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Abstract. We call a finite linear space regular, if all pencils of lines are similar,
This means that the way how the lines through a point partition the complement
of this point is equivalent for all points. We enumerate all fnite regular linear
gpaces of order < 14 and, with some gaps, up to order 16, We comment on some
of these spaces, point out interrelations between them and give presentations for
several distinguished species.,
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1. Introduction

An incidence geometry (P, B} consists of a set P of points, [P| = v, and a set B of subsets of
F which are called blocks (or lines), |B| = & > 1. We assume at least the following:

(#) each block has cardinality > 2 and each pair of points is on at most one block.

The geometry (P, B) with (#) is called a linear space if each pair of points is on at least (and
hence on exactly) one block., The number of lines through a point p is called the degree of
p. The nmumber of points on a block B is called the length of B. An incidence peometry
with (*) is called a configuration if all points have the same degree, say r, and if all blocks
have the same length, say k. There are linear spaces which are a configuration at the same
time, for instance a projective plane or a Steiner triple svstem. But if the linear space has
lines of different length, then it cannot be a configuration. We are interested in the case that
for each existing line length & the set of all blocks of length k& constitutes a configuration
on P. S0 we have not one configuration but the incidence matrix is composed by several
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112 A. Betten, D, Betten: Regular Linear Spaces

configurations, one for each k. We call a linear space of this type regular. Note that this
condition is equivalent to the property stated in the abstract.

We will study regular linear spaces with small point numbers in the following. If we have
specified all lines of length > 3 then all lines of lengeh 2 will follow (as those pairs of points
which are not yet joined). So we often drop the 2-lines. Also in the fgures we do not draw
the 2—lines.

2. Parameters

As usual let v and b be the number of points and of blocks (or lines) and denote by be, by, by, ...
the number of lines of length 2,3, 4, ... . A k—line is a line of length k. To get the line length
distribution we have to solve the equation

by + 3by + 6y + 10B5 + ... = (;)

Regularity imposes the (necessary) condition
v|kby forall k=2.3,..
We write the solutions in the form
(v by, by, by, ...}

and get the parameter candidates for finite regular spaces. Note, however, that there may be
parameters which have no realization. Take for example (84,0, 4); these are the parameters
for a regular linear space on 8 points. But, obviously, one cannot place four 4—lines on 8
points. The number of blocks is b = by + by + by + ... and the constant © (number of lines
through a point) is r = -L[Ebg + 3bs + 4y + ...). Spaces with constant r have been studied
in [11] up to order 12. The condition there is slightly more general than regularity in our
gense, In the following list we have already left out the parameters which are not realizable.
Note that in gome cases the 2—lines are omitted. Por instance we describe the linear space
(10015,0,5) by (g} dually, This means: take the 10 2—lines on 5 points and dualize it. This
gives 5 4—lines on 10 points. Here 15 pairs of points are not yet joined, for these we add 15
2—lines,
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3. List of regular linear spaces

parameter || comment
(2]1) 1 (ij ome line
(30, 1) 1 || one line
(3)3) 1 {;}
(4/0,0,1) 1 || one line
(4)6) 1 (3)
(5]0,0,0,1) 1 |[one line
(5110 1 (3)
(G0, ....0,1) 1 || one line
(613, 4] 1 || (1) dually
(G9,2) 1 || 2 disj. 3-lines
(6]15) 1 (3)
(7/0,...,0,1) 1 || one line
(710,7) 1 || 7 point plane, conf. T3, see 4.4
(7)21) 1 ()
(80,..01) | 1 |[|oneline
(8]4,8) 1 || punctured affine plane ord. 9, conf. 83, see 4.4
(8116,0,2) 1 || 2 disj. 4-lines
(8]28) 1| (5)
(9|0, ...,0,1) 1 || one line
(900,12) 1 || aff. plane ord. 3
(99,9 3 || conf. By, see 4.4
cub. graph ord. 6 dually,
(9118, 6) 2 deri'l.r:tinn of lat. 8q. 4 '
(927, 3) 1 || 3 disj. 3-lines
(9]36) L[ (%)
(1o, ...,0,1) || 1 || one line
(10115,0,5) | 1 || (3) dually
(10715, 10] 10 || conf. 10s, sec 4.4
(10025,0,0,2) || 1 || two disj. 5-lines
(10145) L ()

113
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para.mt:ter 3 comment
(11]0, ..., 0,1} 1 one line
(11|22, 11) a1 conf, 114, see 4.4
(11|55 1| (Y)
(12|0, ..., 0, 1) 1 one line
(12]0, 4, !1} 1 punctured proj. plane of order 3
{12]0, 16, 3) 2 lat.sg. order 4, see 4.1
(12[6, 8. 6) 1 | sce 46
{12]6, 20) 3 punctured 5TS5(13), see 4.2
(12|12, 0,9) 1 aff. plane order 3, dually
conf, 123 with parall, class
(12)12,12,3) 4 d-nri\fati;n of la]l?:maq. ard5 o 4.1 and 44
(1218, 4,6) 1 | sece 4.6
(12|18, 16) 374 || conf, 12,16,
(12]24,8,3) 8 eub.graph ord.8 with parall.class, dually
(12|30,0,6) 1 d-graph on § points, dually, see also 4.6
(1230, 12) 220 || conf. 124, see 4.4
(12|36,0,0,0,2) 1 2 disj. G-lines
(1236, 4, 3) 1 || 3x4gnd
(12|42, 8) ] cubic graph ord. & , dually
(12/48,0,3) | 1 3 digj. 4-lines
(12]54, 4) [ 1 |4 disj. 3lines
(12]66) RG]
(13|0, ..., 0,1} 1 one line
{13]0,0,13) 1 proj. plane ord. 4 = conf. 134, see 4.4
{13]0, 26) 2 STS(13), sew 4.2
(13[30, 13) 036 || conl. 134, see 4.4
(13]78) 1 [ (%)
[14]0, ..., 0. 1) 1 | one line
(14]7,0, 14) 1 conf. 144, see 4.4 and figure 8 in 4.6
(14|7, 28) TBT || punctured STS({15), see 4.2
(14[49,0,0,0,0,2) | 1 | 2 disj. 7-lines
(14|49, 0, 7) 2 see 4.6 and figure 9
(14]49, 14) | 21399 || conf. 145, see 4.4
(14]91) || ()
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parameter i comment
(150,....,0,1) 1 one line
(150,5,15) 1 punctured aff. plane of ord. 4
(150, 15,0, 6) 1 () +15 par.cl. 242+2(dually), see 4.3
(15/0,25,0,3) 2 lat. 5q.(3), see 4.1
(13/0,35) &0 STS(14), see 4.2
(15/15.0,15) l conf. 15,, soe 4.4
(15/15, 10, 0, ) T || sce 4.3
— conf. 155 with a par. class
(15/15,20,0,3) 40 dnrimLijn of lat. psq. order 6 °C 41
(1515, 30) conf 15430, see 4.5
(15/30, 5,0, 6) I |[see 4.3
(15]30, 15,0, 3] 251
(15]30, 253) conf. 15525,
(15/45,0,0, 6) | (5) dually
(15]45, 10,0, 3] 23
(15]45,20) conf. 154205
(15]60, 5,0,3) 1 3= 5 grid
(15/60, 13) 245342 || conf. 153, see 4.4
(15]75,0,0,3) I | 3 disj. 5-lines
(15]75, 10) 21 cubic graph on 10 points, dually, see 4.6
(15/90, 5) ] 5 dis). o-lines
(15/103) 1| (%)
(160, ...,0,1) | one line
(160, 0, 20) 1 affine plane order 4
(16:0,16,12) 1 see 4.0 and figure 10
(16]0,32,4) 23 soe 4.0
(16124, 0, 16) 10 || conf. 164, see 4.4
(1624, 16, 8) SO0880 || see 4.5
(16]24, 32) cont. 16532,
(16/48.0,12) 574 || conf. 16412,
(16G/48, 16, 4) 88 conf. 165 with a parallel class
(16/64,0,...,0,2) 1 2 disj. 8-lines
(16/72,0,8) ] d-graph on 8 points, dually, see 4.5
(1672, 16) conf. 163
(16]06, 0, 4] I | Tour disj. 4-lines
(16/120) 1 (%)
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MNote: Most of the geometries of this list are well known configurations, cp. [11]. But some
of these geometries may be new, for instance the parameter cases [1.:|E-II] 15}, [1 Ei-|2-4 0, 16) or
(16/24, 16, 8). In the list the following five parameter cases are still missing:

(1315, 30), (15]30, 25), (15|45, 20), (16|24, 32), (16|72, 16).

4, Some Comments

4.1. Linear spaces related to latin squares

We may regard a latin square of order n as a regular linear space having parameters
(3n|0,n* 0, ...,0,3). For this we take the n rows of the latin square as an n-block, furthermore
the n columns a8 another n-block and the n digits as a third one. We assume that these
three blocks are disjoint thus defining 3n points. Now each of the n® elements of the latin
aquare defines a triple of points, namely the number of its row, the number of ita column
and the digit of this element. Hence we get n? Fblocks. It is easily seen that we have
& regular linear space with parameters stated above. We take n 2 4, otherwise we get a
mixing of the three distinguished n-blecks with the other n® ones. We call two latin squares
isomorphic if the corresponding linear spaces are isomorphic. This means that we do not
only take permutations of the n® elements which bring rows to rows, columns to columns and
digits to digits [inner automorphisms), but we also allow that rows, columns and digits are
interchanged. For instance there are 22 "conjugation types” of latin squares of order 6, [3],
but only 12 isomorphism types, [2].

Let us illustrate this procedure for the two latin squares of order 4; the parameters of the
associated linear space are (120, 16, 3), see figure 1.
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Figure 1: the two LEQ(4) (right) as linear spaces {12|(), 16, 3) (left)



A, Betten, D, Betten: Hegular Linear Spaces 117

In both cases the automorphism group acts transitively on the set of 3=-blocks. Derivation
with respect to one 3-block defines a regular space (99, 9) with a distinguished parallel class,
There are three geometries [39,9), the symmetric configurations 93 One of them has no
paralle]l class at all. The second one has exactly one parallel class and a group of order 12,
Hence the original latin square has an automorphism group of order 12 16 = 192, The third
95 is the Pappus configuration which has three parallel classes and a group of order 108, If
one specifies one parallel class, one gets the group order 36 and the original latin square has
an automorphism group of order 36 - 16 = 576. Note that the two linear spaces in [1, p.18]

are isomorphic to the two latin squares of order 4 by the procedure described above.

Next we point out that the block derivations of the 12 latin squares of order & with
parameters {18|0, 36, 0,0, 3) correspond to the 40 regular linear spaces with parameters
(1315,20,0,3). For this we remove one 3-block from a latin square of order 6 and also the
15 3-blocks which have the same row or column or digit as the first one. Then we get a
regular geometry on 15 points having three 5-blocks and 20 3-blocks. Conversely, it is easy
o see that the extension from the small geometry to the greater one is uniquely possible. In
other words, the 40 geometries correspond bijectively to the block orbits of the automorphism
groups of all latin squares of order six.

Similarly, the automorphism groups of the two latin squares of order 5 (parameters as
linear space: (15[0, 25,0, 3)) have four block orbits and block derivation leads to the 4 linear
spaces with parameters (12|12, 12, 3) having automorphism groups of order 6, 6, 24, 72, One
of the squares is “eyelic” and the group is transitive on the block set. Derivation with
respect to one block defines the space with antomorphism group 24 which can be described
as follows: Take on the point set {1,2, ..., 12} the 3-block {1,5,9} and all images under the
group Zi. The full sutomorphism group is generated by Z4y and one element of order 2.
It follows that the automorphism group of the eyelic latin square has order 25 . 24 = G00.
The second square has one 3—block which is fixed under all automorphisms. Derivation with
respect to this fixed block leads to the space with automorphism group of order 72, hence
the antomorphism group of the second latin square has also the order 72 (compare figure 2),

cyclic fixed block
1 2 3 4 5 |l 7 3 4 5 |
2 3 4 51 2 1 5 1 4
3 4 5 1 2 9 4 1 5 9
4 5 1 2 3 4 5B 21 3
5123 4 5 3 4 21
Aut| = 6N Aut| = 72

Figure 2 the two LSQ(5)
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4.2. Linear spaces related to Steiner triple systems

The list contains the parameters (13|0, 26) which describe the two Steiner triple svstems on
13 points having automorphim groups of order 39 and 6, respectively. Figure 3 is a picture of
the second one; one can see the fixed point, the orbit of length 6 and the two orbits of length
3. (Note that this is not an embedding into the plane since we have used double points).

Figure 3: Steiner tripel system on 13 poinks

The two Steiner systems have together 5 point orbits and by taking point derivations with
respect to a point in each of these orbits we get the five geometries of type (12|68, 20), |9).
The list contains also the 80 Steiner triple systems on 15 points, type (150, 353), see also [13],
and their 787 point derivations (147, 28), see also [9]. These point derivations correspond to
the point orbits of the automorphism groups of all 80 Steiner systems.

4.3. Linear spaces related to the symplectic generalized quadrangle Wy(2)

The linear space of type (15(0,15, 0, 6) may be described as follows: Take the complete graph
on 6 vertices and dualize i1, We have thus 15 “points™ and six 5-blocks on it. A parallel class
congists of three points (i.e., pairs of vertices) which cover all six vertices of the graph, There
exist 15 parallel classes. We add them as 3-blocks to the six 5-blocks and get the regular
space (15]0,15,0,6). An incidence matrix for this geometry is shown by the first 15 lines of
figure 4.
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Figure 4: the projective plane of order 4

Note that the 15 x 15-square corresponding to the 15 3-blocks ig the incidence matrix of the
symplectic generalized quadrangle W3(2) [15], see figure 5.

In the space {15]0,15,0, 6) we now specify one parallelism, that is a 5-tupel of parallel classes
which covers all 15 pairs of points {compare Figure 6,

After mutating these five 3-blocks to five triangles (which does not disturb the other in-
cidences) we get the unique space of type (15/15,10,0.6). If we retain these five 3-blocks
but change the remaining 10 3-blocks to triangles, then we arrive at the unique space with
parameters {15330, 5,0, 6).

BRemark. There are altogether 6 parallelisms of the complete G-graph (all equivalent) defining
line 16 to 21 in the figure 4. The whole incidence matrix decribes the projective plane of
order 4 and displays the outer automorphism of the symmetric group 5s: We have 6 vertices
(upper left) and six parallelisms {lower right)., Now each permutation of the six vertices
induces a permutation of the 15 2-subsets. This in turn produces a permutation of the 15
d-subsets of these 15 elements. Since the 6 parallelisms are subsets of this set of cardinality
15, the last permutation induces a permutation on the set of six parallelisms. We have thus
a natural map from the symmetric group on the six vertices to the symmetric group on the
six parallelisms, and this map turns out to be the outer automorphism of 5. We have a
disgram shown in figure 7.

4.4. Symmetric configurations

A symmetric configuration ng is defined by v = b =n, r = k = 3 (and we always assume
that each pair of points is on at most one block). The numbers N{ns) of these configurations
with 7 < n < 15 are:

n: 78 0 10 11 12 13 14 15
Ning): 1 1 3 10 31 229 2036 21309 245342
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Figure 5: the symplectic generalized quadrangle Ws(2)

Fipure 6; one of the 6 equivalent parallelisms of [(15]0, 15, 03, 6)

see 8], where the number of configurations 144 is calculated for the first time and literature
for the smaller cases is given. In our list we have calculated the number of :?Hnﬁhﬂ:raiiﬁus
133 = 245342, After adding the missing 2-blocks these are regular linear spaces of type
(15)60,15). Most of these geometries are “rigid” (have automorphism group = 1) but there
are considerably many species having not too few collineations and they might be interesting,
The distribution of the automorphism group size over all geometries is:

241240 = 1, ATOO = 2 69w 3, 180 x4, 3%, 506,
a4 = B, 4= 10, 11 = 13, 2x 13 10x16, 1x 18,
%20, 2TxM, Tx3I0, 1x32 Gx48 1xT2
1= 128, 2192 1 =720, 1 = 8064,

Note that the configuration with the largest group size 8064 is the union of 8; and Ty.
For 8; is the punctured affine plane of order 3 with automorphism group order 8 - 6 and 74
is the prajective plane of order 2 having automorphism group order 7-6 - 4. The product of
these two orders is just 8064.
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L 2
O—0—=0—0
Figure 7: Diagram associated to the outer automorphism of S

The numbers N(ny) of symmetric configurations ng, 13 < n < 16, are:

n: 13 14 15 16
Nimgd: 1 1 4 19

The first case describes the projective plane of order 3: (13|0,0,13). An incidence matrix
for 14y is drawn in figure 8. The four geometries 154 define linear spaces with parameters
(15315,0,15) and have automorphism groups of order 24, 15, 30 and 360. Three of these
peometries are already in [14]. The 19 configurations 16, have the following distribution of
automorphism group sizes:
1*283%4'6* 12" 16" 18" 32" 1152,

Omne would like to have figures for these geometries reflecting their antomorphism groups, see
for instance the figures for the 10 configurations 10y in [4].

4.5, Some large classes of regular spaces

An invariant for the geometries of parameter type (15|15,30) is the structure of the set
of 2-blocks, which is also called the configuration graph of the corresponding configuration
(13g, 30s) Thiz substructure is a configuration with * = b =15, k =r = 2 and can be
described by the cyeles formed by the 2-blocks. This cyele scheme is a partition of 15 into
summands > 3, and there are 17 partitions of this kind, The mumbers of regular spaces
(1315,30) in the first three cases are

1. 3.3,3,3,3 146
2.0 3,3, 3,6 7801
3.0 33,45 22816

In the first case we have five disjoint triangles. We may mutate them to five 3-blocks
and get a parallel class of a Steiner triple system on 15 points. Hence there are — up to
equivalence - 146 parallel classes in the 80 Steiner triple systems on 15 points.

The regular linear spaces with parameters (16|24, 16, 8) have a subgeometry consisting of
8 4-blocks on 16 points, i.e., the dual of a regular 4-graph on 8 points. There are § geometries
of this type, compare the parameter case (16/72,0,8). We begin with constructing these G
geometries and then generate the 16 3-blocks, The 24 2-blocks then follow, of course. In this
way we have 6 disjoint cases, and we list in the following the mumber of geometries for these
CASeS:

1.(48) : 2791 4.4): 170399
2.(12): 39103 5.(16): B4595
3.016) : 22561 6.(1152) : 1431
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In brackets are the orders of the automorphism groups of the related d-graphs which nearly
characterize them. Note that the distribution of the geometries over the cases is rather
irregular, case 4 being larger than the other five cases together,

4.6. Some more remarks

The parameter case (16)0, 32, 4) describes the group divisible designs of [6]. The list contains
some regular graphs (in dualized form), for instance the parameter case (15(73, 10) describes
the 21 cubic graphs on 10 points, [12] and [10]. Some classes contain only few geometries (or
exactly one geometry) and one would like to know these species explicitly. Let us describe
some of these "sporadic” regular spaces,

(12/30,0,6): We give a model using the cube. There are 12 pairs of faces which have a
common edge, and we take these 12 pairs as points. We define the 6 faces as blocks, Then
each block is incident with 4 points since each face of the cube has four neighbouring faces,
Furthermore each point is & pair of faces and containg these two faces. Therefore we have six
4-blocks on 12 points which are regular and by adding the 30 missing pairs of points we get
the unique regular space of type (12|30, 0, 6).

(12/6,8,6): In the situation just stated we define as parallel class each triple of points
(=pairs of neighboured faces) such that all 6 faces of the cube are covered. There are exactly
8 paralle] classes and we add them as 3-blocks to the six d=blocks, This leads to the geometry
(12(6, 8, 6).

(12]18,4,6): If we add not all 8 parallel classes but only four of them which form a
parallelism, then we get the geometry (12|18, 4,6).

It is clear from the interpretations that the geometries (12[30,0,6) and (12|86, 8,6) have
auntomorphism group of order 48 (the full group of the cube). The orientation reversing maps
interchange the two parallelisms. Since in the construction of (12[18, 4, 6) one of the two
parallelisms is distingnished, this last linear space has antomorphism group of order 24 only
(the orientation preserving maps of the cube), isomorphic to 5.

The first 12 rows in figure & show the incidence matrix for the linear space (12|6, 8, 6)
(without the 2-blocks). The last two rows define the two parallelisms. Note that the whole
incidence matrix is & model for the symmetric configuration 144, i.e. for the linear space
(14]7,0,14).

(14/49,0,7): One can at onee figure out a model based on the regular T-gon, but note
that there 18 a second geometry, see figure 9 for both, These two linear spaces may also
be described as the duals of the d-regular graphs on 7 vertices. These correspond to the
2-regular graphs on 7 vertices, the graphs O and €y U O,

(16]0,16,12): We take the cyvelic latin square of order 4 and call its 16 elements points.
Define as 4-blocks the 4 rows, the 4 columns and the 4 digits in order to get 12 4-blocks.
Now choose a partial transversal of length 3 as a 3-block and shift it eyelically in horizontal
and vertical direction. In this way we get 16 3-blocks, igure 10.
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Figure 9: the two (14[49,0,7)

1/2|34
23|41
34|12
41123

Figure 10: the unique geometry (16]0, 16, 12)

Note: Our (universal) computer program makes extensive use of the TDO-method introduced
in [3]. We also use the isomorphism algerithm [7], in an improved form.
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