#12. Suppose \(X, Y, Z \) are metric spaces, \(E \subset X \),
\(f ; E \rightarrow Y, g ; f(E) \rightarrow Z \) and \(h = g \circ f ; E \rightarrow Z \).
Prove that if \(f \) is unif. cont. on \(E \) and \(g \) is unif. cont. on \(f(E) \), then \(h \) is unif. cont. on \(E \).

Proof: Suppose \(\varepsilon > 0 \) is given. \(g \) unif. cont. on \(f(E) \) \(\Rightarrow \exists \delta_1, s. t., d(y_1, y_2) < \delta_1 \Rightarrow d(g(y_1), g(y_2)) < \varepsilon \).

\(f \) unif. cont. on \(E \) (applied with the traditional "\(\varepsilon \)"
replaced by \(\delta_1 \)) gives us a \(\delta \) s. t. \(d_x(x_1, x_2) < \delta \Rightarrow d_y(f(x_1), f(x_2)) < \delta_1 \).

Then if \(x_1, x_2 \in E \) s. t. \(d_x(x_1, x_2) < \delta \), \(f(x_1) \) and \(f(x_2) \) satisfy \(\delta \) above (with \(f(x_1), f(x_2) \) replacing \(y_1 \) and \(y_2 \), respectively) so \(d_y(g(f(x_1)), g(f(x_2))) < \varepsilon \).

Thus \(g \circ f \) is unif. cont. on \(E \).

#1.

\[
\lim_{x \to 3} \frac{x^3 - 3}{x^3 - 2x^2 - 2x - 3} = \lim_{x \to 3} \frac{x^3}{(x-3)(x^2 + x + 1)} = \frac{1}{13}
\]

Suppose \(\varepsilon > 0 \) is given. We note that

\[
\left| \frac{x^3}{(x-3)(x^2 + x + 1)} - \frac{1}{13} \right| = \left| \frac{13x^3 - (x^2 + x + 1)}{13(x-3)(x^2 + x + 1)} \right|
\]

Choose \(s_1 = \frac{1}{13} \) and \(x-3 < s_1 \) or \(x \in (2, 4) \), to see that the

\[
\max_{x \in [1, 4]} |x + 4| = 8
\]

and the min of \(x^2 + x + 1 \) is 7.

Thus \(\frac{x^3}{x^3 - 2x^2 - 2x - 3} - \frac{1}{13} \leq \varepsilon \) for all \(x \) if \(x-3 < \delta \), where \(\delta \) is chosen by the last inequality.

Thus \(\lim_{x \to 3} \frac{x^3}{x^3 - 2x^2 - 2x - 3} = \frac{1}{13} \).
18, page 100

\[f(x) = \begin{cases} 0 & \text{if } x \text{ irrational} \\ \frac{1}{n} & \text{if } x = \frac{m}{n}, \text{ reduced form } \frac{0}{1} \end{cases} \]

Prove that \(f \) is count at irrational pts and discontinuous at \(\frac{1}{n} \) of first kind at rational pts.

Proof: Let \(b \in \mathbb{R} \) and consider \(I = (b-1, b+1) \). Suppose \(\epsilon > 0 \) is given. By Archimedes there exists \(n_0 \in \mathbb{N} \) such that \(\frac{1}{n_0} < \epsilon \). There are only a finite number of \(n \)'s in \(\mathbb{N} \) such that \(\frac{1}{n} > \frac{1}{n_0} \) (the \(n \)'s less than \(n_0 \)).

In \(I \) there are only a finite number of rationals \(\frac{m}{n} \) where \(\frac{1}{n} > \frac{1}{n_0} \). The rationals \(\frac{m}{2} \) (since \(\text{the length of } I \text{ in } \mathbb{Z} \) must be a finite number), the rationals \(\frac{m}{3} \), etc., the rationals \(\frac{m}{n_0-1} \) (same description).

Since there are a finite number of rationals, we get \(s = \max \{ |b - \frac{m}{n}| : \frac{m}{n} \text{ reduced with } \frac{1}{n} > \frac{1}{n_0}, b + \frac{m}{n} \} \).

By construction if \(x \in \mathbb{Q}, |x-b| < \delta \) and \(x = \frac{m}{n} \), then \(\frac{1}{n} = \frac{1}{n_0} \) i.e., \(f(x) = \frac{1}{n} = \frac{1}{n_0} < \epsilon \).

Thus, for \(b \text{ in } \mathbb{R} \), \(x \text{ satisfies } |x-b| < \delta \), then \(|f(x)-f(b)| = |\frac{1}{n} - 0| = |x - b| < \epsilon \).

Thus, \(f \) is count at all rationals.

If \(b \) is not, if \(x \text{ satisfies } 0 < |x-b| < \delta \), then
\[|f(x) - 0| = \left| \frac{1}{n} \right| < \epsilon \]
Thus, \(f(b+) = 0 \).
Likewise \(f(b^-) = 0 \). Since \(f(b) = \frac{1}{n} \) and \(b = \frac{\sqrt{2}}{n} \) which is \(0 \), \(f \) is discontinuous at all rational \(b \). Since \(f(b^+) \) and \(f(b^-) \) exist, the discontinuities are 1st kind.

Note: You can also easily prove that \(f \) is discontinuous at \(b = b \) by considering the seq \(\{ b + \frac{\sqrt{2}}{n^2} \} \).