#1. \(\pm 1, \) pg. 165. \{f_n\} converges uniformly on \(E \subseteq \mathbb{R} \), \(f_n \) hold, \(n=1, \ldots \)

Pt. 1. \(\exists f_3 \) \(\forall n \geq N \). Let \(\epsilon = 1 \). \(\exists N \) s.t. \(n, m \geq N \Rightarrow |f_n(x) - f_m(x)| < \epsilon = 1 \).

Then for \(n \geq N \)

\[
|f_n(x) - f_N(x)| \leq |f_n(x) - f_N(x)| < 1.
\]

or \(|f_n(x)| = 1 + f_N(x) \) for all \(n \geq N \) and \(x \in E \).

Pt. 2. \(\exists f_4 \) \(\forall n \geq N \). \(\exists M_N \) s.t. \(|f_n(x)| \leq M_N \) for \(x \in E \).

Pt. 3. \(\exists f_5 \) \(\forall n \geq N \). \(\exists M_{N-1} \) s.t. \(|f_{N-1}(x)| \leq M_{N-1} \) for \(x \in E \), \(j=1, \ldots, N \).

Let \(M = \max \{M_1, \ldots, M_{N-1}, M_N \} + 1 \).

Then \(|f_n(x)| \leq M \) for all \(x \in E \), \(n=1, 2, \ldots \).

#3. \(\exists f_3, \) \(\exists f_4 \) converge uniformly on \(E \). Show that it is not the case that \(\{f_n\} \) converges uniformly on \(E \).

Note: By #2 (if it is correct), one of the sequence should not be held.

1. Choose \(f_n(x) = x \), \(n=1, 2, \ldots \) Clearly \(f_n \) uniformly.

Claim: \(f(x) = \lim f_n(x) \) where \(f(x) = x \).

Claim: \(g_n(x) = \frac{x}{n} \), \(n=1, 2, \ldots \), Clearly \(f_n \) \(g_n \) uniform on \(R \).

Claim: \(\{f_n\} \) does not converge uniformly.

Let \(\epsilon = 1 \) and consider any \(N \). Then consider \(n = N, m = 2N \) and \(x = 4N \). Then \(m, n \geq N \) and

\[
|\frac{x}{n} - \frac{x}{m}| = \left| \frac{(m-n)x}{nm} \right| = \left| \frac{N \cdot 4N}{N \cdot 2N} \right| = 2 > \epsilon = 1.
\]

Thus \(\{f_n\} \) is not a unique C.S. Thus \(\{f_n\} \) does not converge uniformly.
4. Prof. 16.

\[f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x} \]

(a) For which values of \(x \) does the series converge absolutely.

Clearly, \(\sum \frac{1}{1+n^2x} \) does not converge at \(x = 0 \), \(x = -\frac{1}{n^2} \), \(n \in \mathbb{N} \).

Otherwise, we have

\[\left| \frac{1}{1+n^2x} \right| < \frac{1}{1\cdot n^2} \]

\[\sum \frac{1}{1+n^2x} \text{ conv.} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{1+n^2x} \text{ conv. abs. by the comparison test on } \mathbb{R} \text{ for } x \neq 0 \text{ and } x = -\frac{1}{n^2}, n \in \mathbb{N} \]

(b) On which intervals does it converge uniformly?

(i) \([-\infty, -1) \cup [1, \infty)\) for any \(a > 0 \):

\[\left| \frac{1}{1+n^2x} \right| = \frac{1}{1\cdot n^2} < \frac{1}{n^2} \quad \text{if } n \geq 1. \]

\[\sum_{n=2}^{\infty} \frac{1}{n^2} \text{ conv. } \Rightarrow \sum_{n=2}^{\infty} \frac{1}{1+n^2x} \text{ conv. uniformly by Prop. 89.} \]

\[\sum_{n=1}^{\infty} \frac{1}{1+n^2x} \quad \text{one extra term wouldn't hurt it.} \]

(ii) \((\frac{-1}{m^2}, \frac{1}{(m+1)^2})\) for \(m \in \mathbb{N} \) \(m + 1 > n_0 \):

\[x \in \left(-\frac{1}{m^2}, -\frac{1}{(m+1)^2} \right) \Rightarrow \left| 1x - \frac{1}{(m+1)^2} \right| > \frac{1}{n_0^2} \quad \text{and} \quad \frac{1}{1\cdot x} < n_0^2. \]

If \(n > n_0 \), then \(n^2 > n_0^2 \Rightarrow \left(\frac{1}{(m+1)^2}\right)^2 > \frac{1}{X} \), or \(-\frac{1}{X} < -\frac{1}{(m+1)^2} \) - This implies that \(0 < n^2 - n_0^2 = n^2 + \frac{1}{X} \) or \(\frac{1}{n^2 + \frac{1}{X}} < \frac{1}{n^2 - n_0^2} \). This also shows that

\[\left| \frac{1}{n^2 + \frac{1}{X}} \right| = \frac{1}{n^2 + \frac{1}{X}} < n_0^2 \quad \text{for } \frac{1}{n^2 + \frac{1}{X}} < \frac{n_0^2}{n^2 - n_0^2}. \]

Then

\[\left| \frac{1}{1+n^2x} \right| = \frac{1}{1\cdot x} \left| \frac{1}{n^2 + \frac{1}{X}} \right| < n_0^2 \quad \text{for } \frac{1}{n^2 + \frac{1}{X}} < \frac{n_0^2}{n^2 - n_0^2}. \]
Then since \(\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3} \) converges by Prop 8.9, we know that \(\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3} \) converges uniformly on \((-\frac{1}{m^2}, -\frac{1}{(m+1)^2})\).

And again, no terms can't affect uniform convergence, so \(\sum_{n=1}^{\infty} \frac{1}{1+n^2} \) converges uniformly on \((-\frac{1}{m^2}, -\frac{1}{(m+1)^2})\).

Note: The interval in (i) cannot be extended to \((0, \infty)\). In fact, the series does not converge uniformly on any interval \((0, a] \) for any \(a > 0 \).

Let \(a = \frac{1}{2} \) and consider any \(N \in \mathbb{N} \). Then for \(m, n > N \), say \(m > n \), we can choose \(x = \frac{1}{2n^2} \) and see that

\[
\left| \sum_{j=n}^{m} \frac{1}{1+j^2} \right| = \sum_{j=n}^{m} \frac{1}{1+j^2} \leq \sum_{j=n}^{m} \frac{1}{1+\frac{1}{2n^2}m^2} \leq \sum_{j=n}^{m} \frac{1}{1+\frac{1}{2n^2}j^2} \leq \frac{1}{n-n^2} \cdot \frac{2}{3} > \frac{1}{2}.
\]

So \(\sum_{n=1}^{\infty} \frac{1}{1+n^2} \) is not uniformly convergent on \((0, a] \). Therefore, \(\sum_{n=1}^{\infty} \frac{1}{1+n^2} \) converges uniformly on \((a, \infty)\) for any \(a > 0 \), \((a, 0)\), \((-\infty, 0)\), and \((-\frac{1}{m^2}, -\frac{1}{(m+1)^2})\), \(m = 1, 2, \ldots\).

Of course there are "stupid" intervals on which it fails to converge uniformly, such as \((-1, -\frac{1}{2})\), etc—but we won't list these.

(c) If \(f \) is not convergent when ever the conv. is uniform.

(d) \(f \) is not bounded on \((a, \infty)\) but is not bounded on the other intervals.

> Since the conv. is uniform on \((a, \infty)\) for any \(a \), \(f \) is not convergent on \((0, \infty)\).