HW 18. #2, p. 37, Fitzpatrick

Show that \(S = (0, \infty) \) is closed.

Suppose \(x_n \in S \) and \(x_n \to x \). Then \(x_n > 0 \) for each \(n \) and \(-x_n \to -x \). Then by the law of excluded middle as a part of proving that \([0, \infty] \) is closed, we know that \(-x \geq 0 \). \(-x < 0 \) so \(x \in S = (0, \infty) \). Thus \(S = (0, \infty) \) is closed.

HW 19. #3, p. 37, Fitzpatrick

Show that \(x \in \mathbb{R} \Rightarrow \exists x_n^3 \) s.t. \(x_n \to x \). Denote the collection of rationals by \(\mathbb{Q} \).

Pf: The rationals are dense in \(\mathbb{R} \) by Prop 2.13. By Prop 3.13, for \(x \in \mathbb{R} \) there exists \(\exists x_n^3 \in \mathbb{Q} \) s.t. \(x_n \to x \), which is what we wanted to prove.

#4. By #3 above for \(x \in \mathbb{R} \) \(\exists x_n^3 \in \mathbb{Q} \) s.t. \(x_n \to x \).

Choose \(x = 1 \). Then \(x_n^3 \in \mathbb{Q} \), \(x_n \to 1 \notin \mathbb{Q} \). \(\mathbb{Q} \) is not closed.