BLT-sets of $Q(4, 13)$

Anton Betten

November 25, 2014
Contents
Chapter 1

Summary

There are 3 BLT-sets.
Chapter 2

Invariants
Chapter 3

The BLT-Sets
3.1 Isomorphism Type 0

Stabilizer has order 61152
Plane intersection type is 14
Plane invariant is

\[
\begin{bmatrix}
14 \\
\end{bmatrix}
\]

\[
\begin{array}{c|c|c}
14 & 1 & 14 \\
\hline
14 & 1 & 14 \\
\end{array}
\]

\[C_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{14}\]
\[C_1 = \{0\}_{1}\]

\[
\begin{bmatrix}
14 \\
\end{bmatrix}
\]

\[
\begin{array}{c|c|c}
14 & 1 \\
\hline
14 & 1 \end{array}
\]

\[C_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{14}\]
\[C_1 = \{0\}_{1}\]

Column cell 1:
Order of the group that is induced on the object is 2184
Number of ancestors on 5-sets is 3.
Number of orbits on 5-sets is 3.
With 1 orbits on the object
Orbit lengths: 14
The points by ranks:

<table>
<thead>
<tr>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>66</td>
<td>8</td>
<td>68</td>
<td>12</td>
<td>74</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>70</td>
<td>9</td>
<td>69</td>
<td>13</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>6</td>
<td>72</td>
<td>10</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>7</td>
<td>67</td>
<td>11</td>
<td>73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The points:

\[P_0 = (0, 1, 0, 0, 0)\]
\[P_1 = (0, 0, 1, 0, 0)\]
\[P_2 = (0, 1, 6, 12, 6)\]
\[P_3 = (0, 1, 8, 6, 3)\]
\[P_4 = (0, 1, 5, 4, 2)\]
\[P_5 = (0, 1, 11, 11, 12)\]
\[P_6 = (0, 1, 2, 10, 5)\]
\[P_7 = (0, 1, 2, 3, 8)\]
\[P_8 = (0, 1, 7, 5, 9)\]
\[P_9 = (0, 1, 11, 2, 1)\]
\[P_{10} = (0, 1, 7, 8, 4)\]
\[P_{11} = (0, 1, 5, 9, 11)\]
\[P_{12} = (0, 1, 8, 7, 10)\]
\[P_{13} = (0, 1, 6, 1, 7)\]

Stabilizer of order 61152 is generated by:

\[g_1 = \begin{bmatrix}
7 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 \\
0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 6
\end{bmatrix}\]

with 196 fixed points

\[g_2 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 \\
0 & 0 & 11 & 0 & 0 \\
0 & 0 & 0 & 12 & 0 \\
0 & 0 & 0 & 0 & 12
\end{bmatrix}\]
with 4 fixed points

\[g_3 = \begin{bmatrix}
9 & 0 & 0 & 12 & 7 \\
0 & 10 & 0 & 0 & 0 \\
0 & 0 & 10 & 0 & 0 \\
10 & 0 & 0 & 7 & 8 \\
6 & 0 & 0 & 6 & 7 \\
\end{bmatrix} \]

with 170 fixed points

\[g_4 = \begin{bmatrix}
1 & 0 & 0 & 3 & 5 \\
0 & 4 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 \\
4 & 0 & 0 & 9 & 4 \\
5 & 0 & 0 & 3 & 9 \\
\end{bmatrix} \]

with 14 fixed points

\[g_5 = \begin{bmatrix}
3 & 0 & 0 & 7 & 3 \\
0 & 2 & 0 & 0 & 0 \\
0 & 3 & 2 & 12 & 6 \\
5 & 6 & 0 & 7 & 2 \\
3 & 12 & 0 & 8 & 7 \\
\end{bmatrix} \]

with 2 fixed points

\[g_6 = \begin{bmatrix}
11 & 0 & 0 & 9 & 2 \\
0 & 10 & 8 & 3 & 8 \\
0 & 11 & 10 & 1 & 7 \\
1 & 7 & 8 & 12 & 5 \\
11 & 1 & 3 & 7 & 12 \\
\end{bmatrix} \]

with 14 fixed points

3.2 Isomorphism Type 1

Stabilizer has order 392
Plane intersection type is $7^2 \cdot 3^{294}$
Plane invariant is

\[\begin{bmatrix}
7 & 0 \\
0 & 7 \\
\end{bmatrix} \]

\[\rightarrow \begin{array}{c|c|c}
2_1 & \downarrow & 2_1 \\
14_0 & 1 & 14_0 & 7 \\
\end{array} \]

$C_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{14}$
$C_1 = \{0, 1\}_2$

\[\rightarrow \begin{array}{c|c}
2_1 & \downarrow \\
14_0 & 1 \\
\end{array} \]

\[\downarrow \begin{array}{c|c}
2_1 & \downarrow \\
14_0 & 7 \\
\end{array} \]

$C_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{14}$
$C_1 = \{0, 1\}_2$

Column cell 1:
Order of the group that is induced on the object is 392
Number of ancestors on 5-sets is 19.
Number of orbits on 5-sets is 19.
With 1 orbits on the object
Orbit lengths: 14
The points by ranks:
The points:

\[P_0 = (0, 1, 0, 0, 0) \]
\[P_1 = (0, 0, 1, 0, 0) \]
\[P_2 = (0, 1, 6, 12, 6) \]
\[P_3 = (0, 1, 8, 6, 3) \]
\[P_4 = (0, 1, 5, 4, 2) \]
\[P_5 = (0, 1, 11, 11, 12) \]
\[P_6 = (0, 1, 2, 10, 5) \]
\[P_7 = (1, 10, 8, 4, 9) \]
\[P_8 = (1, 10, 8, 5, 2) \]
\[P_9 = (1, 8, 9, 12, 8) \]
\[P_{10} = (1, 4, 11, 4, 5) \]
\[P_{11} = (1, 4, 11, 10, 2) \]
\[P_{12} = (1, 8, 9, 3, 6) \]
\[P_{13} = (1, 1, 6, 5, 9) \]

Stabilizer of order 392 is generated by:

\[g_1 = \begin{bmatrix} 9 & 0 & 0 & 1 & 6 \\ 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 \\ 3 & 0 & 0 & 7 & 8 \\ 7 & 0 & 0 & 6 & 7 \end{bmatrix} \]

with 170 fixed points

\[g_2 = \begin{bmatrix} 1 & 0 & 0 & 6 & 10 \\ 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 \\ 5 & 0 & 0 & 11 & 6 \\ 3 & 0 & 0 & 11 & 11 \end{bmatrix} \]

with 170 fixed points

\[g_3 = \begin{bmatrix} 6 & 0 & 0 & 12 & 7 \\ 0 & 9 & 0 & 0 & 0 \\ 0 & 7 & 9 & 2 & 1 \\ 10 & 1 & 0 & 12 & 9 \\ 6 & 2 & 0 & 10 & 12 \end{bmatrix} \]

with 16 fixed points

\[g_4 = \begin{bmatrix} 9 & 0 & 0 & 8 & 9 \\ 0 & 6 & 10 & 7 & 10 \\ 0 & 4 & 6 & 11 & 12 \\ 2 & 12 & 10 & 2 & 3 \\ 9 & 11 & 7 & 12 & 2 \end{bmatrix} \]

with 2 fixed points

\[g_5 = \begin{bmatrix} 0 & 6 & 4 & 5 & 9 \\ 2 & 7 & 3 & 8 & 5 \\ 8 & 12 & 7 & 5 & 12 \\ 8 & 2 & 5 & 6 & 5 \\ 3 & 12 & 8 & 8 & 8 \end{bmatrix} \]

with 2 fixed points

3.3 Isomorphism Type 2

Stabilizer has order 48

Plane intersection type is 4^{24} 3^{268}

Plane invariant is too big (24 planes)
\[C_0 = \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{12} \]
\[C_1 = \{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 22\}_{18} \]
\[C_2 = \{0, 2\}_2 \]
\[C_3 = \{5, 15, 18, 20, 21, 23\}_6 \]

\[\begin{array}{c|cc}
12_0 & 6 & 1 \\
2_2 & 0 & 6 \\
\end{array} \]

\[\begin{array}{c|cc}
18_1 & 6_3 & 3 \\
2_2 & 0 & 6 \\
\end{array} \]

\[\begin{array}{c|cc}
12_0 & 4 & 2 \\
2_2 & 0 & 2 \\
\end{array} \]

\[C_0 = \{1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13\}_{12} \]
\[C_1 = \{0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 23\}_{18} \]
\[C_2 = \{0, 2\}_2 \]
\[C_3 = \{3, 9, 16, 19, 21, 22\}_6 \]

Column cell 1:

Order of the group that is induced on the object is 48

Number of ancestors on 5-sets is 62.

Number of orbits on 5-sets is 62.

With 2 orbits on the object

Orbit lengths: 2, 12

The points by ranks:

<table>
<thead>
<tr>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
<th>i</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>103</td>
<td>8</td>
<td>1738</td>
<td>12</td>
<td>1609</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>146</td>
<td>9</td>
<td>1050</td>
<td>13</td>
<td>849</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>6</td>
<td>1258</td>
<td>10</td>
<td>1510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>7</td>
<td>1017</td>
<td>11</td>
<td>2193</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The points:

\[P_0 = (0, 1, 0, 0, 0)P_1 = (0, 0, 1, 0, 0)P_2 = (0, 1, 6, 12, 6)P_3 = (0, 1, 8, 6, 3) \]
\[P_4 = (0, 1, 6, 3, 11)P_5 = (0, 1, 2, 7, 9)P_6 = (1, 3, 2, 11, 10)P_7 = (1, 9, 11, 8, 7) \]
\[P_8 = (1, 1, 2, 2, 5)P_9 = (1, 7, 9, 2, 7)P_{10} = (1, 9, 2, 3, 11)P_{11} = (1, 3, 11, 3, 6) \]
\[P_{12} = (1, 7, 4, 5, 2)P_{13} = (1, 4, 11, 7, 1) \]

Stabilizer of order 48 is generated by:

\[g_1 = \begin{bmatrix} 4 & 0 & 0 & 11 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 7 & 0 & 0 & 5 & 11 \\ 12 & 0 & 0 & 5 & 5 \end{bmatrix} \]

with 170 fixed points

\[g_2 = \begin{bmatrix} 9 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 7 & 4 & 3 & 8 \\ 0 & 8 & 0 & 9 & 0 \\ 0 & 3 & 0 & 0 & 9 \end{bmatrix} \]

with 16 fixed points

\[g_3 = \begin{bmatrix} 12 & 0 & 0 & 0 & 0 \\ 0 & 12 & 0 & 0 & 0 \\ 0 & 2 & 12 & 6 & 9 \\ 0 & 9 & 0 & 0 & 8 \\ 0 & 6 & 0 & 5 & 0 \end{bmatrix} \]
with 170 fixed points

\[g_4 = \begin{bmatrix} 9 & 8 & 0 & 8 & 5 \\ 0 & 10 & 0 & 0 & 0 \\ 4 & 2 & 3 & 7 & 8 \\ 9 & 2 & 0 & 1 & 10 \\ 4 & 8 & 0 & 10 & 1 \end{bmatrix} \]

with 2 fixed points

\[g_5 = \begin{bmatrix} 6 & 0 & 0 & 0 & 0 \\ 0 & 6 & 10 & 7 & 10 \\ 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 10 & 0 & 10 \\ 0 & 0 & 7 & 1 & 0 \end{bmatrix} \]

with 170 fixed points
Chapter 4

The BLT-Sets in Numeric Form

0, 1, 64, 65, 66, 70, 72, 67, 68, 69, 71, 73, 74, 75
0, 1, 64, 65, 66, 70, 72, 1076, 1604, 1398, 1773, 1641, 2190, 1130
0, 1, 64, 65, 103, 146, 1258, 1017, 1738, 1050, 1510, 2193, 1609, 849

INT BLT_13_size = 14;
INT BLT_13_nb_reps = 3;
INT BLT_13_reps[] = {
 0, 1, 64, 65, 66, 70, 72, 67, 68, 69, 71, 73, 74, 75,
 0, 1, 64, 65, 66, 70, 72, 1076, 1604, 1398, 1773, 1641, 2190, 1130,
 0, 1, 64, 65, 103, 146, 1258, 1017, 1738, 1050, 1510, 2193, 1609, 849,
};
const BYTE *BLT_13_stab_order[] = {
"61152",
"392",
"48",
};
INT BLT_13_stab_gens[] = {
 7, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0,
 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12,
 9, 0, 0, 12, 7, 0, 10, 0, 0, 0, 0, 0, 10, 0, 0, 7, 8, 6, 0, 0, 6, 7,
 1, 0, 0, 3, 5, 0, 4, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 9, 4, 5, 0, 0, 3, 9,
 3, 0, 0, 7, 3, 0, 2, 0, 0, 0, 0, 3, 2, 12, 6, 5, 6, 0, 7, 2, 3, 12, 0, 8, 7,
 11, 0, 0, 9, 2, 0, 10, 8, 3, 8, 0, 11, 10, 1, 7, 1, 7, 8, 12, 5, 11, 1, 3, 7, 12,
 9, 0, 0, 1, 6, 0, 10, 0, 0, 0, 0, 0, 10, 0, 0, 7, 8, 7, 0, 0, 6, 7,
 1, 0, 0, 6, 10, 0, 10, 0, 0, 0, 0, 10, 0, 0, 5, 0, 0, 11, 6, 3, 0, 0, 11, 11,
 6, 0, 0, 12, 7, 0, 9, 0, 0, 0, 0, 7, 9, 2, 1, 10, 1, 0, 12, 9, 6, 2, 0, 10, 12,
 9, 0, 0, 8, 9, 0, 6, 10, 7, 10, 0, 4, 6, 11, 12, 2, 12, 10, 2, 3, 9, 11, 7, 12, 2,
 0, 6, 4, 5, 9, 2, 7, 3, 8, 5, 8, 12, 7, 5, 12, 8, 2, 5, 6, 5, 3, 12, 8, 8, 8,
 4, 0, 0, 11, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 5, 11, 12, 0, 0, 5, 5,
 9, 0, 0, 0, 0, 4, 0, 0, 0, 0, 7, 4, 3, 8, 0, 8, 0, 9, 0, 0, 3, 0, 0, 9,
 12, 0, 0, 0, 0, 12, 0, 0, 0, 2, 12, 6, 9, 0, 9, 0, 0, 8, 0, 6, 0, 5, 0,
 9, 8, 0, 8, 5, 0, 10, 0, 0, 0, 0, 4, 2, 3, 7, 8, 9, 2, 0, 1, 10, 4, 8, 0, 10, 1,
 6, 0, 0, 0, 0, 6, 10, 7, 10, 0, 0, 6, 0, 0, 0, 0, 10, 0, 10, 0, 0, 7, 1, 0,
};
INT BLT_13_stab_gens_fst[] = { 0, 6, 11};
INT BLT_13_stab_gens_len[] = { 6, 5, 5};
INT BLT_13_make_element_size = 0;