M161, Test 1, Spring 04

NAME: ______________________

SECTION: ____________________

INSTRUCTOR: _________________

You may not use calculators on this exam.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3ab</td>
<td>10</td>
</tr>
<tr>
<td>3cd</td>
<td>10</td>
</tr>
<tr>
<td>3ef</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

\[
\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2}
\]
1. (a) Simplify \(\cos \left(\sin \frac{2y}{3} \right) \).

(b) Evaluate \(\cos \frac{\sqrt{3}}{2} \).

(c) Use the definitions of sinh, cosh, tanh, etc to prove

\[
\cosh^2 x = \frac{\cosh(2x) + 1}{2}
\]
2. Calculate the following derivatives (you do not have to simplify).

(a) \(\frac{d}{dx} \sin (2x) \)

(b) \(\frac{d}{dx} [\cosh(3x) + \sinh (\sqrt{2x + 1})] \)

(c) \(\frac{d}{dx} \tan (e^x) \)
3. Evaluate the following integrals. You must show your work.

(a) \(\int \frac{x^2}{x^2 + 1} \, dx \)

(b) \(\int x \ln(x) \, dx \)
(c) \[\int_{1}^{\infty} \frac{1}{x^{1.001}} \, dx \]

(d) \[\int \frac{1}{x^2 + 2x} \, dx \]
(e) \[\int \frac{e^x}{1 + e^{2x}} \, dx \]

(f) \[\int \frac{16x}{\sqrt{8x^2 + 1}} \, dx \]
4. Derive the formula for integration by parts.
5. Calculate the following limits.

(a) \(\lim_{x \to 0} \frac{x \sin(3x)}{\cos(x) - 1} \)

(b) \(\lim_{x \to \infty} xe^x \)

(c) \(\lim_{x \to 0} \frac{x}{\cos(x)} \)

(d) \(\lim_{x \to 5} \frac{x^2 - 25}{x + 5} \)
6. (a) Which of the functions \(x^2 \) and \(x \ln(x) \) grows faster (or do they grow at the same speed) as \(x \) approaches infinity? Explain.

(b) Which of the functions \(\ln(x) \) and \(\ln(2x) \) grows faster (or do they grow at the same speed) as \(x \) approaches infinity? Explain.
7. Find the solution to the differential equation \(x \frac{dy}{dx} = 4(x^2 + x^2 y^2) \). Write your solution, \(y \), as a function of \(x \).