HW 62. \(f : [a, b] \to \mathbb{R} \), f cont on \([a, b]\) and \(f(x) \geq k \) for all \(x \in [a, b] \),

Then \(\int_{a}^{b} f \geq k(b-a) \),

\(\text{Pf:} \) Define \(g(x) = k \) for \(x \in [a, b] \), Then \(\int f \geq \int g \) and \(g \) is cont.
Then by Prop. 6.18: \(\int_{a}^{b} f \geq \int_{a}^{b} g = \int_{a}^{b} k \, dx = k(b-a) \).

b) \(f : [a, b] \to \mathbb{R} \), cont on \([a, b]\) and \(\int_{a}^{b} f = 0 \). Then \(\exists x_0 \in [a, b] \)

\(f(x_0) = 0 \).

f cont on \([a, b] \Rightarrow \) by the Extreme Value Thm. Then \(f \geq 0 \) there exists \(x_0, x \in [a, b] \) s.t. \(f(x_0) = \sup \{ f(x) : x \in [a, b] \} \)

\(f(x) = \sup \{ f(x) : x \in [a, b] \} \).

If \(f(x) > 0 \), then \(f(x) > f(x_0) \) for all \(x \in [a, b] \)

and by part (a) \(\int_{a}^{b} f \geq \int_{a}^{b} f(x_0)(b-a) > 0 \). This is a contradiction to the fact that \(\int_{a}^{b} f = 0 \).

If \(f(x_0) = 0 \), we are done, so assume \(f(x_0) < 0 \).

If \(f(x_0) < 0 \), then \(f(x) < f(x_0) \) for all \(x \in [a, b] \) as \(\int_{a}^{b} f < f(x_0)(b-a) \).

By part (a). This is a contradiction to \(f(x_0) \geq 0 \).

If \(f(x_0) = 0 \), we are done, so assume \(f(x_1) > 0 \).

We now have \(f(x_0) < 0 < f(x_1) \). Assume \(x_0 < x_1 \), \(x_1 > x_0 \) would be the same. f cont on \([a, b] \Rightarrow f \) cont on \([x_0, x_1]\).

\(c = 0 \) is between \(f(x_0) \) and \(f(x_1) \). By the IVThm (Thm 4.24) there exists a pt: \(x_0 \in (x_0, x_1) \) s.t. \(f(x_0) = c = 0 \).

Note: The statement is that \(x_0 \in [a, b] \). Cannot \(x_0 = a \) or \(x_0 = b \). Not by the last part -- the appl. of IVThm. If \(x_0 = a \) or \(x_0 = b \), then it would be possible. Also if \(x_0 = a \) or \(b \) and \(f(x_0) = 0 \), same \(\boxplus \), then it would be possible.

In either of these cases, the hypo \(\int_{a}^{b} f = 0 \) and some work \(\Rightarrow f(x) = 0 \) for all \(x \in [x_0, x_1] \) (or \([x_1, x_0]\) or \(x \in [a, b] \)) if we knew that either \(x_0 = a \) or \(b \), and \(f(x_0) = 0 \), or \(x_1 = a \) or \(b \) and \(f(x_1) = 0 \).

But it can happen: