HW 7: Let \(S \neq \emptyset \), \(S \) closed (above and below). Prove that \(\inf S = \sup S \).

Proof: \(S \neq \emptyset \Rightarrow \exists x \in S \). Let \(g^* = \inf S \) and \(e^* = \sup S \).

\(g^* \) is a lower bd. of \(S \Rightarrow g^* \leq x \). \(e^* \) is an upper bd. of \(S \Rightarrow x \leq e^* \). \(\Rightarrow g^* \leq x \leq e^* \) \(\Rightarrow g^* \leq e^* \).

HW 8: Prove that \(\sqrt{2} \) is irrational.

Recall the theorem: Suppose \(a_0, a_1, \ldots, a_n \) are integers and \(r = \frac{p}{q} \), in reduced form, is a rational number that satisfies

\[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 = 0. \]

Then \(q \) divides \(a_n \) and \(p \) divides \(a_0 \).

If \(x = \sqrt{2} \), then \(x \) must satisfy the eqn \(x^2 - 2 = 0 \).

Apply the above result. Look for a rational root \(r = \frac{p}{q} \).

Then \(q \) divides \(a_n = 1 \) and \(p \) divides \(a_0 = 2 \).

i.e., we have \(r = \pm 1, \pm 2 \); \((-1)^3 - 2 = -3 \neq 0 \), \((2)^3 - 2 = -10 \neq 0 \), \((-2)^3 - 2 = -6 \neq 0 \), \((1)^3 - 2 = -1 \neq 0 \), \((2)^3 - 2 = 6 \neq 0 \).

There are no rational roots to the eqn \(x^3 - 2 = 0 \).

\(\sqrt{2} \) (which clearly is a root) is not rational.