give a total enclosed area.

Why is the statement false for your example?

If \(f(x) \) is above and below the \(x \)-axis on \([a, b]\), then \(\int_{a}^{b} f(x) \, dx \) will give the difference between the area below and the area above.
3. Use \(f(x) = 2x^3 + 2x^2 - 12x \) on \([-3, 2]\) to answer the following questions.

(a) Estimate \(\int_{-3}^{2} f(x) \, dx \) on \([-3, 2]\) using \(n = 5 \) subintervals of equal length and left endpoints.

Be sure to draw the 5 rectangles you used on the graph provided and show all of the terms you included in your computation.

\[
\frac{2 - (-3)}{5} = \frac{5}{5} = 1
\]

\[
\int_{-3}^{2} f(x) \, dx \approx 1 \left(f(-3) + f(-2) + f(-1) + f(0) + f(1) \right)
\]

\[
\approx 1 \left(0 + 12 + 0 + (-8) \right)
\]

\[
\approx 20
\]

(d) Find a lower estimate for the value of \(\int_{-3}^{2} f(x) \, dx \) using \(n = 5 \) subintervals of equal length. Be sure to draw the 5 rectangles you used on the graph provided and show all of the terms you included in your computation.

\[
\int_{-3}^{2} f(x) \, dx \approx 1 \left(f(-3) + f(-1) + f(0) + f(1) + f(1.20) \right)
\]

\[
\approx 1 \left(0 + 12 + 0 + (-8) + (-8.12) \right)
\]

\[
\approx -9.121
\]
(g) \[\int_{-3}^{0} f(x) \, dx - \int_{0}^{2} f(x) \, dx = \frac{63}{2} - \frac{32}{3} = \frac{253}{6}. \]

In terms of the graph of \(f \) on the interval \([-3, 2]\), describe what the number \(\frac{253}{6} \) means.

\[\int_{-3}^{0} f(x) \, dx \] gives the area for region A.

\[-\int_{0}^{2} f(x) \, dx \] translates region B into a positive value so we can interpret this as area.

\(\frac{253}{6} \) represents the total area between \(f(x) \) and the \(x \)-axis.
4. The Riemann definite integral \(\int_a^b f(x)\,dx \) is defined as a limit of Riemann sums. The definite integral can be approximated by a finite sum:

\[
\int_a^b f(x)\,dx \approx f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \ldots + f(c_{n-1})\Delta x_{n-1} + f(c_n)\Delta x_n
\]

where \(\Delta x_1 = (x_1 - x_0), \Delta x_2 = (x_2 - x_1), \ldots, \Delta x_{n-1} = (x_{n-1} - x_{n-2}), \Delta x_n = (x_n - x_{n-1}) \).

A function \(y = f(x) \) defined on the interval \([a, b] = [-1, 2]\) is shown in the figure.

(a) Explain in words how to interpret \(x_0, x_1, x_2, \ldots, x_{n-1}, x_n \). (Label these on the \(x \)-axis in the figure above with \(n = 6 \).)

Each \(x_i \) is an endpoint of a subinterval.

(b) Explain in words how to interpret \(f(c_1), f(c_2), \ldots, f(c_{n-1}), f(c_n) \).

\(f(c_i) \) is the height of the \(i \)th rectangle.

(c) In the figure above, draw in the rectangles that correspond to the finite sum when \(n = 6 \) and then label the widths of the bases and heights of your rectangles using the notation provided in the problem statement. <answers will vary>

(d) The definite integral is defined as a limit of Riemann sums. What does the limit mean, and what purpose does it serve?

The limit decreases the widths of the rectangles (widths \(\to 0 \)) & thus increases the \# of rectangles under the curve (\(n \to \infty \)). The more rectangles of smaller widths, the closer we get to the actual area under the curve. Something about error decreasing as the number of rectangles/pieces increases. Or talking about a finite approximation will always have error, so a limit is needed.

But have to be careful of this argument

(e) Is \(\int_{-1}^2 f(x)\,dx \) positive or negative? (Explain why in terms of the function \(f(x) \) and the \(x \)-axis.)

There is more area above the \(x \)-axis, so \(\int_{-1}^2 f(x)\,dx > 0 \).