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Abstract
Some simple T-designs with amall parameters are constructed with
the aid of a computer. The smallest parameter set found is 7-(24, 8, 4).
An antomorphism group is prescribed for finding the designs and usad
for determining the isomorphism types. Further designs are derived
from these designa by known construction processes.

1 Parameter Sets

Certain projective groups are Fhomogeneous and have a small number of
orbits on k-subsets for moderately small k. They have therefore been a valu-
able tool in several geometric constructions, The firat simple G-designs were
found by Magliveras and Leavitt wsing a prescribed automorphism group
PIL{2,32), [13). Later, further G-designs were found having other projective
antomorphism groups. see [7], [15], [9]. For a recent survey on t-designs with
large t see . L. Kreher's contribution in [10]. The recipe used to construct
these designs in principle also applies to the construction of simple T-designs.

Theorem 1.1 The following projeciive groups are automorphism groups of

t-(v,k, A) designs:
I PSL(2,23) of 7-(24,8,7), where A =4, 5, 6, 7, &
T PGL{2.23) of 7-(24,9,A), where A = 40, 48, 64;
I PGL(2.25) of 7-(26,8, 6),

IV PTTL{2,25) of 7-(26,9,X). A = 54, 63, 81;
V PIL(2.32) of 7-(33,8,10).[2].

Thie url]:r' ?—dcuign:«a known before were those of Teirlinck :lﬁ: with k=141
and astronomically large A and » like :

A= (10" w =1 maed A

Applying a construction from Tran van Trung[l T"]. see also Krt:ht:r[!:.l]. wields
further 7-designz from those of the theorem.
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Corollary 1.2 There erist simple T-designs with the following parameler
meba

VI ?-IZE-’,--!?-}-} for X = 45, 54, T2
VIl ?-[ET-Q.ﬁﬂ].

Thus, there exist aimple 7-designs for » = 24, 25, 26, 27, and 33 with
some projective automorphism groups.

2 Methods

The designs are constructed by the Kramer-Mesner method [6]. This method
agsumes a prescribed group A of antomorphisms of the desired I-{w, k, X)
designs. The group A is a permutation group on the underlying set V of ©
elements acting in the induced way on the set of all k-subsets of V. A design
allows A as an automorphism group if and only if the set of blocks of the
design consists of ull k-orbits of A.

Therefore a collection of such &-orbits has to be chosen such that each
t-aubset T is contained in equally many blocks from these arbits. 5o for each
k-orbit A the number m(T, K1) of members containing T is computed. If T
is replaced by some T from the t-orbit T4 these numbers remain unchanged.
So it auffices to consider only one representative T from each f-orhit, There
results a matrix M with a row for each f-orbit and a column for each k-
orbit. Choosing k-orbits for a I-{», k A) design means to multiply M by an
appropriate 0f1-vector on the right such that a vector with constant entries
X results,

There have been different approaches to finding such 01 vectors. We
have implemented a variant of the LLL-algorithm [12], see [18], which in
comparison to Kreher and Radzizowski [3] has the new feature of considering
A as a variable. This helps find unsuspected values of A, After applying the
LLL-algorithm all solutions are determined by an exhaustive search, The
Kramer-Mesner matrix is computed by a new version of B. Schmalz's Leit-
erspiel (snakes and ladders). Our computational system DISCRETA allows
the choice of groups A from some predefined series. The user computes the
matrices and solves the diophantine system of equations by pressing some
buttons at a graphical user interface. Besides the LLL-solver we have also
included in the system a clever backirack-solver written by B McKay [14]
and a linear programming tool lp-solve (1], Mckay's solver, in particular, is
frequently a valuable alternative to the LLL method. The syatem is writien
in C and uses a Motif package for the graphical surface, It can he obtained
from the authors via fip.
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The following group theoretic results allow us to determine the isomor-
phiam types of designz with preacribed antomorphism groups in many impaor-
tant cases without somorphism testing,

Theorem 2.1 Let (7 be a group acting on a sef (1. Lel A be a subgroup of 7
which is the full stabilizer of the poinls in a set A C 0. Then two points of A
may ondy le in the same G-orbit if they lie in the same orbit of Ng(A), the
normalizer of A in (7,

If A in the theorem is the set of all points having stabilizer A then Ng(A)
acts on this set with orbits of length |Ng(A)/A4|. Thus, the number of iso-
morphism types of designs having a prescribed full automorphism group A is
obtained by dividing the total number of all designs having a prescribed full
automorphism group A by the index of A in its normalizer taken in the full
aymmetric group on the underlying point set. If the group A i3 not the full
antomorphism group of some designs fixed by A then those designs must have
a larger automorphism group. The principle of inclusion-exclusion allows to
determine the number of isomorphism types with prescribed aotomorphism
group in this situation. This is the method W. Burnside formalized with his
table of marks [3] for general actions of finite groups, see also [15],[11] for con-
structive aspects of this approach. Since in many situations the subgroups
which occur as stabilizers are not easy to determine, the following special
situation is of interest.

Theorem 2.2 Lel (7 be a group acling on o sel [} Lel wy,wy € 0 and lel
P be a Sylow-p-subgroup of 7 fiving wy and wy, Then if wy and wy are in
the same orbil of G both points are already in the same orbil of Ng(P), the
narmalizer of P in (5.

In the situation of the theorem for a subgroup A containing P no know-
ledge about the overgroups of A is nesded o decide whether two points fixed
by A lie in the same (G-orbit, The only difficulty in formulating general count-
ing formulas results from the fact that the set of points fixed by A usoally is
nof closed under Ng( P, However, it is sometimes possible to enlarge P oand
Ni{ P) 50 that the overgroup of Ni(P) acts on the set of fixed points of the
overgroup of F. Hence, for any prime p the projective group PSL{2. p) con-
tains a Sylow-p-subgroup P of 5S4 and PGL{2,p) contains the normalizer
of P. Therefore the following holds.

Corollary 2.3 For any prime p all designs which admil PGL{2,p) as a
group of automerphisms are pairiise non-wsomorphic, Al designs admitting
PSL(2,p) but not PGL(2, p) as a grewp of avtomorphisms are grouped inlo
ispmarphic pairs under the action of PGL{2, p) /PSL{2. p).
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By the preceding methods, the numbers of designs obtained for the cases
I to ¥ yield the following numbers of izomorphizsm types:

[ 1, 138, =590, > 126,> 65 for 7T-(24. 8. X and XA =4, 5, 6, T, &
T 113, 5463, > 15325 for 7-{24,9, 3], where A = 40, 48, 64;

IT1 7 for 7-(26, 8, 6).

IV 3989, 37932, > 14 for 7-(26,9, A), where A = 54, 63, 81;

V4006426 for 7-(33,8,100, [18),

The corollary also explains why in their investigations of Steiner 5-designs
M.J. Grannel, T.5, Griggs and R.A. Mathon in a series of papers, see [4],
always found two copies of each isomorphism type of Stemer svstems with
some presceibed antomorphism group PSLI2, p).

B.D. McKay [14] was the first to find more 7-(33.8,10) designs different
from those in [2]. He estimated the existence of about 5 million designs of
type ¥V, and this gave the impetus for the development of better equation
solver for the Kramer-Mesner method, see [18]. In fact. there are 4996426
such designs which is suprisingly close to his estimate,

A detailed presentation of all results mentioned would be very space con-
suming. A moderate listing i3 planned to appear elsewhere together with
BRI T ﬁ—dt‘ﬂ-ig[lﬂ EI.]]'L]. r[IHLﬂTi.EI.] £ dﬂd'l.'ll'.'l.":.:l [JﬂTﬂr[lﬂLﬂl’ aels, .Tl]]ﬂ dﬂl-ﬂ“ﬂl AL
be obtained from the anthors, see also our WWW-pages, Here we include
IZJ]]]}' ame rﬂil]"t‘ﬂﬂ[ll-ﬂt;'ﬂﬂ rUl' 1.-]]': :‘I'If]-i!"t'ﬁ[. I’-H]Llﬁ l:]:r .]I i.'II ‘:'H.L":I l:]f 1.]'lﬁ ].I‘ﬂ!'.lil'- Cal ety

I-T1V.

3 Selected 7-Designs with Small A

I: We use the following permutation representation of PGL(2,23), a group of
order 12144, Generators are the permutations

o= (3741262210 19181311 24 20231521 5178914 16)
3—[3 6149817521 15232024 11 13181910226 124 7)
T={23456T7T891011 121314 151617 18 19 20 21 22 23 24|
5—[1 J14 105166 125209234187 221521 11 19 17 1324) The
permutations 3% 4, and & generate PSL{2, 23], a group of order G072

The 7-(24.8.4) design consists of the orbits of the following 8-subsets,
called starter blocks, under the action of PSL{2,23) .
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TEHETEREE =0
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Fiartear Mocke

BRI M BTN

warhit Hﬂgh
MITT

L I L

7! @ B\ oM

B B M Lk
PR B B TR
FER - B B TR
R I B T
R - R - B L
7 @ B\ oM T
R R B L
21 3@ 3| M L
R R B T
1 I IW 4 BITE
21 I TW EITE
31 I T M LIEE
31 I I M TR
31 I I M TR
31 I ITW 4 EOTE
1 I IW 4 EITE
FEI - B . B TR
FEI- - R - B TR
31 I I M TR
31 I ITW 4 EOTE
31 I ITW 4 EOTE
1 I IW 4 OB
FEI - B . B SE
FEI- - I - B Lo
R - T - B TR
21 @ A | TS
21 A TA M e
FEI- - B - - SE
R - B B Lo
R - B B e
PR T B Lok
B B M P8k
PR B B Lok
FER - B B Lok
R I B R
R - B - B b

II: One out of 113 isomorphism types of 7-(24,9,40) designs has the fol-

lowing starter blocks for arbits under the action of PGL(2,23) :

Starier Wlocka

Orhit Lea ﬁh

L} L L L E I A L
& iT A % B W M B 5 Eohdd
E iT A 1% B W O B 3 ALY
BT 8 1% 2 MM W W N oy
] 1 | 1% M 1N W ¥ M LFLELE!
T 4 W@ 1% MW P W M M LFLELE!
] 4 W ¥ W T 3| ¥ M LFIEL!
® 4 W 1% W T FT| ¥ M LR
12 & A % M ¥ W B N g
ia E @A % M ¥ 1@ OB N oy
® AR A 1% W T W M M LFLELE!
L] 2 1 w3 3 @ M N FFLELS
17 a 1 w3 3 3@ M N BITS
L E] 1 LT - T - IR
® L] 1 LT R - - RFLEE!
18 4 1 w3 3 3@ ¥ N BITE
1t 5 1 1% I M I B M H-FETY
17 L] 1 hE- TR R B~ B N ¥ ] B4
10 |-} 1 1% W M 1@ | -HETY
] E 4 1% W | I o W -FETY
10 |4 4 1% W | I3 W -FETY
11 |4 4 1% W | I3 W 204
14 5 4 1% W | I3 3 W H-HETY
10 [} 4 1% B M @ 0T EFEETY
1% n 4 1% B M 1} M M RBIT2
T & n - B N - 11 12144
12 & n I T N - N - 11 L2144
] |4 n I T N - N - 11 &4
1 5 a - - S N - N - 11 L3144
14 T A I I N - . N 1 n3144
14 n2 A I - N - N M- 1 1 FEETY
) u 4 I - B - N N 1 1 BOTS
B u 4 ] 2 M 22 e 2 nI144
14 5 El I - B - N N 11 FSETY
] B 4 I I N - - B n2144
ia & & i 2 N 3} ¥ Bidd
14 B L} i 2 N 3} ¥ M FFRETY
14 B L} i 2 N | ¥ N RETY
ia 3 L} 4 3 H ¥ ¥ N RETE
15 fin & N R D - - N ) ALY
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TI1: We use the following permutation representation of PTL(2, 23], a group
of arder 31200, Generators are the permutations

(123456789 1011121314 151617 18 19 20 21 22 23 24)

(117 1415 10)(2 5 13 22 3)(4 11 9 19 8)(6 18 12 25 24)(7 21 23 16 20)
= (18417 3)(2 21 22 19 11)(5 16 20 13 15)(6 12 26 24 18)(7 10 9 14 23)
= (15)(2 1033 15)(4 200{7 11)(8 16)(9 21){13 17){14 22)(19 23)

e I~
Il

The permutations a, 3, and 4 generate PGL(2,25), a group of order 15600

One out of 7 izsomorphism types of 7-(26, 8, 6) designs has the following
starter blocks for orbits under the action of PGL(2,25) -

Tearier Hiocks Crrited Length

F ¥ W @ M 2 W W [LE]]

T o 7 @ M ¥ W M LB

A 2 m - -1 D TR - (0]

1 I m - - - T~ I TABY

4 2 M - -1 BT - 158 0

T 2 M - -1 N TR 158 03

@ 2 M ¥ T & I MW (L]

1. 2 M ¥ T & Im MW (L]
1 - 5 | - -1 - LI - (]
11 & M MM 4 A M (E5]1
a 4 M - - - T L - (ET]1 ]

a 4 M - R N TR L - T

2 4 M - I - I L (EL]1 ]

18 4 M ¥ T & Im MW TADY
1n 5 T - -1 - LI - (]
1% - b MM 4 A M (E]1
18 5 m - - - T A L - T
a E M - R N TR L - T

14 E M = i U ] 150
12 E T - - - TR L LT
] T mn - R - L T - (EL]1 ]

i L Hno¥M N W™ W TAM)
14 (L] n oM o w W pLL-i
5 4 2 N P W W TADY

i L3 PR ¥ M W MW Tad
14 L3 I - - TR .- ] 1580
14 4 2 N ¥ 4 W™ MW L2a iy
18 B oW O™ ™l oM | S e
17 B P M M OB m | B T
14 L P OB ¥ W m | B T
18 A oW OB MW M | B el
1% B I - - TR .- ] (L]
14 B 2 N ¥ 4 W™ MW TAD)
14 10 oW O™ W™ OWw M | S e
1% 10 P O OM O MH W m TAMY
1% 11 P OB ¥ W MW TAMY
L d A 0¥ B M OB M RAMD

L] T A% B 2 B m RAMD

14 B a ¥\ M W™ P m TAMRY
17 5 4 3@ I 4 oI5 MW (L]
17 L] 4 3T I T4 Im WM TABY
17 10 & I - TR = B ] LT

IV: Oune out of 3989 somorphism types of 7-(26,9,54) designs consisting
of the orbits of the following starter blocks under the action of PT'L{2, 253) -
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Starier Wiocks Drhit Leagth
X o a1 51 d% 94 4 ¥&F 9% Fﬁ'l_
¢ B g W W B M W 21300
i BB M MO O B M M M A1 30h
] F ] i 3 ] T4 5 8 A 00
15 2 WM M O W oMW MW M is400
17 oW ¥ O} T WM O MW 21300
] B 0w ¥ ¥ T M ™ W (L]
L] 4 wW I} ¥} FT| MM ™ MW [Lehi]
L 4 ® ¥ ¥} ¥ M ¥ MW N0
T 4 pad 0 E.rd I3 T4 5 M A1
L] 4 W ¥ O} | MW P MW 21300
B & 30 ¥ IF  IW T4 B8 I 21300
10 & 30 ¥ IF  IW T4 ¥ I 01 ]
17 4 3@ ¥ 3IF  IW T ¥ IR 21300
11 E 3 ¥ 3IF W T ¥ 3B 20 ]
] E 3 ¥ 3IF I|W T ¥ 3B 21300
10 E 3@ I 3IF I™W T 8 IE E5A00
14 E 30 ¥ 3IF IW T4 i I 0 ]
] L1 I - A I L L -] 21200
) & -1 - - - - B -1 S 3 21200
o |- 3 ¥ @FF  IW T 3 IE 21300
11 & 7 I T IW T4 R IB 21300
12 & 7 I T IW T4 R IB E5A00
1 5 - I3 - I - I © 1 - 21300
] B -3 - T . B -1 B 21200
] E -1 - - - - B L N3 21200
14 T -1 T - - - B T L -3 21204
1% T 2 2 @ I M LI ] 21204
18 B - R - - I T L - L0 ]
13 [ -1 I - - - I -1 B ]
id ] a2 M I W MW M W FLe i ]
it i 2 M I ¥ W MW MW bl
15 ia 2 M T ¥ MW MW MW A1 00
i4 ir 4 M ¥ ¥ W M M A1 30h
17 i a i 3 ] T4 5 8 TAND
E T 4 M T W MW M W is400
17 T 4 3 F} W ™ |/ MW 21300
ia Hil d M I ¥ W MW MW P ik
E T & M T 2 MW M W A1 00
i8 T A ¥ ¥ ¥ MW M M TR
% in L] 1 3 ] T4 5 8 LEAGD
. f a T ¥ W MW PO 21200
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