Problem 1.3.1 (§2.1, p. 22) Prove that there is no rational number \(\sqrt{2} \) s.t. \(x^2 = 12 \).

Proof: Suppose \(x \) is rational, \(x = \frac{m}{n} \) in reduced form. Then \(m^2 = 12n^2 \). Since \(m^2 \) is even, \(m \) is even. Let \(m = 2k \). Then \(4k^2 = 12n^2 \) or \(k^2 = 3n^2 \).

If \(k^2 \) is divisible by 3, \(k \) is divisible by 3. (Write \(k^2 \) in terms of its prime factors — which will be the prime factors of \(k \). One of the prime factors must be a 3. Then there is a 3 in the factorization of each \(k \).) Then \(k = 3p \) or \(9p^2 = 3n^2 \) or \(n^2 = 3p^2 \).

Since \(n^2 \) is divisible by 3, \(n \) is divisible by 3. Let \(n = 3q \).

Here we have \(n = 3q \) and \(m = 2k = 2 \cdot 3 \cdot p \). This contradicts the fact that \(m/n \) is in reduced form.

Try again: Consider the polynomial eqn \(x^2 - 12 = 0 \).

Then by Prop 1.1.1 in the notes if \(r \in \mathbb{Q} \) is a root of the eqn \(x^2 - 12 = 0 \) where \(r = \frac{b}{a} \) is in reduced form, then \(g \) divides \(a_0 = 1 \) and \(b \) divides \(a_n = 12 \), i.e. the rational roots of \(x^2 - 12 = 0 \) must come from the set \(\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12 \). Trying all \(g \) there shows that \(x^2 - 12 = 0 \) has no rational roots, i.e. no rational \(x \) s.t. \(x^2 = 12 \).
2. (#4, p.22) Let \(E \neq \emptyset \) be a subset of an ordered set. Suppose \(\alpha \) is a lower bd of \(E \) and \(\beta \) is an upper bd. of \(E \). Then \(\alpha \leq \beta \).

Pf: Assume false. Assume \(\alpha > \beta \). Since \(\alpha \) is a lower bd of \(E \), \(x \in E \Rightarrow \alpha \leq x \). Then \(\alpha > x > \beta \). This contradicts the fact that \(\beta \) is an upper bd of \(E \).

#3. Suppose \(E \neq \emptyset \) is a subset of a complete ordered field. Prove that \(m^* = \text{glb}(E) \leq \text{lub}(E) = M^* \).

Pf: Suppose false. Suppose \(m^* > M^* \). Since \(m^* = \text{glb}(E) \) for every \(\varepsilon > 0 \) there exists \(x \in E \) s.t. \(\varepsilon - m^* < \varepsilon \). Then \(x > m^* > M^* \). This contradicts the fact that \(M^* = \text{lub}(E) \) — \(M^* \) must be an upper bd of \(E \).

#3. Done right. This \(^* \) is correct but is not the simplest way to do it. So we'll try again.

E is bdd \(\Rightarrow m^* \) and \(M^* \) exist. We know then that \(m^* \) is a lower bd of \(E \) and \(M^* \) is an upper bd of \(E \). By proble \#2, \(m^* \leq M^* \).