Suppose \(f: \mathbb{R} \to \mathbb{R} \) is continuous at \(x = x_0 \) and that \(f(x_0) > 0 \).

Prove that there exists an interval \(I = (x_0 - 1/n, x_0 + 1/n) \)
where \(n \in \mathbb{N} \) s.t. \(f(x) > 0 \) for all \(x \in I \).

Proof: Hint: See Prop. 4.6. Using the \(\varepsilon-\delta \) formulation of continuity at \(x_0 \) with \(\varepsilon = f(x_0)/2 \), we get a \(\delta \) s.t.
\[
|x-x_0| < \delta \implies \frac{f(x) - f(x_0)}{\delta} < \frac{f(x_0)}{2} \Rightarrow -\frac{f(x)}{\delta} < f(x) - f(x_0) < \frac{f(x)}{\delta} \]

or \(-\frac{f(x_0)}{2} < f(x) < \frac{f(x_0)}{2} \)

Thus, for \(0 < \delta, \frac{f(x)}{\delta} > \frac{f(x_0)}{2} > 0 \).

Then choose an \(n \in \mathbb{N} \) s.t. \(\frac{1}{n} < \varepsilon \) [Hooray — we get to use the Archimedean Prop.]. Then for \(1x-x_0| < 1/n \)
\[\exists x \in (x_0 - 1/n, x_0 + 1/n) \text{ s.t. } f(x) > 0. \]

Alt. Soln: Suppose false, i.e., for every \(n \in \mathbb{N} \) \(\exists x \in (x_0 - 1/n, x_0 + 1/n) \text{ s.t. } f(x) \leq 0. \) [That's probably the hard part.]

Let \(n = 1 \), call the "x" value \(x_1 \). Then \(f(x_1) \leq 0 \).

Let \(n = 2 \), call the "x" value \(x_2 \). Then \(f(x_2) \leq 0 \).

Etc.

For each \(n \), we have \(x_n \) s.t. \(f(x_n) \leq 0 \).

Also, \(x_n \in (x_0 - 1/n, x_0 + 1/n) \implies x_n \to x_0. \)

By the cont of \(f \) at \(x_0 \), we know that \(f(x_n) \to f(x_0) \).

Since \(f(x_n) \leq 0 \) for all \(n \), \(f(x_0) \leq 0. \) [This is the "true statement" I gave as a part of the soln to HW 7 (b) — really the equivalent statement for negatives.]

This contradicts the fact that \(f(x_0) > 0 \).