HW 32 #2, p. 65 Fitzpatrick.

Prove \(x^9 + x^2 + 4 = 0 \), \(x \in \mathbb{R} \) has a soln.

Let \(f(x) = x^9 + x^2 + 4. \) \(f(-7) = \text{something neg} < 0. \)
\(f(7) > 0. \) Apply IV Thm with \(c = 0. \) \(\Rightarrow \exists x_0 \in (-7, 7) \)
\(s.t. \) \(f(x_0) = 0. \)

HW 33 #5, p. 65 Fitzpatrick.

\(h : [a, b] \rightarrow \mathbb{R}, \ g : [a, b] \rightarrow \mathbb{R} \) cont.. If \(h(a) \leq g(a) \) and
\(h(b) \geq g(b), \) then there exists \(x_0 \) s.t. \(h(x_0) = g(x_0), x_0 \in [a, b]. \)

Let \(f(x) = h(x) - g(x). \) \(h(a) \leq g(a) \Rightarrow f(a) \leq 0. \) \(h(b) \geq g(b) \)
\(\Rightarrow f(b) \geq 0. \)

If
\(f(a) = 0 \) or \(f(b) = 0, \) we are done — with \(x_0 = a \) or \(x_0 = b. \)

If neither \(f(a) = 0 \) nor \(f(b) = 0, \) then \(f(a) < 0, f(b) > 0 \)
\(f(a) < 0 < f(b) \) and we can apply the IV Thm with \(c = 0 \)
to get \(x_0 \in (a, b) \) s.t. \(f(x_0) = 0. \)
\(\Rightarrow h(x_0) = g(x_0). \)