Let \(f: [a,b] \to \mathbb{R} \) be continuous and such that \(f(a) < f(b) \).
Let \(c \in (a,b) \). Prove that \(f(a) < f(c) < f(b) \).

Proof: Suppose false. Then either \(f(c) > f(b) \) or \(f(c) \leq f(a) \). We'll suppose \(f(c) > f(b) \) (the proof of the other case is very similar).

If \(f(c) = f(b) \) and \(c = b \) (since \(c \in (a,b) \)), then \(f \) is not continuous. So this would be a contradiction.

So we suppose \(f(c) > f(b) \).

By Prop 4.23, \(f \) has an absolute max on \([a,b]\) i.e.
exists \(x_0 \in [a,b] \) s.t. \(f(x_0) \geq f(x) \) for all \(x \in [a,b] \).

Since \(f(c) > f(b) > f(a) \), \(x_0 = a \) or \(x_0 = b \) (and \(f(x_0) \geq f(c) \) but who cares)? but \(f(x_0) > f(b) \).

The picture looks like this:

```
 |   |
|---|---|
a   x_0   c   b
```

The fn. has to go continuously through these 4 pts, hence it can't be 1-1 (will not satisfy the horizontal line test.)

To prove this we choose \(c_0 \) s.t. \(f(b) < c_0 < f(x_0) \).

This is possible since \(f(x_0) > f(b) \).

By the IVT, Thm 4.24 applied to \(f \) on \([x_0,b]\),
exists \(x_1 \in (x_0,b) \) s.t. \(f(x_1) = c_0 \).

Also, \(f(x_0) > c_0 > f(a) \) (because \(f(b) > f(a) \)),

Apply the IVT, Thm 4.24 to \(f \) on \([a,x_0]\), i.e. \(\exists x_2 \in (a,x_0) \)

s.t. \(f(x_2) = c_0 \).

\(f(x_1) = f(x_2) \) but \(x_1 \neq x_2 \) (\((a,x_0) \cap (x_0,b) = \emptyset \))

This is not continuous. \(\therefore \ f(c) \leq f(b) \).

You might try to prove the other part (assuming \(f(c) \leq f(a) \)) using the same reason.