Show that Thm. 2.36 and its cor. are false if the word compact is replaced by closed or by dense.

bounded \(\cap n \in \mathbb{N} K_n = (0, 1/n) \) where \(n_0 \) is the largest \(n \) included and \(\cap n=1 K_n = \phi \).

closed \(\cap n \in \mathbb{N} K_n = \{ n, n+1, \ldots \} \) for \(n \in \mathbb{N} \). Then \(\cap \text{finite} K_n = \{ n_0, n_0+1, \ldots \} \) where \(n_0 \) is the largest \(n \) included and \(\cap n=1 K_n = \phi \).

\# 16. page 44. Regard \(\mathbb{Q} \) as a metric space with \(d(p, q) = |p - q| \). Let \(E = \{ p \in \mathbb{Q} \colon 2 < p^2 < 3 \} \). Show that \(E \) is closed and bounded in \(\mathbb{Q} \), but not compact. Is \(E \) open in \(\mathbb{Q} \)?

We consider \(\mathbb{Q} \) and \(d \) as a subspace of \(\mathbb{R} \). As a subset of \(\mathbb{R} \), \(E = \{ -\sqrt{3}, \sqrt{3} \} \cup (\sqrt{2}, \sqrt{3}) \) \(\cap \mathbb{Q} \).

Is \(E \) closed in \(\mathbb{Q} \). Choose \(p = 1/2 \). Then for \(x \in E \), \(d(x, p) \leq M = 17 \).

Consider \(E = \{ x \in \mathbb{Q} \colon x^2 > 3 \} \cup \{ x^2 < 2 \} \). Let \(G \subset \mathbb{R} \)
be defined as \(G = (-\infty, -\sqrt{3}) \cup (\sqrt{2}, \sqrt{3}) \cup (\sqrt{3}, \infty) \). \(G \) is open in \(\mathbb{R} \). As a subset of \(\mathbb{R} \), \(E = G \cap \mathbb{Q} \). Thus by Thm 2.30 (Prop 21) \(E \) is open relatively to \(\mathbb{Q} \).

Thus \(E \) is closed in \(\mathbb{Q} \).

Note that \(E \subset \mathbb{R} \cap \mathbb{Q} \). \(E \) is not compact in \(\mathbb{R} \) (\(E \) is not closed in \(\mathbb{R} \) because it's like \(\mathbb{Q} \)). Then by Thm 2.33 (Prop 22) \(E \) is not compact in \(\mathbb{Q} \).

\(E \) is open in \(\mathbb{Q} \) by the same approach used to prove that \(E \subset \mathbb{R} \) open in \(\mathbb{Q} \).